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Abstract

Class incremental learning (CIL) aims to solve the notorious
forgetting problem, which refers to the fact that once the net-
work is updated on a new task, its performance on previously-
learned tasks degenerates catastrophically. Most successful
CIL methods store exemplars (samples of learned tasks) to
train a feature extractor incrementally, or store prototypes
(features of learned tasks) to estimate the incremental feature
distribution. However, the stored exemplars would violate the
data privacy concerns, while the fixed prototypes might not
reasonably be consistent with the incremental feature distri-
bution, hindering the exploration of real-world CIL applica-
tions. In this paper, we propose a data-free CIL method with
embedding distillation and Task-oriented generation (eTag),
which requires neither exemplar nor prototype. Embedding
distillation prevents the feature extractor from forgetting by
distilling the outputs from the networks’ intermediate blocks.
Task-oriented generation enables a lightweight generator to
produce dynamic features, fitting the needs of the top incre-
mental classifier. Experimental results confirm that the pro-
posed eTag considerably outperforms state-of-the-art meth-
ods on several benchmark datasets.

Introduction
Dynamic scenarios require the deployed model can handle
sequential arriving tasks (Parisi et al. 2019; Xu et al. 2021).
Models often incur the catastrophic forgetting problem in
these scenarios, which implies that its performance dramat-
ically degenerates on the previously-learned tasks when the
model learns a new task (McCloskey and Cohen 1989).

One of the most general solutions to the forgetting
problem is Class-Incremental Learning (CIL) (Aljundi,
Chakravarty, and Tuytelaars 2017; Masana et al. 2022). The
oracle CIL method, joint training, assumes that the data of
previously-learned tasks are always available, and combines
such data with the current-task one to jointly train the CIL
model, whereas this oracle violates the CIL setting where
previous data are not allowed (Chen and Liu 2018; Caruana
1997). Early CIL methods intuitively attempted to rebuild
the training or inference environment of joint training to
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achieve comparable performance. For instance1, deep gen-
erative replay (DGR), while training a solver (S), trains a
generator (G) to produce past data when needed (Shin et al.
2017; Wu et al. 2018; Ramapuram, Gregorova, and Kalousis
2020), as illustrated in Fig.1(a). However, generative re-
play is hindered in generating complex images (van de Ven,
Siegelmann, and Tolias 2020). Recently, CIL research has
shifted from rebuilding the joint training environment to the
knowledge distillation (KD) (Hinton et al. 2015). It transfers
the probabilistic knowledge between prediction layers from
the old frozen network to a current trainable one. The solver
network is usually divided into two parts, a feature extrac-
tor and a classifier, corresponding to the extractor-aimed and
prototype-aimed methods, respectively.

On the one hand, Rebuffi et al. (2017) first introduced
extractor-aimed methods that take the cross-entropy crite-
rion to differentiate the learned classes and get a discrimina-
tive feature extractor. Instead of the cross-entropy criterion,
various metric criteria have been proposed. Yu et al. (2020)
enforced that the feature distance between relevant and irrel-
evant samples is larger than a fixed margin. Cha, Lee, and
Shin (2021) constrained the contrastive relations between
samples to be constant (Yang et al. 2022). In particular, Lu-
cir established a cosine similarity between the extracted fea-
tures and the parameters in the classifier (Hou et al. 2019).
Benefiting from such a similarity, Lucir obtained a discrim-
inative feature extractor and rectified the inter-class separa-
tions when confusion arose in CIL. However, all the above
extractor-aimed methods require storing a few exemplars for
each learned class (Castro et al. 2018; Douillard et al. 2020).

For data privacy and security concerns, it is generally not
allowed to store exemplars of learned tasks (Yu et al. 2020;
Liu et al. 2020). Therefore, on the other hand, prototype-
aimed methods emerge. They store the feature mean (i.e.,
prototype) and keep the classifier behind the feature extrac-
tor to avoid the mismatch between the stored prototype and
the feature extractor. For instance, PASS incrementally ex-
panded the Gaussian distribution dominated by each stored

1Methods of rebuilding inferences environment of joint train-
ing are as follows. Parameter isolation retains either a well-trained
network (Rusu et al. 2016) or a set of parameters (Li and Hoiem
2017) for each learned task. The regularization-based method pre-
vents crucial parameters of the learned tasks from adapting to the
current one (Kirkpatrick et al. 2017).
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Figure 1: Comparison of DGR and our proposed Tag and eTag. (a) DGR trains the generator Gt−1 on the task Tt−1 to generate
the pseudo-samples for learning task Tt. (b) Tag trains Gt−1 on Tt−1 under the guidance of the trained and frozen solver St−1.
(c) eTag splits S into a feature extractor F and a classifier C, which incrementally trains F with embedding distillation and
trains C with Tag. (d) Preliminary results on 5 permutation MNIST CIL tasks illustrate Tag is superior to DGR.

prototype (Zhu et al. 2021). Liu et al. (2020) argued that
prototypes cannot reasonably cover the actual feature distri-
bution of classes. They hence introduced a generator to in-
crementally produce the learned feature and suggested Gen-
erative Feature Replay (GFR) for CIL.

Compared with the classifier that commonly consists of a
few layers, the feature extractor is very large, and the con-
ventional KD of the final predictions may not be enough for
a suitable extractor. On the contrary, richer knowledge em-
bedded in the intermediate layers is lost during the CIL pro-
cess. Besides, the purpose of the generative network, i.e.,
generating real instances, is different from that of the classi-
fier, i.e., classifying instances accurately. Since humans can-
not sketch (generate) an actual dollar bill, but can easily spot
(classify) a fake bill from the real one, resolving this paradox
between reality and discriminability may matter for CIL in a
similar way (Epstein 2016). In this paper, we propose a novel
CIL method based on a discriminative feature extractor and
a well-designed feature generative network. Specifically, we
train the feature extractor incrementally in a block-wise em-
bedding distillation manner, which distills the embeddings
of the network’s intermediate block to maintain more dis-
criminative knowledge. Further, as shown in Fig.1(b), we
devise a Task-oriented generation (Tag) strategy. Tag trains
the solver network S first, then the generator G guided by
the frozen S, enabling a generator to produce proper fea-
tures that preferably fit the needs of the classifier.

In summary, our contributions are as follows: (1) We pro-
pose an embedding distillation model for CIL to transfer
richer knowledge embedded in the network’s intermediate
blocks from the old frozen feature extractor to the current
trainable one. To our best knowledge, this is the first study to
use embedding distillation with neither exemplars nor pro-
totypes in CIL. (2) We devise a task-oriented generation
strategy to make the best of the trained classifier, and em-
pirically validate its merits in improving the performances
of CIL tasks. (3) We propose a data-free CIL method with
embedding distillation and Task-oriented generation (eTag
as shown in Fig.1(c)). It significantly outperforms SOTA
methods on several benchmark datasets. Our code and Sup-

plementary Materials (SM) are available2.

Related Work
Generative Replay in CIL

Generative Sample Replay. The core idea is to addition-
ally train an incremental generator to produce samples of
the learned task. Shin et al. (2017) first adopted the gener-
ative network to CIL and proposed deep generative replay
(DGR). As shown in Fig.1(a), DGR, while training a solver
(S) for inference, trains a generator (G) to produce previ-
ous pseudo-samples when needed. The generator could be
either Generative Adversarial Networks (GAN) (Shin et al.
2017) or Variational Autoencoder (VAE) (Ramapuram, Gre-
gorova, and Kalousis 2020). Instead of replaying the gener-
ated data, Wu et al. (2018) implemented a memory replay
mechanism by constraining the previous and current GANs
with the same input-output pairs on the learned tasks. Huang
et al. (2022) developed a similar mechanism by extending
VAE’s intrinsic sample reconstruction property to knowl-
edge reconstruction. BI-R (van de Ven, Siegelmann, and
Tolias 2020) improved the training efficiency using VAE’s
symmetrical structure. In Fig.1(b), we propose Tag, which
makes the best of the solver to guide the training of the
generator. Preliminary CIL experiments on the permutation
MNIST (van de Ven, Siegelmann, and Tolias 2020) shown
in Fig.1(d) verified its benefits compared with DGR.
Generative Feature Replay. To circumvent the limita-
tions of DGR on generating the complex image, generative
feature replay (GFR) focuses on estimating the feature dis-
tribution rather than the original image distribution. Note
that the solver S in GFR is split into a feature extractor F
and a classifier C, i.e., S = F + C. Xiang et al. (2019)
employed a frozen feature extractor that is pre-trained on a
large dataset and cannot be updated incrementally. Liu et al.
(2020) distilled the final prediction from the stored feature
extractor into the current trainable one, while updating the
classifier with GFR. As shown in Figs. 1(b) and 1(c), we
explore CIL through a task-oriented generation strategy.

2https://github.com/libo-huang/eTag
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Embedding Distillation
Embedding distillation (Romero et al. 2015) extends the
vanilla knowledge distillation (Hinton et al. 2015) from
mimicking only the final prediction to the intermediate em-
beddings between the frozen network (i.e., teacher network)
and the trainable one (i.e., student network). The main dif-
ficulty is determining what intermediate knowledge must
be distilled and how to distill it. Various efforts have been
made to address these two issues concurrently. Ahn et al.
(2019) reduced the knowledge gaps in intermediate layers
between the student and teacher networks by maximizing
the mutual information while Romero et al. (2015) aligned
the intermediate feature maps using the mean square error.
Similarly, Heo et al. (2019) employed the mean square er-
ror but for aligning the activation boundaries derived from
the hidden neurons. Recent works have introduced compar-
ative information between samples to explore richer inter-
mediate knowledge, e.g., Peng et al. (2019), Tian, Krish-
nan, and Isola (2019), Tung and Mori (2019), and Park et al.
(2019), etc. Beyond that, building additional self-supervised
(SS) tasks to train the intermediate layer achieves superior
performance (Yang et al. 2021). PodNet (Douillard et al.
2020) confirmed the advantages of considering intermedi-
ate feature maps for CIL, but it aligned the features by a
strong pixel-to-pixel constriction and stored exemplars. We
relax that by embedding knowledge distillation with a self-
supervised task to train the feature extractor and achieve a
data-free CIL method with task-oriented generation.

Proposed Method
The proposed CIL method, eTag, owns two main modules: a
feature generator, G, and a solver, S, where S has a feature
extractor, F , and a classifier, C. eTag incrementally trains F
and C via embedding distillation (Sec. ) and task-oriented
generation (Sec. ), respectively. Before going into depth, we
provide the problem definition and framework overview.
Problem Definition. In CIL, a solver, S, needs to sequen-
tially learn T tasks, where each task is characterized by
a dataset, Dt = (Xt,Yt) = {(xi

t, y
i
t)}

nt
i=1, t = 0, ..., T − 1.

Here, xi
t ∈ Xt is the i-th image of label yit ∈ Yt =

{Y1
t , ...,Y

mt
t }, and nt and mt are the number of images and

the number of classes, respectively. The datasets for differ-
ent tasks are disjoint, i.e., Yt ∩ Yt′ = ∅ for all t ̸= t′. Dur-
ing training St on task t, we can access the stored previous
solver, St−1, that trained on task (t−1) and the current-task
dataset, Dt. Ultimately, we expect that the solver, St, per-
forms well on all previously-learned tasks t′ ≤ t, even if the
task ID of each test sample is unavailable.
Framework Overview. As illustrated in Fig.2, we use
the modern blocked convolutional network, ResNet-18 (He
et al. 2016), as our solver, and VAE as our feature genera-
tor3. Assuming the feature extractor contains L blocks, we
append an auxiliary classifier behind each block (except the

3It is straightforward to generalize the solver to other modern
convolutional neural networks, VGG (Simonyan and Zisserman
2015), ViT (Wu et al. 2022), etc. Compared with GAN, VAE has a
more stable training mechanism (Huang et al. 2022). Appendix-C.2
in SM2 experimentally confirms the architecture generalization.

final one), yielding (L−1) auxiliary classifiers, {Cl(·)}L−1
l=1 .

Cl(·) consists of block-wise convolutional blocks, a global
average pooling layer, and a linear connected layer (Yang
et al. 2021), while the final classifier C consists of a linear
connected layer w and a non-linear activation layer σ. For
the feature f of a given sample, C(f) = σ(w ·f) ∈ R1×mt .
We train the feature extractor, Ft, and the classifier, Ct, on
task t with embedding distillation and feature generative re-
play. After that, we freeze Ft and Ct, and train the feature
generator, Gt, with guidance from the classifier, Ct, i.e.,
task-oriented generation, as shown in Fig.2(b).

Embedding Distillation
Embedding distillation comprises two components: knowl-
edge construction, where the feature extractor learns the cur-
rent task, and knowledge distillation, which enabling the fea-
ture extractor to retain previously-learned tasks.
Embedding Knowledge Construction. For the L-
blocked feature extractor, we separate the embedded
knowledge into a final output feature, fL, and (L − 1)

embeddings, {f l}L−1
l=1 .

On the one hand, to enable the feature extractor, Ft−1, to
extract the discriminative final feature, fL

t−1, on task (t−1),
we train the solver, St−1 = Ft−1+Ct−1, with the following
conventional cross-entropy loss,

Lfinal
CE (Ft−1, Ct−1) = EXt−1,Yt−1

LCE

(
Ct−1

(
fL
t−1

)
, y
)
,

where E stands for the expectation, fL
t−1 = Ft−1(x) is the

final feature extracted from task (t− 1) data by Ft−1.
On the other hand, to obtain (L − 1) embeddings,

{f l
t−1}L−1

l=1 , by Ft−1, we train the auxiliary classifiers
{Cl

t−1(·)}L−1
l=1 on the constructed additional self-supervised

(SS) task. Specifically, given the image x ∈ Xt−1 and label
y ∈ Yt−1, we employ 4 rotations (i.e., 0◦, 90◦, 180◦, 270◦)
on x, i.e., ri(x), i = 1, 2, 3, 4, and 4 augmentation labels
on y, i.e., yri , as our additional SS task, where r1(x) = x,
yr1 = y. We train the (L− 1) auxiliary classifiers with,

Linter
CE (Ft−1, C

l
t−1) =

1

4

4∑
i=1

L−1∑
l=1

LCE

(
Cl

t−1(f
l
t−1,i), yri

)
,

where f l
t−1,i = Ft−1(ri(x)) is l-th intermediate embedding

of the rotated image, ri(x). Cl
t−1(f

l
t−1,i) ∈ R1×4·mt−1 is

the final prediction produced by Cl
t−1.

Eventually, fL
t−1 and {f l

t−1}L−1
l=1 can embed more knowl-

edge from data Dt−1 compared with PodNet’s vanilla pixel-
to-pixel alignment of fL

t−1 or PASS’s SS task only. We ex-
perimentally verified this point on the CIL’s initial task (i.e.,
Task 0). As shown in Fig.3, PASS uses SS to reduce the
number of outlier points compared with PodNet. eTag im-
proves the compaction of feature clusters by employing the
proposed embedding knowledge construction, and these fea-
ture clusters are kept separate from each other during CIL.
Embedding Knowledge Distillation. When the new task
t arrives, we employ the embedding knowledge distillation
to retain the knowledge in the frozen feature extractor, Ft−1.
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stored feature extractor Ft−1, generator Gt−1; (b) incrementally training the generator Gt with the guidance from Ct.
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Firstly, we distill the final feature distribution from Ft−1

to Ft using L2 loss (Liu et al. 2020),

Lfinal
2 (Ft) = EXt

[
∥fL

t − f̄L
t−1∥2

]
,

where f̄L
t−1 = Ft−1(x) is the final feature extracted from

task t data by Ft−1. Note that we use a symbol bar to de-
note the feature of the current task data extracted with the
old model. Secondly, we distill (L−1) intermediate embed-
dings from Ft−1 to Ft with a block-wise Kullback–Leibler

divergence loss,

Linter
KL (Ft, C

l
t) (1)

=
1

4

4∑
i=1

L−1∑
l=1

τ2LKL

(
σ
(
Cl

t−1(f̄
l
t−1,i)/τ

)∥∥∥σ (
Cl

t(f
l
t,i)/τ

))
,

where f̄ l
t−1,i = Ft−1(ri(x)) and f l

t,i = Ft(ri(x)) are the
l-th intermediate embedding of the rotated image ri(x) ex-
tracted by the frozen Ft−1 and the trainable Ft, respectively.
σ is the softmax operation, τ is a hyper-parameter to scale
the smoothness of distribution, and τ2 is utilized to keep
the gradient contributions unchanged (Hinton et al. 2015).
At last, we train the solver, St = Ft + Ct, with Lfinal

CE on
Dt, rendering Ft plastic to learn the incremental task, and
fit the generated features, f̂L

:t−1, to its corresponding label
y ∈ Y:t−1 with LCE , enabling the classifier Ct stably retain
the learned knowledge,

Lnew
CE (Ft, Ct) = Lfinal

CE (Ft, Ct) (2)

+ λCE · Ef̂L
:t−1,Y:t−1

LCE

(
σ
(
w:t−1 · f̂L

:t−1

)
, y
)
,

where □̂ indicates the generated feature, Y:t−1 represents
the label set of (t − 1) learned tasks, and λCE is automat-
ically set to m:t−1/mt, i.e., the ratio of classes in the pre-
viously learned task to the current task, for simplifying the
training process (Liu et al. 2020).

We validated the superiority of embedding knowledge
distillation on the incremental task (i.e., Task t > 0). As
shown in Fig.3, PodNet aligns the feature maps at the pixel
level in the incremental tasks 1-3, which does maintain the
feature distribution of the initial task compared with the fine-
tune strategy, but restricts the model from learning the new
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features of incremental tasks. In contrast, embedding knowl-
edge distillation not only maintains the feature distribution
with stability for the initial task but also learns new feature
distributions with plasticity.

Task-Oriented Generation
We incrementally train the feature generator Gt

to estimate the conditional distribution of features
p(f̂L

:t |y:t) = Gt(y:t, z), preventing the incremental classi-
fier Ct from forgetting, where z is a Gaussian noise vector,
and y:t is the label of a sample from the tasks learned so far.

For the current task t, we specifically propose a task-
oriented generation strategy, which allows Gt to produce
features that better fit the needs of the classifier, Ct. We re-
alize that by adopting a conditional VAE network with the
following modified VAE loss,

Lnew
V AE(Gt) = LKL

(
pϕt

(
z | fL

t , y
) ∥∥p(z)) (3)

− Epϕt(z|fL
t ,y),Xt,Yt

[
log pθt

(
f̂L
t

∣∣y, z)]
+ Epθt(f̂L

t |y,z),Yt,p(z)
LCE

(
σ
(
wt · f̂L

t

)
, y
)
,

where ϕt and θt indicate the parameters of encoder and de-
coder in Gt, respectively; and p(z) = N (0,1), i.e., the
standard Gaussian distribution. By minimizing the first two
terms, the encoder promotes fL

t and y to be the prior Gaus-
sian distribution, while the decoder reconstructs the surro-
gate f̂L

t of the original sample fL
t from y and z. The last

term encourages the generator Gt to produce specific fea-
tures such that the classified label of Ct is correct, improving
the coherence of the feature from pθt with the label y.

To prevent Gt from forgetting, we use the knowledge re-
construction strategy (Huang et al. 2022) that enables Gt to
reconstruct the historical knowledge retained in Gt−1,

Lold
V AE(Gt) (4)

=− Epθt−1(f̂
L
:t−1|y,z),U{Y:t−1},p(z)

[
log pθt

(
f̂L
:t−1 | y, z

)]
,

where U{·} is the discrete uniform distribution; and y is
uniformly sampled from the labels of learned tasks. As il-
lustrated in Fig.3, compared with PASS, which fixes the
prototypes from moving, eTag learns a more plastic fea-
ture distribution that appropriately adjusts the old features
and accommodates new ones. Notably, Fig.1(d) shows that
task-oriented generation exhibits superior incremental re-
sults compared with DGR, which uses the generator directly.

Integrated Objective
eTag addresses the forgetting problem in CIL. When learn-
ing the initial task 0, there is no previous knowledge to re-
tain. Hence we train the initial generator with Lnew

V AE(G0) as
Eq.(3), and train the solver with the following unified loss,

L
(
F0, C0, C

l
0

)
= Lfinal

CE (F0, C0) + Linter
CE

(
F0, C

l
0

)
. (5)

When learning the incremental tasks t ≥ 1, we train the
solver and generator incrementally with the weighted losses,

L
(
Ft, Ct, C

l
t

)
(6)

=Lnew
CE (Ft, Ct) + λ ·

(
Lfinal
2 (Ft) + Linter

KL

(
Ft, C

l
t

))
,

Algorithm 1: CIL with eTag

Input: A sequence of T task: D0, ...,Dt, ...,DT−1,
where Dt = (Xt,Yt)

Output: Incremental solver ST−1 = (FT−1, CT−1)
function eTag(D0, ...,DT−1)

Train F0, C0, and Cl
0 on D0 using Eq.(5)

Train G0 on D0 using Eq.(3)
Evaluate F0 and C0 on the initial task 0
for t = 1, ..., T − 1 do

Train Ft, Ct, and Cl
t on Dt using Eq.(6)

Train Gt on Dt using Eq.(7)
Evaluate Ft and Ct on the learned task 1 : t

end
return FT−1 and CT−1

end

L(Gt) = Lnew
V AE(Gt) + λV AE · Lold

V AE(Gt), (7)

where parameters λ and λV AE are also automatically set to
the same value as λCE , i.e., λ = λV AE = m:t−1/mt. We
summarize the whole training process in Algorithm 1.

Experiment
We conduct experiments on CIFAR-100 (Liu et al. 2020)
and ImageNet-100 (Wang et al. 2022); and employ three
metrics: average incremental accuracy (A), average forget-
ting measure (F ), and classification accuracies (ACC) for
evaluation. Please see details of datasets, evaluation metrics,
comparisons, and implementation in Appendix-A of SM2.

Overall Evaluation
Referring to (Zhu et al. 2021; Liu et al. 2020; Hou et al.
2019), we first train a model on half of the classes of
CIFAR-100 or ImageNet-100, and then incrementally train
on the remaining classes with equally separated 5, 10 and
25 tasks. We compare two reference methods, fine-tuning
(Fine) and joint training (Joint) (Chen and Liu 2018), as
well as several state-of-the-art (SOTA) methods, includ-
ing two parameter isolation methods, LwF (Li and Hoiem
2017) and LwM (Dhar et al. 2019), two regularization-based
methods, EWC (Kirkpatrick et al. 2017) and MAS (Aljundi
et al. 2018), two extractor-aimed methods, IL2M (Be-
louadah and Popescu 2019) and Lucir (Hou et al. 2019), and
two prototype-aimed methods, GFR (Liu et al. 2020) and
PASS (Zhu et al. 2021). In addition, we also modify each of
these SOTA methods by introducing embedding distillation,
resulting in modified methods denoted by eXX, where XX
is LwF, LwM, MAS, IL2M, Lucir, GFR, or PASS.

As shown in Tab.1, eTag outperforms all compared meth-
ods in incremental accuracy by a large margin. Specifically,
on CIFAR-100 and ImageNet-100, eTag improves average
incremental accuracy by more than 5% and 7%, respectively,
compared to GFR. It also exhibits less forgetting, showcas-
ing its competitive performance. Interestingly, introducing
embedding distillation directly into other SOTA methods
does not consistently enhance learning incremental tasks.
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Dataset CIFAR-100 ImageNet-100

5 tasks 10 tasks 25 tasks 5 tasks 10 tasks 25 tasks

Metric A(↑) F (↓) A(↑) F (↓) A(↑) F (↓) A(↑) F (↓) A(↑) F (↓) A(↑) F (↓)
Joint 75.21 3.79 75.26 4.09 75.11(±1.13) 6.60(±1.29) 78.92 3.84 79.53 6.27 80.12(±0.25) 8.74(±0.20)

Fine 22.59 65.49 12.20 72.59 4.66(±0.06) 76.64(±0.73) 19.53 75.20 9.58 79.40 4.60(±0.03) 80.13(±0.62)

EWC 31.66 56.10 21.41 62.51 7.93(±0.56) 73.18(±0.65) 30.53 59.18 21.00 66.84 10.87(±0.12) 73.62(±0.51)

eEWC 36.39 53.67 23.21 60.02 7.86(±0.52) 75.67(±1.63) 35.10 59.52 21.50 69.41 10.68(±0.41) 10.68(±0.41)

MAS 25.95 63.78 17.43 67.93 7.87(±1.69) 74.45(±1.06) 29.20 63.39 17.93 70.66 8.13(±0.81) 76.25(±0.38)

eMAS 31.64 59.17 20.69 62.43 7.13(±0.97) 76.89(±2.11) 32.53 62.43 19.76 71.11 8.56(±0.66) 78.51(±1.17)

LwF 52.98 31.18 42.27 39.51 16.92(±1.21) 63.89(±1.32) 54.59 33.11 44.60 40.76 26.41(±0.47) 57.61(±0.42)

eLwF 52.16 35.77 40.58 44.93 19.45(±0.84) 64.88(±1.83) 47.43 45.35 44.26 44.67 23.37(±1.18) 63.64(±1.41)

LwM 56.95 26.60 44.85 38.08 25.40(±1.36) 55.47(±1.32) 52.90 34.92 42.86 42.44 26.41(±0.39) 57.28(±0.98)

eLwM 57.94 28.83 45.86 40.34 24.71(±0.52) 59.39(±1.24) 50.60 41.18 41.74 47.39 25.03(±0.16) 62.08(±0.15)

IL2M 53.83 30.78 53.19 29.00 46.45(±0.39) 33.83(±2.06) 55.89 31.12 56.63 26.46 52.85(±0.59) 29.71(±0.94)

eIL2M 58.63 27.88 55.80 31.35 47.66(±1.84) 35.58(±2.87) 54.80 36.39 53.16 35.21 50.17(±1.59) 35.50(±1.75)

Lucir 56.95 18.74 52.87 21.71 49.35(±2.66) 24.83(±1.83) 68.23 13.69 66.90 14.83 64.83(±0.29) 19.90(±0.82)

eLucir 65.06 20.77 60.60 26.93 51.69(±2.16) 32.00(±3.45) 70.49 18.27 67.61 19.94 61.21(±3.83) 25.05(±3.16)

PASS 61.65 23.42 58.85 27.96 51.75(±1.82) 29.90(±0.99) 69.69 20.46 62.92 26.05 59.16(±0.37) 25.07(±0.50)

ePASS 64.51 20.14 63.13 24.15 58.90(±0.49) 23.43(±1.03) 67.64 19.82 64.31 25.93 60.72(±0.69) 24.13(±0.32)

GFR 62.74 19.69 59.85 21.74 56.76(±1.62) 23.21(±1.62) 69.91 18.24 67.30 19.52 63.70(±0.61) 22.23(±0.48)

eGFR 66.76 19.03 64.62 23.95 55.20(±0.94) 28.53(±1.58) 76.14 14.76 74.24 15.28 70.33(±0.17) 18.37(±0.22)

eTag 67.99 16.89 65.50 18.01 61.63(±0.79) 21.95(±0.74) 76.79 14.50 75.17 15.04 71.77(±0.12) 17.86(±0.27)

Table 1: Average incremental accuracy (A) and forgetting measure (F ) results on CIFAR-100 and ImageNet-100 after the
model incrementally learns # tasks. eXX stands for the modified method that introduces the proposed embedding distillation in
XX. Bold and underline indicate the best and second best results, respectively.
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Figure 4: Detailed ACCs on CIFAR-100 with various CIL tasks. Results on ImageNet-100 are given in Appendix-B.1 of SM2.

For instance, on 10 tasks of CIFAR-100, eGFR improves
GFR by 4.77% in average incremental accuracy but suffers
more severe forgetting, increasing from 21.74% to 23.95%.
This may be due to confusion between incremental features
and the incremental classifier. In contrast, eTag achieves su-
perior accuracy with less forgetting. This is mainly attributed
to additional self-supervised tasks for distilling embedding
knowledge and Tag for generating specific features to train
the incremental classifier. We provide the detailed ACCs and
standard deviations of four methods, EWC, LwM, Lucir, and
GFR as they show better incremental accuracy in each com-
parison category. The confidence intervals of them are over
95%. As shown in Fig.4, EWC and LwM do not perform
well, especially in long incremental tasks. Lucir gets rea-
sonable ACCs with stored exemplars, but its cosine crite-

rion affects the performance of the initial task. Conversely,
GFR uses the cross-entropy criterion to extract features and
achieves comparable results to Lucir, even without any ex-
emplar. Moreover, the results show that directly incorporat-
ing embedding distillation in these methods does not con-
stantly improve performance for every incremental task. For
instance, on 25 incremental tasks, eGFR’s ACCs decrease
compared with the original GFR. By unifying Tag and em-
bedding distillation, eTag consistently attains exceeded per-
formances in all settings compared with SOTA methods by
a large margin.

Confusion Matrix. We analyze the final classification re-
sults of the incremental model and visualize the final confu-
sion matrices of Fine, GFR, eTag, and Joint by conducting
experiments on four equally divided tasks of CIFAR-100.
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Figure 5: Confusion matrix of (a) Fine, (b) GFR, (c) eTag, and (d) Joint.

Baseline B0 B1 B2 B3 B4 eTag

GE T N T N N T
KD E N N E E E
SS - - - ✓ - ✓

A(↑) 58.38 57.30 59.82 61.18 56.89 64.10

Table 2: Ablation results. Generation strategies (GE) in-
clude naı̈ve (N ) / task-oriented (T ) feature generation,
Knowledge distillation (KD) strategies include naı̈ve (N )
/ embedding (E) KD, and whether to use SS task.

As shown in Fig.5, eTag primarily improves performance
by addressing the class imbalance problem in GFR, where
samples are inclined to be inferred as the recent task. Fine
suffers significantly from this inclining problem, while Joint
can avoid it. We attribute the success of eTag mainly to em-
bedding distillation and task-oriented generation compared
with the naive distillation and naive generation in GFR4.

Ablation Studies
We conduct ablation experiments on four equally divided
tasks of CIFAR-100. There are five baselines, B0, B1, B2,
B3, and B4. B0 is similar to eTag only without SS, B1 uses
naı̈ve feature generation and naı̈ve knowledge distillation
(KD). B2 replaces B1’s naı̈ve feature generation with the
task-oriented generation, while B4 replaces B1’s naı̈ve KD
with embedding KD. B3 improves B4 by using the SS task.
Effects of Each Component. As shown in Tab.2, overall,
the comparison pair “B1 versus B2” reflects the effective-
ness of task-oriented feature generation; the pair “B1 versus
B3” reflects the effectiveness of embedding distillation; and
the pairs “B3 versus B4” and “B0 versus eTag” along with
the above analyses reflects the effectiveness of SS. A more
detailed analysis is given in Appendix-C.1 of SM2.
Parameter Analysis. We study the sensitivity of the only
manually set parameter, τ , in eTag (Eq.(1)) with ACCs. As
shown in Fig.7, the results indicate that eTag is generally

4Additional evaluations, including the experiments on
ImageNet-100 / ImageNet-1000 / Tiny-ImageNet compared with
the recent exemplar-free / sample-generative CIL methods, are
provided in Appendix-B of SM2.
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Figure 7: Parameter effect.

insensitive to the values of τ . Concretely, the maximum
accuracies (average accuracy plus standard deviation) for
different values of τ on each incremental task are nearly
the same, although the standard deviation is relatively large
when τ = 1. This suggests that maintaining identical em-
beddings before and after CIL makes the model less plastic
when learning new information5.

Conclusion
To embrace the merits of both incrementally training a fea-
ture extractor and estimating the feature distribution, we de-
velop a class-incremental learning method with embedding
distillation and Task-oriented generation (eTag). eTag incre-
mentally distills the embeddings from intermediate block
outputs to gain more knowledge for the feature extractor,
and endows the generator to produce features that match
the classifier. Extensive experiments on several benchmark
datasets verified the effectiveness of our eTag in tackling the
forgetting problem.

Albeit satisfactory performances, CIL is far from being
solved. Particularly, eTag performs lower than the upper
bound of joint training. We hope that the ideas and the suc-
cess of eTag will inspire more effective data-free CIL strate-
gies to reduce the remaining performance gap. In the future,
it is desirable to improve the training efficiency of eTag and
engage the pre-trained big backbone model for CIL.

5We provide extensive ablation studies about SS, architecture
generalization, Tag’s effectiveness, time consumption, and memory
budget in Appendix-C of SM2.
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