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Abstract

Although Federated Learning (FL) enables collaborative
model training without sharing the raw data of clients, it en-
counters low-performance problems caused by various het-
erogeneous scenarios. Due to the limitation of dispatching
the same global model to clients for local training, tradi-
tional Federated Average (FedAvg)-based FL models face the
problem of easily getting stuck into a sharp solution, which
results in training a low-performance global model. To ad-
dress this problem, this paper presents a novel FL approach
named FedMut, which mutates the global model according
to the gradient change to generate several intermediate mod-
els for the next round of training. Each intermediate model
will be dispatched to a client for local training. Eventually,
the global model converges into a flat area within the range
of mutated models and has a well-generalization compared
with the global model trained by FedAvg. Experimental re-
sults on well-known datasets demonstrate the effectiveness of
our FedMut approach in various data heterogeneity scenarios.

Introduction
As a well-known distribution machine learning paradigm,
Federated Learning (FL) (McMahan et al. 2017; Li et al.
2021c; Hu et al. 2023b; Wang et al. 2023) has been widely
used in various applications, such as Internet of Things (IoT)
systems (Zhang et al. 2020b; Li et al. 2021a; Hu et al. 2023a;
Jia et al. 2023; Cui et al. 2021), medical health (Rieke et al.
2020), and digital finance (Long et al. 2020). Traditional
FL methods are based on the Federated Averaging (FedAvg)
mechanism, which dispatches a global model to multiple lo-
cal clients and aggregates their trained local models to up-
date the global model. In this way, FL can enable collabora-
tive machine learning without sharing data. Furthermore, to
prevent privacy problems caused by gradient leakage, Fe-
dAvg adopts a secure aggregation mechanism (Bonawitz
et al. 2017).
Although FL is promising in protecting the privacy, its

performance is still seriously limited by data heterogene-
ity. Specifically, since the data on local clients are non-
IID (Independent and Identically Distributed) (Huang et al.
2021), the optimization directions of local clients are di-
vergent, resulting in the notorious “gradient divergence”
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problem (Karimireddy et al. 2020). Since the traditional
FedAvg method only coarse-grained aggregates all the re-
ceived local models to generate a global model, the con-
flict weights among local models cannot be wisely resolved.
Thus, the global model trained by FedAvg may easily be
worse-generalized. In other words, FL training may fall
into a worse-generalized local optimum. To address this is-
sue, state-of-the-art FL optimization methods attempt to use
global variables (Karimireddy et al. 2020; Li et al. 2020),
client grouping strategies (Fraboni et al. 2021; Chen et al.
2020), or knowledge distillation technologies (Lin et al.
2020; Zhu, Hong, and Zhou 2021). Although these methods
can slightly improve the inference performance of the global
model, they still have serious limitations, e.g., requirements
of additional data or not compatible with the secure aggre-
gation mechanism. Therefore, how to improve the inference
performance of secure FL without additional data has be-
come an important challenge.
From the perspective of geometric, due to the data het-

erogeneity, the loss landscapes (Hochreiter and Schmidhu-
ber 1997) of different clients are slightly different, where
a loss landscape shows the loss values of a target model
with different parameter values on a specific dataset. Specif-
ically, a model may achieve a low inference loss in a client,
but may suffer from a higher inference loss in other clients.
Therefore, to train a high-performance global model, it is
important to optimize all the local models towards a more
generalized direction. Many previous works (Hochreiter and
Schmidhuber 1997; Stutz, Hein, and Schiele 2021; Foret
et al. 2020) observed that the well-generalized solutions are
located in flat areas rather than sharp areas of the loss land-
scapes. Typically, since the tasks of each local model are the
same, the loss landscapes of each client are still similar. In-
tuitively, there is a greater probability that the flat optimal
areas of different clients partially overlap compared to the
sharp optimal areas. In other words, when the model con-
verges into the overlapping region, it can achieve a high in-
ference performance in the majority of clients.
Figure 1 illustrates the loss landscapes of two clients (i.e.,

Client 1 and Client 2) with heterogeneous data. Figure 1(a)
shows the loss landscapes of Client 1 and Figure 1(b) shows
that of Client 2. Each client has two optimal areas, i.e.,
the sharp one (located at the bottom of the figure) and the
flat one (located at the top of the figure), respectively. Fig-
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(a) Client 1 (b) Client 2 (c) Overlap

Figure 1: A motivating example of Loss Landscapes.

ure 1(c) presents the overlap of loss landscapes of the two
clients. From Figure 1(c), we can observe that the loss land-
scapes of the two clients are similar. The two sharp optimal
areas do not overlap, but the two flat optimal areas overlap
partially. When a model converges into one of the sharp op-
timal areas of two clients, it will achieve low performance in
the other client. On the contrary, when the model converges
into the overlapping region of two flat optimal areas, it will
achieve high performance in both clients. Intuitively, we can
guide the FL training towards a flat optimal area to achieve
a well-generalized global model.

Based on the above intuition, we present a novel FL
approach named FedMut, which uses a heuristic mutation
strategy to generate multiple models for local training to
guide the aggregated global model towards a flat optimal
area. Specifically, we mutate the aggregated gradients of the
global model to generate multiple mutated models for local
training. The generated models are located in the neighbor-
hood of the global model. If the neighborhood is located in
the same flat area, with the local training, the generated mod-
els are still optimized towards the optimal solution of this
area. Otherwise, some local models are optimized towards
another area, which can guide the aggregated global model
to jump out of the current sharp area. Therefore, the global
model will eventually converge into a flat area, where the flat
area is larger than the neighborhood composed of mutation
models. Additionally, since the mutation strategy of FedMut
only uses the aggregated gradients of the global model rather
than each uploaded local model, FedMut is compatible with
the security aggregation mechanism. The main contributions
of this paper are shown as follows:
• We present a novel FL approach FedMut, which uses
multiple mutated models rather than the global model for
local training to guide the global model to converge into
a flat optimal solution.

• We present a mutation strategy to generate multiple mu-
tated models by stochastic mutating the updated gradi-
ents of the global model.

• We conducted experiments using various models on three
well-known datasets to demonstrate the effectiveness of
our FedMut approach in both IID and non-IID scenarios.

Preliminaries
Problem Definition of Federated Learning
Typically, FL adopts a cloud-based architecture, which con-
sists of a cloud server and multiple clients. Note that this

paper only focuses on the scenario of homogeneous models,
where the global model and all the local models have the
same model structure.

Assume that the task of the global model and the local
models of an FL system is to map an input space I to an
output space O. Assume that the FL system has a cloud
server S and N clients indicated by {c1, c2, ..., cN}. Let
each client i hold a local dataset, which is denoted by Di =
{di,1, di,2, · · · , di,ni}, where di,j = (Ii,j , Oi,j) 2 I ⇥ O.
In the FL system, all involved clients collaboratively train a
global model wglb by uploading their trained local models to
the cloud server. So far, standard FLmethods aggregate local
models based on FedAvg (McMahan et al. 2017) to generate
the global model. The goal of a standard FL optimization
problem is formulated as follows,

min
w

F (w) =
1

N

NX

i=1

fi(w),

s.t., fi(w) =
1

ni

niX

j=1

l(w; di,j),

(1)

where l denotes the loss functions of an individual sample
(e.g., the cross-entropy loss), fi denotes the loss functions of
all the samples of client i, and F represents the loss function
of the global model. Note that we focuse on the inference
performance of the unified global model. The personalized
and clustered FL problems are not considered in this paper.

Related Work
To enhance the traditional FL inference performance, many
FL optimization methods have been presented. Specifi-
cally, these methods can be classified into three categories,
i.e., global variable-based FL methods (Li et al. 2020;
Karimireddy et al. 2020), device grouping-based FL meth-
ods (Fraboni et al. 2021; Chen et al. 2020; Li et al. 2021b),
and knowledge distillation-based FL methods (Sattler et al.
2021; Lin et al. 2020; Zhu, Hong, and Zhou 2021).

The global variable-based FL methods typically use a
global variable to guide local training towards a similar
direction. For example, FedProx (Li et al. 2020) uses the
squared distance between the local models and the global
model as a proximal term to regularize the local loss func-
tions, thus stabilizing the convergence of the model. SCAF-
FOLD (Karimireddy et al. 2020) generates a global control
variable in each FL round and uses this global control vari-
able to correct the optimization direction of local models in
the local training process.

The device grouping-based FL methods attempt to group
devices according to specific metrics and then wisely se-
lect devices from different groupings for local training. Typ-
ically, different from the consideration of other trustwor-
thy properties (Huang et al. 2023; Zhang et al. 2020a; Li
et al. 2023a, 2021d, 2023b; Zhang et al. 2023; Yue et al.
2023), it is difficult to directly obtain the data distributions
of each client due to the consideration of privacy protec-
tion. Thus, the majority of device grouping-based methods
use model similarity to the grouping metrics. For example,
CluSamp (Fraboni et al. 2021) uses sample size or model
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similarity as metrics for client grouping. FedCluster (Chen
et al. 2020) groups clients into multiple groups that perform
FL cyclically in each FL round.
The knowledge distillation-based methods adopt the well-

known knowledge distillation technology to enhance the in-
ference performance of FL. Specifically, they use a well-
performed “teacher model” to guide the training of “student
models”. For example, FedAUX (Sattler et al. 2021) per-
forms data-dependent distillation using an auxiliary dataset
to initialize the server model. FedDF (Lin et al. 2020) uses
an ensemble model as the “teacher model” and unlabeled
data for distillation to accelerate FL training. To address
the problem of the requirement for additional datasets, Fed-
Gen (Zhu, Hong, and Zhou 2021) uses a built-in generator
and a proxy dataset to achieve data-free distillation.
Although the above optimization FL methods can im-

prove the inference performance of FL, they still have se-
rious limitations. For global variable-based methods, they
need additional communication overhead to dispatch global
variables or additional computing overhead on clients to cal-
culate the proximal term. For device grouping-based meth-
ods, they need to acquire all the local models, which results
in FL incompatibility with the secure aggregation mech-
anism, thus causing potential privacy leakage risks. For
knowledge distillation-based methods, they need additional
computing overhead for knowledge distillation and addi-
tional datasets. To the best of our knowledge, FedMut is
the first attempt to use a general mutation strategy to gen-
erate multiple mutated models for local training. By guiding
all the mutated models to be optimized towards the same
flat area, FedMut can train a well-generalized global model.
Note that FedMut is compatible with the secure aggregation
mechanism and does not require additional datasets or com-
munication overhead.

Our FedMut Approach
Motivation
Inspired by the findings of various empirical stud-
ies (Hochreiter and Schmidhuber 1997; Stutz, Hein, and
Schiele 2021; Cha et al. 2021; Foret et al. 2020) that well-
generalized solutions are located in a flat area rather than
a sharp one, our goal is to guide FL training towards a flat
area to train a well-generalized global model. Intuitively, if
a global model is located in a flat area, the models located
in its neighborhoods are still in the same flat area with a
higher probability. On the contrary, if a model is located in
a sharp area, the models located in its neighborhoods may
be in the other area. Based on this intuition, we mutate the
global model to generate multiple models in its neighbor-
hoods for local training. When all the mutated models are
located in the same area, we can obtain a well-generalized
global model, whose neighborhoods are flat. Note that, since
all the mutated models are located in the same flat area,
when local training, all these models are optimized towards
the optimal solution of such area, and the aggregated global
model is still in such flat area. Therefore, the global model
eventually converges into such a flat area. On the contrary,
traditional FedAvg-based methods that use the global model

for training are easily stuck in a sharp area.

(a) Mutation in Flat Area (b) Mutation in Sharp Area

Global Model Mutated Model Aggregated Global ModelLocal Model

Local Training Model AggregationModel Mutation

Figure 2: A motivating example of mutation.

Figure 2 illustrates an example of our motivation. The
two subfigures show the same loss landscape of the global
model. Here, the landscape has two optimal areas, i.e., a flat
area on the left of each subfigure and a sharp area on the
right of each subfigure, respectively. Figure 2(a) presents the
example that the global model is located in a flat area, and
Figure 2(b) presents the example that the global model is lo-
cated in a sharp area. In each subfigure, the red dot denotes
the initial global model, the red squares denote the mutated
models, the blue stars present the trained local models, and
the blue dot indicates the aggregated global model. We as-
sume that four clients are involved in local training in each
FL round. As seen in Figure 2(a), the cloud server gener-
ates four mutated models through the model mutation pro-
cess. Since the neighborhood composed of mutation models
is smaller than the flat area, where the initial global model
is located, all the mutated models are still located in this
flat area. Through local training, all the mutated models are
optimized towards the center of the flat area, and the aggre-
gated global model is consequently updated to the center of
the flat area. As shown in Figure 2(b), since the neighbor-
hood composed of mutation models is larger than the flat
area, the three mutated models are located in the other area
rather than the sharp area, where the initial global model is
located. Through local training, three mutated models are
optimized towards the flat area, and only one mutated model
is optimized sharp area. Consequently, the aggregated global
model moves towards the flat area. Therefore, by mutating
the global model to multiple mutated models in neighbor-
hoods and using such mutated models for local training,
we can eventually obtain a well-generalized global model,
which is located in a flat area larger than the neighborhoods
composed of all the mutated models.

Overview
Figure 3 presents the framework of our FedMut approach,
which consists of a cloud server and N involved clients. In
each FL round, the cloud server randomly selects K acti-
vated clients for local training. Note that since real-work FL
systems are difficult to ensure that all the involved clients
participate in local training of each FL round, typically the
number of activated clients is smaller than that of involved
clients. As shown in Figure 3, each FedMut training round

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12530



…
!! !" !#

Global Model

Old
Global Model

…
!!
$%&

11-1-1 -1-111 1-11-1…

!"
$%& !#

$%&

Gradients

Model
Mutation

Cloud Server

Activated Client ! Activated Client " Activated Client #

Model UploadingModel Dispatching

Model
Aggregation

1 3

4

5

Local Training
2

Local Training
2

Local Training
2

Involved Clients (" ≥ $)

…

Model Update
6

Figure 3: Framework of FedMut.

consists of six steps, i.e., model dispatching, local training,
model uploading, model aggregation, model mutation, and
model updating, respectively. The details of the six steps
are as follows. ∂ Step 1 (Model Dispatching): The cloud
server dispatches K mutated global models to K activated
clients. Note that each activated client is dispatched only
one mutated model. ∑ Step 2 (Local Training): Each ac-
tivated client trains the received mutated global model us-
ing their raw data. ∏ Step 3 (Model Uploading): Each ac-
tivated client uploads its trained local model to the cloud
server. π Step 4 (Model Aggregation): Similar to conven-
tional FL methods, when receiving local models from all
the activated clients, the cloud server aggregates these local
models to generate a new global model. ∫ Step 5 (Model
Mutation): The cloud server mutates the aggregated global
model to generate K mutated models according to the gra-
dients of the global model. Specifically, the gradients of the
global model are the weight changes of the global model
relative to the old global model from the previous round.
Our FedMut approach performs a layer-wise mutation strat-
egy, which stochastically generates a one-dimensional ma-
trix whose element values are only -1 and 1 and whose
length is the number of model layers (denotes L). According
to the matrix, for the ith layer of the global model, the cloud
server adds the weights of the layer to the value of the cor-
responding gradients for the value of the ith element equal
to 1 and subtracts the weights of the corresponding layer
to the value of the corresponding gradients for the value of
the i

th element equal to -1. Note that the cloud server will
generate K different mutation matrices to generate K mu-
tated models. These mutated models will be dispatched for
local training in the next round. ª Step 6 (Model Updat-
ing): The cloud server replaces the old global model with
the aggregated global model in the current round.

After a certain number of FL training rounds, the cloud
server can obtain a well-generalized global model, which
will be deployed to AIoT devices for inference tasks. Note
that in our approach, all the mutated models are only used
for local training rather than model deployment.

Algorithm 1: Implementation of FedMut
Input:
i) round, # of training rounds; ii) C, the set of involved
clients; iii) K, # of activated clients.
Output:
i) wglb, the trained global model
FedMut(round,C,K)
1: w

0
glb  w0 // initialize global model

2: w
mut
1 , ..., w

mut
K  w

0
glb // initialize mutated models

3: for r = 1, ..., round do
4: Lc  Randomly selectK clients from C

/*parallel for block*/
5: for i = 1, ...,K do
6: w

r
i  LocalTraining(wmut

i , Lc[i])
7: end for
8: w

r
glb  ModelAggregation(wr

1, ..., w
r
K)

9: [wmut
1 , ..., w

mut
K ]  ModelMutation(wr

glb, w
r�1
glb ,K)

10: end for
11: return w

r
glb

Implementation
Algorithm 1 shows the implementation of our FedMut ap-
proach. Line 1 initializes the global model. Line 2 initializes
all the mutated models using the initial global model. This
is because, in the first round, the cloud server cannot obtain
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the gradients of the global model and thus cannot perform
the model mutation process. Lines 3-10 present the training
process of each FL round. In Line 4, the cloud server ran-
domly selects K clients from the set of involved clients C
as activated clients for local training. Lines 5-7 present the
local training process. The cloud server parallel dispatches
the K mutated models to K selected clients. Specifically,
in Line 6, the cloud server dispatches the mutated model
w

mut
i to the ith selected client Lc[i] and the client Lc[i] per-

forms the function LocalTraining(·) to train w
mut
i using its

raw data. After local training, the client Lc[i] uploads the
trained modelwr

i to the server. Line 8 presents the model ag-
gregation process. In Line 9, the function ModelMutation(·)
mutates the global model wr

glb according to the old global
model wr�1

glb generated in the last round to generate K mu-
tated models for the local training of the next round.
Model Mutation To guide the global model to converge
into a flatter solution, FedMut mutates the global model
based on its gradients to generate multiple mutated models
located in the neighborhood of the global model for local
training. Our model mutation strategy mutates the model
in units of layers. Specifically, we randomly add or sub-
tract each layer of the global model to its corresponding
gradient value to generate a mutated model. Assume that
the global model wglb = {layer1, layer2, ..., layerL} has
L layers, where layeri denotes the weights of the ith layer
of wglb and gglb = {lg1, lg2, ..., lgL} denotes the gradients
of wglb, where lgi denotes the weights of the i

th layer of
gglb. For the i

th mutated model, we first randomly gener-
ate a mutation weight list Li

mut = [vi1, v
i
2, ..., v

i
L], where

v
i
1, v

i
2, ..., v

i
L 2 {�1, 1} and then generate a mutated model

as follows.

w
mut
i = {layer1 +↵v

i
1 · lg1, ..., layerL +↵v

i
L · lgL}, (2)

where ↵ is a hyperparameter, which decides the distance of
the mutated model with the global model. In other words, a
higher value of ↵ indicates a greater distance between the
mutated model and the global model. Furthermore, a greater
distance can guide the global model to converge into a flat-
ter area. However, a too-large distance may make the global
model difficult to converge. This is because there may not
exist a flat enough area larger than the neighborhood com-
posed of mutated models. To ensure that the mutation mod-
els can be evenly distributed in the neighborhood of the
global model, we set a constraint on the mutation process
as follows.

wglb =
1

K

KX

i=1

w
mut
i , (3)

where wmut
i denotes the ith mutated model. Specifically, for

the mutation values of a layer j, we have

KX

i=1

v
i
j = 0. (4)

To accommodate the situation where the number of active
clients K is odd, we set wmut

K = wglb when K%2 = 1.

Algorithm 2: Implementation of Model Mutation
Input:
i) wglb, the global model; ii) w0

glb, the old global model; iii)
K, # of activated clients.
Output:
i) Lmut, the list of mutated models
ModelMutation(wglb,w0

glb,K)
1: gglb  wglb � w

0
glb

2: Lmut  []
3: ifK%2 = 1 then
4: Lmut  Lmut � [wglb]
5: end if
6: L  the number of layers of wglb

7: Lv1, Lv2, ..., LvL  [�1,�1, ...� 1| {z }
bK

2 c

, 1, 1, ...1| {z }
bK

2 c

]

8: for i  1, ..., L do
9: Lvi  Randomly shuffle the elements in Lvi
10: [v1i , v

2
i , ..., v

2bK
2 c

i ]  Lvi

11: end for
12: for i  1, ..., 2bK

2 c do
13: wmut  wglb

14: for j  1, ..., L do
15: wmut.layerj  wglb.layerj + ↵v

i
j · gglb.lgj

16: end for
17: Lmut  Lmut � [wmut]
18: end for
19: return Lmut

Algorithm 2 presents the implementation of the model
mutation. Line 1 calculates the gradients of the global model
using the old global model. Line 2 initializes the list of mu-
tated models. Lines 3-5 add the global model to the mutated
model list when K is odd. Line 6 calculates the layer num-
ber of the global model. In Line 2, the cloud server initializes
the L mutation value lists (i.e., Lv1, Lv2, ..., LvL) for each
layer. Here, each list has 2bK

2 c elements where b·c denotes
the round-down operation, and half of the elements are as-
signed to -1 and the other half of the elements are assigned
to 1. Lines 8-11 randomly shuffle each mutation value list to
generate mutation values for the model mutation. Lines 12-
18 perform the model mutation process. Line 15 generates
the weights of each layer of each mutated model according
to the corresponding mutation value. Line 17 adds the mu-
tated model to the list of mutation models Lmut. Finally,
Line 19 returns Lmut.

Dynamic Preference Mutation
Typically, since the model is far away from any optimal so-
lution, the inference capacity of the global model is poor in
the early stage of training. At this stage, our mutation strat-
egy will focus on mutating the model in the direction of the
gradients. In other words, we shift the neighborhood in the
direction of the gradients. Specifically, we set the mutation
value v 2 {1,�1 + �t} rather than {1,�1}, where �t is a
hyperparameter whose value will increase with the number
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of training rounds. The calculation of �t is as follows.

�t = max(�0(1�
t

Tb
), 0), (5)

where Tb is the bound of the early training stage. In this way,
we can guide the mutated model towards the direction of the
gradients, thus accelerating the FL training.

Convergence Analysis
Similar to FedAvg, the global model of FedMut is aggre-
gated from all the trained local models. Let t denote the tth
SGD iteration on the local client and each local training con-
tains E SGD iterations, w̄ indicates the aggregated model
of all the local models. According to our mutation strategy,
FedMut satisfies the following property. For i 2 1, 2, ...,K,
we have

||wmut
i,n � w

n
glb||2 = ↵

2||wn
glb � w

n�1
glb ||2, (6)

where wmut
i,n denotes the ith mutated model in the n round.

Inspired by (Li et al. 2019), we make the following four as-
sumptions on the loss functions of local clients (i.e., f1, f2,
..., fK) as follows.
Assumption 1. For i 2 {1, 2, · · · ,K}, fi is L-smooth,
where fi(v)  fi(w) + (v � w)Trfi(w) +

L
2 ||v � w||22.

Assumption 2. For i 2 {1, 2, · · · ,K}, fi is µ-strongly con-
vex, where fi(v) � fi(w)+(v�w)Trfi(w)+

µ
2 ||v�w||22.

Assumption 3. The variance of stochastic gradients is
bounded by �2

i , i.e., E||rfi(w; ⇠)�rfi(w)||2  �
2
i , where

⇠ is a data batch of the ith client in the tth FL round.
Assumption 4. The expected squared norm of stochastic
gradients is bounded by G

2, i.e., E||rfi(w; ⇠)||2  G
2.

Based on Assumptions 1-4 and the two properties of Fed-
Mut (i.e., Equations 3 and 6), we can obtain the convergence
of FedMut as follows.
Theorem 1. (Convergence of FedMut) Let Assumption 1-
4 hold. Assume that the FL training process contains n FL
rounds. Let T = n⇥E be the total number of SGD iterations
and ⌘t = 2

µ(t+�) be the learning rate. Let  = L
µ , � =

max(8, E). We have

E[f(wT )]� f
?  

� + T � 1)
[
2B

µ
+

µ�

2
||w1 � w

?||2],

where B = 1
K2

PK
i=1 �

2
i +6L�+(16+32↵2)(E�1)2G2

.

Note that Theorem 1 indicates the difference between the
loss in T th interactions, i.e., f(wT ) and the optimal loss, i.e.,
f
?. From Theorem 1, we can observe that the convergence

rate of FedMut is similar to that of FedAvg, which has been
analyzed in (Li et al. 2019). The full proof of FedMut con-
vergence is presented in Appendix.

Experiments
Settings
For all the experiments, we set SGD optimizer with a learn-
ing rate of 0.01 and a momentum of 0.9. For each FL training
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Figure 4: Loss landscapes of FedAvg and FedMut on
CIFAR-10 dataset using ResNet-18 with IID scenario

round, we set the batch size to 50 and the number epoch of
each local training to 5. We conducted all the experiments on
an Ubuntu workstation with an Intel i9 CPU, 64GBmemory,
and two NVIDIA RTX 4090 GPUs.
Datasets and Models. We selected three well-known
datasets to evaluate the effectiveness of our FedMut ap-
proach, i.e., CIFAR-10, CIFAR-100 (Krizhevsky 2009),
and Shakespeare (Caldas et al. 2018), respectively, where
CIFAR-10 and CIFAR-100 are image datasets and Shake-
speare is a text dataset. For CIFAR-10 and CIFAR-100
datasets, we conducted experiments on three models, i.e.,
CNN (McMahan et al. 2017), ResNet-18, and VGG-
16 (TorchvisionModel 2022), respectively. For Shakespeare
dataset, we used the LSTM model for experiments. To
demonstrate the effectiveness of FedMut in both IID and
non-IID scenarios, we adopt Dirichlet Distribution (Hsu,
Qi, and Brown 2019) to divide CIFAR-10 and CIFAR-
100 datasets. Specifically, we set the hyperparameter d for
Dirichlet Distribution to 0.1, 0.5, and 1.0, respectively. Note
that the smaller value of d means the greater heterogeneity
of the client data. For Shakespeare dataset, we directly used
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Model Dataset Heterogeneity Test Accuracy (%)
Settings FedAvg FedProx FedGen CluSamp FedMut

CNN

CIFAR-10

d = 0.1 47.93± 3.26 48.21± 3.35 47.57± 2.64 47.69± 1.30 51.25± 1.07
d = 0.5 54.33± 0.50 54.43± 0.94 53.86± 1.03 55.14± 0.98 56.90± 0.45
d = 1.0 57.00± 0.58 57.00± 0.45 55.85± 0.49 55.91± 0.82 58.90± 0.59
IID 57.32± 0.28 57.58± 0.21 57.33± 0.21 58.06± 0.19 59.70± 0.20

CIFAR-100

d = 0.1 28.98± 0.91 29.18± 0.85 28.17± 1.00 28.81± 0.66 31.39± 0.40
d = 0.5 32.62± 0.73 32.54± 0.78 32.21± 0.39 32.20± 0.45 34.52± 0.79
d = 1.0 32.77± 0.53 32.98± 0.57 31.71± 0.31 32.32± 0.36 34.80± 0.39
IID 32.37± 0.30 32.46± 0.26 32.20± 0.28 32.05± 0.21 34.51± 0.25

ResNet-18

CIFAR-10

d = 0.1 44.41± 3.13 43.52± 3.13 44.37± 1.88 43.17± 2.82 55.43± 1.95
d = 0.5 61.75± 0.35 61.23± 0.62 60.69± 0.45 61.45± 0.40 67.89± 0.95
d = 1.0 65.88± 0.20 65.89± 0.38 65.09± 0.34 65.93± 0.26 70.01± 0.18
IID 64.08± 0.13 64.10± 0.10 63.84± 0.41 64.29± 0.18 70.63± 0.13

CIFAR-100

d = 0.1 34.14± 0.76 34.21± 0.67 34.27± 0.48 33.11± 0.65 37.91± 0.35
d = 0.5 40.72± 0.54 41.52± 0.37 41.33± 0.45 41.63± 0.38 46.66± 0.23
d = 1.0 42.85± 0.29 43.60± 0.34 42.21± 0.16 43.06± 0.33 47.64± 0.20
IID 42.58± 0.31 42.41± 0.20 42.13± 0.26 42.30± 0.34 48.18± 0.10

VGG-16

CIFAR-10

d = 0.1 56.14± 13.61 56.60± 6.77 64.84± 3.66 60.55± 6.63 68.23± 2.29
d = 0.5 77.91± 0.35 77.80± 0.31 78.00± 0.17 77.68± 0.17 80.03± 0.51
d = 1.0 79.17± 0.23 79.45± 0.19 79.03± 0.62 79.67± 0.67 81.09± 0.38
IID 80.20± 0.05 79.98± 0.10 80.00± 0.06 80.29± 0.07 81.70± 0.06

CIFAR-100

d = 0.1 46.84± 1.08 45.63± 1.67 47.36± 2.84 46.82± 0.85 50.23± 0.65
d = 0.5 54.09± 0.83 54.80± 0.66 54.59± 0.73 54.36± 0.74 57.28± 0.53
d = 1.0 55.62± 0.25 55.52± 0.90 55.25± 0.65 55.89± 0.55 57.93± 0.36
IID 57.42± 0.09 56.74± 0.16 55.98± 0.32 56.64± 0.25 58.09± 0.21

Table 1: Test accuracy comparison for both non-IID and IID scenarios using three DL models

the non-IID settings in LEAF (Caldas et al. 2018).
Baselines. To demonstrate the effectiveness of FedMut, we
selected the most classical FL method FedAvg (McMa-
han et al. 2017) and three state-of-the-art FL methods, i.e.,
FedProx (Li et al. 2020), FedGen (Zhu, Hong, and Zhou
2021), and ClusteredSampling (CluSamp) (Fraboni et al.
2021), respectively. FedProx is a global variable-based FL
method. We set its hyperparameter µ to 0.01. CluSamp is
a client grouping-based FL method. Similarly to (Fraboni
et al. 2021), we select the model gradient similarity as the
metric for clustering. FedGen is a knowledge distillation-
based FL method. We use the same settings presented in
(Zhu, Hong, and Zhou 2021).

Validation of Motivation
To validate the motivation that the global trained by Fed-
Mut is located in a flatter area than that trained by FedAvg,
we obtained two ResNet-18 models trained by FedMut and
FedAvg respectively on CIFAR-10 dataset with the IID sce-
nario and visualized the loss landscapes of two models using
the technology presented in (Li et al. 2018). Figure 4 shows
the loss landscapes of two models trained by FedAvg and
FedMut, where each model is located in the center of its loss
landscape. We observe that the model trained by FedMut is
located in a flatter area than that trained by FedAvg. There-
fore, our FedMut approach can guide FL training towards a
flatter area than FedAvg.

Comparison Evaluation
Comparison of Accuracy. We evaluated FedMut on Com-
puter Vision (CV) Tasks using CIFAR-10 and CIFAR-100

datasets and Natural Language Processing (NLP) Task on
Shakespeare dataset. ∂ Computer Vision (CV) Tasks. Ta-
ble 1 presents the inference accuracy of our FedMut ap-
proach and four baselines on CIFAR-10 and CIFAR-100
datasets using three models in IID and three non-IID scenar-
ios. Here, we set ↵ = 4.0 for all the cases in Table 1. We set
�0 = 0.3 for CNN and VGG-16, and �0 = 0.5 for ResNet-
18. From Table 1, we can observe that FedMut can outper-
form all the baselines in all the cases. We find that Fed-
Mut can achieve up to 11.02% accuracy improvements on
the CIFAR-10 dataset using ResNet-18 models in d = 0.1
non-IID scenarios. ∑ Natural Language Processing (NLP)
Task. Table 2 presents the accuracy of FedMut and four
baselines on Shakespeare dataset using LSTM model. From
Table 2, it is evident that our FedMut approach outperforms
all the baselines. Consequently, our FedMut method is still
suitable for FL training of NLP task models.

Dataset Model Method Test Accuracy

Shakespeare LSTM

FedAvg 52.08
FedProx 52.53
FedGen 52.69
CluSamp 49.74
FedMut 55.53

Table 2: Test Accuracy on Text Dataset

Comparison of Convergence. Figure 5 shows the learn-
ing curves of all the methods on CIFAR-10 dataset using
ResNet-18. We observe that our FedMut approach can con-
verge more quickly than all the four baselines. In addition,
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(c) d = 1.0
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Figure 5: Learning curves of FedMut and four baselines on CIFAR-10 using ResNet-18 model

we find that FedMut can achieve higher accuracy than all
the four baselines in almost all the FL rounds. We also find
that as the level of non-IID increases, the magnitude of the
learning curve rises and the number of rounds needed for
convergence increases.
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Figure 6: Ablation studies for ↵ and �0

Ablation Studies

Mutation Range. To demonstrate the effectiveness of our
mutation strategy, we conducted experiments to evaluate the
impacts of mutation range ↵. Figure 6(a) presents the learn-
ing curves of FedAvg and FedMut variations with different
settings of ↵. Note that we use the notation “FedMut-a” in
Figure 6(a) to denote the FedMut variation with ↵ = a. Note
that when ↵ = 0, FedMut is the same as FedAvg. We can
observe that when ↵ < 5, the inference accuracy of Fed-
Mut increases with increasing value of ↵. This is because a
larger value of ↵ can guide FL to converge in a flatter area.
We can also observe that when ↵ = 5, FedMut cannot train
a usable model. This happens because a too-large mutation
range may cause training to be unable to find a flat enough
area, which results in failed convergence.
Dynamic Preference Mutation Strategy. To demonstrate
the effectiveness of our dynamic preference mutation strat-
egy, we performed experiments to evaluate the impacts of
�0. Figure 6(b) presents the learning curves of FedAvg and
FedMut variations with different settings of �0. Note that
we use the notation “FedMut-b” in Figure 6(b) to denote the
FedMut variation with �0 = b. From Figure 6(b), we ob-
serve that the higher value of �, the faster the training con-
verges. We also find that a too large value of � may cause
training to fail.

Discussion
Privacy Protection. Similar to the traditional FedAvg, the
mutation strategy in FedMut is based on the aggregated
global model rather than local models. Therefore, our Fed-
Mut approach can directly use the secure aggregation mech-
anism. Consequently, in FedMut, the cloud server cannot ob-
tain raw data or the local model of clients.
Communication Overhead. Same as FedAvg, the commu-
nication overhead of FedMut only includes K models for
dispatching and K models for uploading in each FL round.
Therefore, FedMut is without any additional communication
overhead compared to FedAvg.

Conclusion
To address the low-performance problems in traditional
FedAvg-based methods, inspired by the observation that
well-generalized solutions are located in flat areas rather
than sharp areas, this paper presents a novel FL approach
named FedMut. By mutating the global according to the gra-
dients, FedMut generates multiple different mutated models
for local training instead of the same global model. In this
way, FedMut can guide FL training to converge into a flatter
neighborhood composed of mutation models, thus achieving
a well-generalized global model. The comprehensive exper-
imental results show that our FedMut approach can effec-
tively improve the performance of FL in terms of inference
accuracy and convergence rate.
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