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Abstract

This paper investigates the problem of exploiting existing so-
lution models of previous tasks to address a related target task
with limited training data. Existing approaches addressing
this problem often require access to the internal parameteriza-
tion of the existing solution models and possibly their training
data, which is not possible in many practical settings. To re-
lax this requirement, We approach this problem from a new
perspective of black-box re-purposing, which augments the
target inputs and leverages their corresponding outputs gen-
erated by existing black-box APIs into a feature ensemble.
We hypothesize that such feature ensemble can be learned
to incorporate and encode relevant black-box knowledge into
the feature representation of target data, which will compen-
sate for their scarcity. This hypothesis is confirmed via the
reported successes of our proposed black-box ensemble in
solving multiple few-shot learning tasks derived from various
benchmark datasets. All reported results show consistently
that the set of heterogeneous black-box solutions of previous
tasks can indeed be reused and combined effectively to solve
a reasonably related target task without requiring access to a
large training dataset. This is the first step towards enabling
new possibilities to further supplement existing techniques in
transfer or meta learning with black-box knowledge.

1 Introduction
Learning in few-shot settings generally requires (1) distill-
ing transferable knowledge from existing solution models,
which were previously trained to solve other related tasks;
and then (2) recomposing them appropriately in new con-
texts. This is in fact a common recipe that was seen across
numerous existing solution paradigms to few-shot learning,
which include transfer learning (Du et al. 2020; Pan and
Yang 2009; Tripuraneni, Jordan, and Jin 2020), multi-task
learning (Ben-David and Schuller 2003; Bonilla, Chai, and
Williams 2008; Fifty et al. 2021) and meta learning (Dinh,
Nguyen, and Nguyen 2020; Fallah, Mokhtari, and Ozdaglar
2020; Finn, Abbeel, and Levine 2017; Yoon et al. 2018).
The underlied principle here is that well-trained models on
related tasks can be exploited to compensate for the lack of
data on a target task. This can be enabled via either fine-
tuning a modifiable pre-trained model with target domain
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data (transfer learning); synchronizing the training processes
across different tasks to transform multiple sources of local,
heterogeneous data into a unified, richer source of learn-
ing feedback for all models (multi-task learning); or dis-
tilling the common inferential knowledge of the resulting
models into a base model that can solve any unseen tasks
(meta learning). Alternatively, there also exists a more re-
cent line of data-free meta learning approaches (Lam et al.
2021; Wang et al. 2022) that predict the model parameters
given the task identifier’s representation, which requires ac-
cess to the internal parameterization of pre-trained solution
models of previous tasks, but not their training data. How-
ever, most approaches in these directions require access to
the architectures and internal parameterizations of existing
models, or even the labeled data and training processes that
were used to generate them. Hence, they are not applicable
to modern practices where pre-trained models are often re-
leased as black-box functions. For example, these include
the Machine Learning-as-a-Service (MLaaS) toolsets pro-
vided by Microsoft Custom Vision and Amazon SageMaker.

To mitigate this limitation, another line of research on black-
box model fusion (Hoang et al. 2020) or reuse (Hoang et al.
2019a,b; Wu, Liu, and Zhou 2019; Shao et al. 2021; Wu
et al. 2021) can be considered as a viable alternative. In par-
ticular, Hoang et al. (2020) adopts a generic two-step ap-
proach which first collects and embeds the input-output re-
sponses of these frozen black-box models into a latent space
that factorizes into task-agnostic and task-specific inferen-
tial patterns. Given a new task, the distilled task-agnostic
patterns can then be put together into an implicitly repre-
sented base model, which can be fine-tuned with domain
data to produce a customized model. Nonetheless, this ap-
proach assumes that the optimal solution model exists on
a relatively simple weight space, e.g. feed-forward neural
networks, and can be easily recomposed from the distilled
patterns. This assumption limits their effectiveness to low-
complexity tasks such as simple regression or MNIST clas-
sification (LeCun, Cortes, and Burges 2010), and precludes
extension to domains that requires more sophisticated archi-
tectures such as convolutional neural networks. As another
alternative, the model reuse literature (Wu, Liu, and Zhou
2019; Shao et al. 2021; Wu et al. 2021; Hoang et al. 2019b,a)
instead assumes a black-box sharing protocol where extra
statistics summarizing the private data are available; or that
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pre-trained models share the same output space, which also
limits the applicability to more practical scenarios. To mit-
igate such limitation, this paper explores a complementary
approach where instead of dissecting the black boxes into
transferable patterns, the focus is on augmenting the target
input and leveraging their corresponding black-box outputs
into an enriched feature representation to compensate for
the lack of training data. In a single-source transfer task,
the previous work of (Tsai, Chen, and Ho 2020) has shown
that learning such augmentation can help unlock black-box
knowledge within a complex architecture (e.g., ResNet (He
et al. 2015)) pre-trained with a large amount of generic data
(e.g., ImageNet (Deng et al. 2009)) to solve a specific task
with limited training data.
Motivated by this success, we generalize this perspective
to re-purpose and leverage the black-box knowledge within
multiple existing solutions of different tasks, which were
trained on diverse specialized data rather than a common
generic data sources, into a more holistic model to solve a
related task with limited data. Unlike the single-model setup
in (Tsai, Chen, and Ho 2020), which assumes that the black-
box model has already internalized sufficient generic data to
solve the target task, we consider settings where each pre-
trained model alone does not have enough information to
solve the new task. Hence, combining them is necessary and
can be achieved via the following contributions:
1. We develop a black-box re-purposing framework that
maximizes a statistical co-occurrence between the target la-
bel and an ensemble of black-box output on a (learnable)
input augmentation. This is parameterized via a set of flow-
based transformations (Dinh, Krueger, and Bengio 2015)
that augment the target input to extract the corresponding
output from each pre-trained black box (Section 3.1).
2. We design specific parameterization for the above re-
purposing framework, expressed in terms of its input aug-
mentation and black-box output ensemble, which can be
used as a medium to distill and fine-tune predictive knowl-
edge from pre-trained task models. The entire distillation
and fine-tuning process is guided by a few-shot dataset of
a related task (Section 3.2).
3. We conduct experimental studies showcasing the effec-
tiveness of the proposed methods on variety of realistic task
domains with high-complexity task models (Section 4). For
better clarity, we also provide a succinct review on existing,
related bodies of literature in Section 2 below.

2 Related Work
Transfer Learning (Pan and Yang 2009) is a popular ap-
proach for learning in new environments with limited train-
ing data. Its key idea is to use existing models well-trained
on related environments to learn a good feature extractor
(Bengio, Courville, and Vincent 2013) for data in a target
environment. For example, in natural language processing,
pre-trained neural language models are often used to gener-
ate sentence embeddings (Qiu et al. 2020) in many down-
stream tasks. The induced representation captures the com-
mon structure across tasks (e.g., representation of words)
and reduces the complexity of the hypothesis space (Ben-

David and Schuller 2003). Theoretical justifications of this
insight have been explored in the previous works of (Bax-
ter 2000; Ben-David and Schuller 2003; Du et al. 2020) and
(Tripuraneni, Jordan, and Jin 2020).
Meta Learning (Finn, Abbeel, and Levine 2017) is another
class of techniques (Yoon et al. 2018; Fallah, Mokhtari, and
Ozdaglar 2020; Dinh, Nguyen, and Nguyen 2020) that aim
to exploit the relatedness of tasks to learn a common ini-
tial model that can be quickly adapted to unseen tasks. The
meta learning setting does not assume access to a previ-
ously identified source task with rich data that can be trained
and specialized (via fine-tuning) to solve a target task. In-
stead, it requires sampling access to a distribution of related
tasks and their model architectures to coordinate the train-
ing process. This is, however, not possible when the solu-
tion models were independently pre-trained in isolation and
are neither transparent nor modifiable, such as cloud-based
machine learning models.
Black-Box Transfer Learning. Most application of trans-
fer learning (Pan and Yang 2009) and meta learning (Finn,
Abbeel, and Levine 2017) assume access to both source
and target task’s data ahead of time, as well as the source
task’s pre-trained model’s learned parameterizations. This is
not applicable to scenarios where the trained models are re-
leased as black-box functions. To sidestep this limitation,
(Tsai, Chen, and Ho 2020) proposes to learn a pair of in-
put transformation and output mapping functions that collec-
tively reprogram the source model to solve any target task.
However, the developed technique is grounded in settings
where sufficient domain data are available to train the re-
programmer model. Our work instead investigates the more
challenging few-shot model repurposing problem, for which
the lack of domain data will necessitate more efficient ex-
ploitation of the black-box artifacts.

3 Multi-Task Model Repurposing
Using the change-of-variable trick for density func-
tions (Kestelman 1961), we can re-parameterize the tar-
get task’s input-output distribution in terms of any feature-
output distribution. This will allow us to learn an input aug-
mentation for each existing black-box API that extracts in-
formative features for the target task (see Lemma 3.1). These
augmentations are modeled using invertible normalizing
flows to prevent information loss (Dinh, Krueger, and Ben-
gio 2015; Dinh, Sohl-Dickstein, and Bengio 2017; Rezende
and Mohamed 2016; Kingma and Dhariwal 2018), and can
be learned to maximize the target task’s training data likeli-
hood. Intuitively, this helps learn feature extractors that un-
lock most relevant knowledge from the pre-trained black-
box APIs, which can be integrated into the target input’s
feature representation to compensate for its lack of training
data. An overview of our workflow is shown in Fig. 1.

3.1 Flow-Based Multi-Task Embedding Model
Let B1,B2, . . . ,Bn denote n black-box models that were
previously trained to solve n related but different tasks
P1,P2, . . . ,Pn. Each task Pi can be considered as a dis-
tribution over a product space Xi × Ci of input-output pair
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Figure 1: The workflow diagram of our model repurposing algorithm. The target image is passed through a set of adaptation
flows to produce a set of augmented inputs. The augmented inputs are then decomposed into common and specific factors. The
decomposition component is trained via an adapted VAE (Kingma and Welling 2013) framework that minimizes the feature
reconstruction loss. The augmented inputs are also fed into a (learnable) black-box ensemble whose outputs are leveraged into
an enriched feature representation for the target task, which is a part of the VAE loss, as described previously in Eq. (3.2).

(xi, ci). Here, we flexibly model ci as the soft output of an
oracle on xi since the hard label yi of xi was never observed.
Our goal is to extract and incorporate inferential knowl-
edge from B1,B2, . . . ,Bn into a solution model B∗ for a
generalized task P∗, given a limited amount of data. How-
ever, unlike white-box meta or multi-task learning, the mod-
els B1,B2, . . . ,Bn are not concurrently and synchronously
trained to distill B∗. Instead, those are pre-trained models
whose weights are neither observable nor modifiable. In ad-
dition, these models are trained on different tasks with dif-
ferent input and output spaces. There is also no access to
their training data. We will, however, show that it is still pos-
sible to distil their inferential knowledge via prompting them
with appropriate input augmentation.
This is built upon Lemma 3.1, which characterizes the like-
lihood of the target task’s data in terms of a likelihood of
any invertible input augmentation. This can be further pa-
rameterized with the corresponding black-box APIs’ output
(see Section 3.2). As we learn the augmentation parame-
terization so that it maximizes the target data’s likelihood
(see Lemma 3.2), the latent knowledge within each black-
box API can be distilled into its corresponding output to the
augmented input, which can be incorporated into a feature
ensemble that induces an effective solution to the target task.

Lemma 3.1. Let p(x∗, c∗) denote the density function of the
target task’s distribution P∗ on an input-output pair (x∗, c∗).
Let hi(x∗) denote an invertible input augmentation function,

log p
(
x∗, c∗

)
= log p

(
hi(x∗), c∗

)
+ log

∣∣∣∣dhi(x∗)

dx∗

∣∣∣∣ (3.1)

where hi(x∗) denote an input augmentation to extract
knowledge from Bi, which can be parameterized by any
valid normalizing flow (Rezende and Mohamed 2016). This
follows from the change-of-variable theorem (Appendix B).

Next, we parameterize a factorized embedding space for the
augmented input hi(x∗) whose latent coordinates comprise
two orthogonal components s and zi. According to this fac-
torization, s denotes a common latent factor across all tasks,
whereas zi characterizes a private latent component that is
specific to task Pi. To ensure this augmentation mechanism
induces the most informative feature output (for the target
task) from the black-box APIs, we need to further parame-
terize p(hi(x∗), c∗) with the corresponding black-box out-
put Bi(hi(x∗)) and optimize the overall parameterization to
maximize the RHS of Eq. (3.1). To ease the difficulty of a di-
rect parameterization and optimization, we instead leverage
a variational inequality in the previous work of (Kingma and
Welling 2013) to derive a lower-bound for log p(hi(x∗), c∗),
which is configurable via any suitable choices of a surrogate
posterior q(s, zi | hi(x∗)) = q(s | hi(x∗))q(zi | hi(x∗)).
This results in a more modular form for optimization as de-
tailed in Lemma 3.2 below.
Lemma 3.2. Assuming the factorization p(hi(x∗), c∗, s, zi)
= p(hi(x∗) | s, zi) · p(c∗ | s, hi(x∗)) · p(s, zi), we have
log p(hi(x∗), c∗) ≥ ELBO(hi(x∗), c∗), where

ELBO
(
·
)

≜ Eq(s,zi|hi(x∗))

[
log p

(
hi(x∗) | s, zi

)]
+ Eq(s|hi(x∗))

[
log p

(
c∗ | s, hi(x∗)

)]
− DKL

(
q
(
s, zi | hi(x∗)

)
∥p
(
s, zi

))
(3.2)

Here, p(c∗ | s, hi(x∗)) can be further parameterized with the
black-box output Bi(hi(x∗)) (see Section 3.2). The detailed
derivation of Eq. (3.2) is deferred to Appendix C.
Remark. The interested readers are referred to the extended
version of this paper1 for all appendices.

1https://htnghia87.github.io/publication/aaai2024a
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Using Lemma 3.2, we can plug Eq. (3.2) into Eq. (3.1) to
acquire log p(x∗, c∗) ≥ (1/n)

∑n
i=1 Fi(x∗, c∗), where

Fi

(
x∗, c∗

)
≜ ELBO

(
·
)
+ log

∣∣∣∣dhi(x∗)

dx∗

∣∣∣∣ . (3.3)

Thus, we can sample (x∗, c∗) ∼ P∗ and optimize for the
parameterizations of the invertible function hi(x∗), the sur-
rogate posterior q(s, zi | hi(x∗)) and the generative con-
ditionals p(c∗|s, hi(x∗)) and p(hi(x∗) | s, z∗), such that
the averaged value of (1/n)

∑n
i=1 Fi(x∗, c∗) over the drawn

samples (x∗, c∗) is maximized. Such sample set can be as-
sociated with the few-shot data that defines P∗. Once the
above is learned, the solution model for P∗ is accessible via

B∗(x∗) ≜
1

n

n∑
i=1

Eq(s|hi(x∗))

[
Ep(c∗|s,hi(x∗))

[
c∗

]]
, (3.4)

where we sample the prediction y∗ ∼ Cat(softmax(c∗))

with c∗ ≜ B∗(x∗) being the pre-softmax output of B∗.

3.2 Multi-Task Embedding Parameterization
Having defined the generic workflow to induce a solution
model for the target task, we now complete our model
specification by providing explicit parameterization for the
aforementioned generative and input transformation com-
ponents. Specifically, we will use the related task mod-
els B1,B2, . . . ,Bn to parameterize them, thereby draw-
ing a (learnable) connection between their solution mod-
els and the distributional embedding patterns of the (target)
task’s data. This helps combine the solution patterns of these
source tasks to synthesize a solution for the target task.

Input Transformation As described above, the input aug-
mentation function hi(x∗) is parameterized with a flow-
based generative model which is composed of p sequential
blocks. Each block comprises interleaving flows of different
types, including PlanarFlow, RadialFlow (Rezende and
Mohamed 2016) and/or NVP (Dinh, Sohl-Dickstein, and
Bengio 2017). The same flow architecture is used for all in-
put augmentation functions h1(x∗), h2(x∗), . . . , hn(x∗) but
their parameterized weights are not tied.

Generative Components There are three generative com-
ponents p(s, zi), p(c∗|s, hi(x∗)) and p(hi(x∗)|s, zi) in our
multi-task embedding model, as specified in Section 3.1. In
finer details, we factorize the prior p(s, zi) = p(s)p(zi)
across the common and specific latent factors which un-
derlies the input distribution of sub-task Pi. Both priors
are modeled as multivariate Gaussian with learnable mean
and covariance matrix, which are initialized with N(0, I)
but are updated separately. The likelihood component p(c∗ |
s, hi(x∗)) is modeled with a deep generative net that com-
bines the predictions of the task models B1,B2, . . . ,Bn on
the input transformation hi(x∗). As the prediction outputs
of the task models are on different output spaces, we further
align them via a learnable mapping function Ms induced
by the common latent factor s. The likelihood component
is modelled as p(c∗|s, hi(x∗)) ≜ c⊤∗ w (s, hi(x∗)), where

w(s, hi(x∗)) ≜ σ
(
Ms

(
Cat

[
Ba

(
ha(x∗)

)]))
. (3.5)

Here, σ denotes the softmax activation. The mapping func-
tion Ms is parameterized as a composition of a feed-forward
net with ReLU activation and a Gumbel-softmax layer that
returns a discrete mapping from the concatenated output to
the target output. The weight of its last layer is generated
using a feed-forward net conditioned on s.
Finally, the generative likelihood p(hi(x∗) | s, zi) is mod-
eled as an isotropic Gaussian centered at m(concat[s, zi])
where m is a sequence of interleaving de-convolution, pool-
ing and feed-forward net with intermediate ReLU and fi-
nal Tanh activation functions. The specifics of these de-
convolution, pooling and feed-forward nets depend on the
application domain and are deferred to Appendix D.

Posterior Surrogates As described in Section 3.1, there
are two posterior components, q(s | hi(x∗)) and q(zi |
hi(x∗)), which correspond to the common and spe-
cific latent coordinates of the target task’s embedding
space. Both are parameterized with multivariate Gaussian
N(m(x∗), diag[v(x∗)]) where m(x∗) and v(x∗) are in turn
ensembles of neural nets:

m(x∗)=
n∑

i=1

wi(x∗) ·mi(x∗);v(x∗)=
n∑

i=1

wi(x∗) · vi(x∗)

where w(x∗) = [w1(x∗), . . . , wn(x∗)] are generated by a
learnable convolutional neural net. The neural nets mi(x∗)
and vi(x∗) are parameterized as cascades of interleaving
convolution, pooling and feed-forward layers, with interme-
diate ReLU and Tanh activation functions. The exact con-
figurations of these layers depend on the specifics of the ap-
plication domain and are deferred to Appendix D.

Random Gradient Estimation An important point to
note from the above parameterization is that in the afore-
mentioned, the parameterization of the likelihood p(c∗ |
s, hi(x∗)) involves the black-box models, which cannot
propagate gradients due to their immovable and inaccessi-
ble inner weights. As such, we need to estimate the gradient
∇x∗Bi(x∗) via finite difference methods. In particular, let
z ∼ N(0, I) and v = z/∥z∥, it follows that v is a unit
vector and ∇x∗Bi(x∗)

⊤v = DvBi(x∗) which is the direc-
tional gradient of Bi(x∗). This is also defined as:

DvBi(x∗) ≜ lim
α→0

1

α

(
Bi(x∗ + αv)−Bi(x∗)

)
. (3.6)

Choosing α = λ∥z∥ with λ > 0 and for a sufficiently small
λ, the above can be rewritten as:

DvBi(x∗) ≃ 1

λ∥z∥

(
Bi(x∗ + λz)−Bi(x∗)

)
. (3.7)

Plugging this and v = z/∥z∥ into the expression
∇x∗Bi(x∗)

⊤v = DvBi(x∗) implies:

∇x∗Bi(x∗)
⊤z =

1

λ

(
Bi(x∗ + λz)−Bi(x∗)

)
. (3.8)

As such, let ℓi(z) ≜ (z/λ)(Bi(x∗ + λz)−Bi(x∗)),

E [ℓi(z)] = E
[
z∇x∗Bi(x∗)

⊤z
]

= E
[
zz⊤

]
∇x∗Bi(x∗) = ∇x∗Bi(x∗) (3.9)
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since E[zz⊤] = (V[z]+E[z]E[z]⊤) = I due to E[z] = 0 and
V[z] = I by definition. Thus, ℓi(z) is an unbiased stochas-
tic gradient of ∇x∗Bi(x∗), which can then be estimated via
averaging ℓi(z) over i.i.d. samples of z ∼ N(0, I).

4 Experiments
To demonstrate the effectiveness of the proposed black-box
model fusion via repurposing or reprogramming (MFR) ap-
proach, we set up experimental scenarios where multiple
specialized pre-trained models need to be combined and re-
programmed to solve another related task with limited do-
main data. These are derived from real-world benchmark
datasets in computer vision, which include MNIST (LeCun,
Cortes, and Burges 2010), CIFAR-10 (Krizhevsky 2009),
Mini-ImageNet (Vinyals et al. 2017) and the Large-Scale
CelebFaces Attributes (CelebA) (Liu et al. 2015). We com-
pare our approach against the following baselines:
Base Model: We train a new model from scratch using the
few-shot dataset (few examples per class). Its parameteriza-
tion (except for the final softmax prediction head) is identi-
cal to those of the other black boxes.
Black-Box Ensemble (BE): An ensemble of frozen black-
box models. We concatenate their output and map the result
to a softmax prediction on the target domain using a learn-
able feed-forward net with ReLU activation, appended with
a final softmax transformation.
Fine-tuned Black-Box Ensemble (FBE): An ensemble of
black-box models with tunable pre-softmax layers. We con-
catenate their outputs and pass the result through a learnable
single-layer feed-forward net and a softmax transformation
that maps it to the target prediction.
Black-Box Adversarial Re-programmer (BAR). We re-
implemented the reprogramming framework from Tsai,
Chen, and Ho (2020) to the best of our ability. This is be-
cause the released code for BAR is hard-coded for a binary
classification task and a single black-box source, and cannot
be used as is for our experiments. Their framework simulta-
neously learns to add adversarial noise to the input images
and map the black-box outputs to new domains.
The numbers of learnable parameters in BE and FBE are
comparable to that of our reprogramming model. The num-
ber of learnable parameters in Tsai, Chen, and Ho (2020)
scales with the input size and cannot trivially be made com-
parable to our model. We used two invertible flow blocks,
each composes of PlanarFlow and RadialFlow (Rezende
and Mohamed 2016) in the implementation of our method.
Last, we evaluate and compare all methods in the following
settings: (1) in-domain repurposing; (2) cross-domain repur-
posing which are detailed below.

4.1 In-Domain Repurposing
For in-domain repurposing experiments, we pre-trained a
number of black-box models that solve the classification
task with different subsets of the classes of a single dataset.
Then, given the corresponding black-box models, we use
the above baselines (including our proposed algorithm) to
repurpose them into a single model that can solve an un-
seen classification task with only a few examples per class.

The above experiment is setup using the MNIST, CIFAR-10,
Mini-ImageNet and CelebA datasets as detailed below.
MNIST Experiment. The MNIST dataset comprises
60, 000 images of handwritten digits from 0 to 9. Among
which 50, 000 images are used as training data and the re-
maining is used for testing (LeCun, Cortes, and Burges
2010). The training data is evenly distributed among the
digits where each digit has 5000 training examples. To set
up the experiment, we pre-trained 3 black-box models solv-
ing 3 separate MNIST sub-tasks which require them to dis-
tinguish between a set of 4 digits. These tasks are, respec-
tively, [1, 2, 3, 4], [4, 5, 6, 7] and [7, 8, 9, 0]. Given the corre-
sponding black-box models that solve these tasks, we use
the above baselines to repurpose them into a single model
that solves another MNIST 3-way classification task with
10 shots of data per class.
CIFAR-10 Experiment. The CIFAR-10 dataset consists of
60, 000 color images in 10 classes, with 6000 images per
class (Krizhevsky 2009) . There are 50, 000 training im-
ages and 10, 000 test images. Similar to the MNIST ex-
periments, we also built 3 black-box models solving the
following classification tasks (automobile, bird, cat, deer),
(deer, dog, frog, horse) and (horse, ship, truck, airplane),
respectively, on the entire training dataset. Then, given these
black-box models, we use the above baselines to repurpose
them into a single model that solves another CIFAR-10 3-
way classification task with 10 shots of data per class.
Mini-ImageNet Experiment. The Mini-ImageNet dataset
comprises 100 classes with 600 samples of 84×84 color im-
ages per class (Vinyals et al. 2017). We sampled 10 classes
and re-indexed them with labels in [0, 9]). Next, we built
3 black-box models solving 3 separate sub-tasks which re-
quire them to distinguish between a set of 4 classes. These
are, respectively, [1, 2, 3, 4], [4, 5, 6, 7] and [7, 8, 9, 0]. Simi-
lar to the above, we repurpose these pre-trained models into
a dedicated model to distinguish between image classes of
another 3-way classification task. For each dataset, we re-
port the repurposing results for all 3-way classification tasks.
Given that there are 10 classes per dataset, there are a total
number of 120 3-way classification tasks for each dataset.
The results are reported in Fig. 2 above, which demonstrate
the high success rate of repurposing:
1. The green bubbles correspond to target tasks for which
our repurposed model outperforms the base model (success
cases). Both the sizes and color gradients of these bubbles
are set to be proportionate to the relative performance gain
in the corresponding cases. Darker colors indicating more
improvement over the base model.
2. Conversely, the red bubbles correspond to tasks where the
repurposed models fail to improve over the base model (fail-
ure cases). Again, both sizes and color gradients of these
bubbles are set to be proportionate to the relative perfor-
mance drop in the corresponding cases. Observing Fig. 2,
it can be seen that the size and number of green bubbles
are significantly larger than those of red bubbles (across all
datasets). This implies the no. of success cases is far larger
than no. of failure cases, which speaks to the high success
rate of repurposing. Although the reported few-shot perfor-
mance of our model repurposing technique appears weaker
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(a) MNIST (b) CIFAR-10 (c) Mini-ImageNet

Figure 2: Relative performance gain/loss (green/red) of our repurposed model over a base model on 120 3-way classification
tasks in (a) MNIST, (b) CIFAR-10, and (c) Mini-ImageNet. Green and red bubbles denote target tasks where the repurposed
model respectively outperforms and underperforms the base model. Darker color indicates a larger performance gap.

Figure 3: (left): Averaged repurposing performance from (a) EYE models; (b) SKIN models; and (c) HAIR models on a
number of unseen target tasks. The average is over all target tasks generated under EYE, SKIN and HAIR categories; (right):
Repurposing performance achieved by an ensemble of three CIFAR-10 black-box models on a randomly sampled target task
under each CelebA sub-domain, including (d) EYE, (e) SKIN and (f) HAIR.

than state-of-the-art few-shot results for the above bench-
mark in standard meta learning setup, we emphasize that our
setup is significantly more difficult since we have no access
to labeled training data of the black-box models. Instead,
standard meta learning approaches tend to be able to train
their meta models on a large amount of labeled data from
related tasks, which induces a stronger prior on data repre-
sentation that leads to better few-shot performance.

4.2 Repurposing across Different Sub-Domains
Next, we further examine another form of in-domain repur-
posing in which the black-box models and the repurposing
tasks were derived from different sub-domains of the same
dataset. We demonstrate this on the CelebA dataset (Liu
et al. 2015). We partition the CelebA dataset into 40 over-
lapping subsets of data. Each subset contains all training/test
images that belong to one particular label (out of 40 labels
in total). We consider data from subsets that belong to the
following 3 categories: (1) HAIR features (9 labels); (2)
SKIN features (5 labels); (3) EYE features (5 labels). From
each category, we randomly sample four 3-way classifica-

tion tasks. Three of which are source tasks and the remain-
ing task is designated as the target task and given a 10-shot
dataset. We repurpose the black-box models obtained from
the training data of source tasks to solve target tasks from
all categories. The averaged (in-domain) cross-category re-
purposing performance from each group (HAIR, EYE and
SKIN) is reported in Figures 3a and 3. From all source cat-
egories, the (few-shot) repurposing performance of our pro-
posed algorithm is significantly better than those of the other
ensemble baselines as well as that of the base model. This
is expected and consistent with our earlier observation in
the MNIST, CIFAR-10 and Mini-ImageNet experiments. In
addition, we also noted that the plotted results show that
adversarial model repurposing performs the worst among
all baselines. This is not surprising since Tsai, Chen, and
Ho (2020) is grounded in the setting of a single pre-trained
model setup which assumes that the black-box model has al-
ready internalized sufficient information to solve the target
task. We however consider settings where each pre-trained
model alone does not have enough information to solve the
new task. Hence, combining them is necessary and can be
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Figure 4: Plots of performance comparison between the base and repurposed models across all 3-way, 4-way and 5-way few-
shot classification tasks. For each task, both the base and repurposed models are generated using the same few-shot dataset that
contains 20 shots per class. Unlike the base models, the repurposed models also incorporated inferential insights from existing
2-way black-box models on the same set of classes which were pre-trained using the entire training dataset.

achieved via the following contributions. This necessitates
more efficient exploitation of the black-box artifacts.

4.3 Cross-Domain Repurposing
The effectiveness of our repurposing algorithm can also
be demonstrated across different data domains. In particu-
lar, we conduct the following experiments which repurpose
(a) black-box classification models solving CIFAR-10 tasks
to solve a target task under the categories of HAIR, EYE
and SKIN of the CelebA dataset as described above; and
(b) a ResNet-18 model trained on ImageNet data to solve
a medical imaging classification problem derived from the
Retinopathy Diabetic dataset, which is described below.

CIFAR-10 to CelebA Experiment. For this experiment, we
use the same CIFAR-10 black-box models that were gen-
erated in the aforementioned CIFAR-10 experiment. These
black-box models are then repurposed to solve the target
tasks generated under the categories of HAIR, EYE and
SKIN of the CelebA experiment above. The averaged re-
purposing performance over target tasks under each of these
categories are plotted in Figures 3d and 3f above. All results
consistently show improved repurposing performance of our
proposed method over those of the other baselines. Addi-
tionally, we observe that adversarial model repurposing per-
forms the worst among all baselines. This is consistent with
our earlier observations for in-domain re-purposing.

ImageNet to Retinopathy-Diabetic Experiment. We
down-sampled the Retinopathy Diabetic dataset to 10K im-
ages of retinas, labeled with the severity of the condition on
a scale of 0 to 4 (larger is more severe). We reserved 50%
of the data for testing and used the remaining to pre-train
ResNet-18 black-box models for all 2-way tasks. We then
show that selected ensembles of these black-box models can
be repurposed into solutions to all 20-shot 3-way classifica-
tion tasks, which are significantly more effective than their
corresponding built-from-scratch solutions.

For each 3-way classification task (u, v, w) where u <

v < w ∈ {0, 1, 2, 3, 4}, we repurpose an ensemble of
2-way black-box models, including those for classifica-
tion tasks (u, v), (u,w) and (v, w), to solve it. For each
4-way task (u, v, p, q), which requires to distinguish be-
tween class labels u, v, p and q where u < v <
p < q ∈ {0, 1, 2, 3, 4}, we repurpose a subset of 2-
way black-box models (a, b) ⊂ {u, v, p, q} to solve it. Fi-
nally, for the 5-way task (0, 1, 2, 3, 4) which concerns all
labels, we repurpose the following 3-way black-box mod-
els {(0, 1, 2), (0, 2, 3), (0, 3, 4)} to solve it. We compare all
repurposed models with their corresponding scratch models
that were solely trained on the 20-shot datasets. All results
reported in Figure 4 above consistently show that via repur-
posing, hidden knowledge within existing pre-trained black-
box models can be unlocked and adapted effectively towards
a wide range of few-shot classification tasks, showing sig-
nificant improvement across all test cases. This reinforces
and corroborates our earlier reported results on the sandbox
datasets of MNIST, CIFAR-10 and Mini-ImageNet.

5 Conclusion

To complement previous black-box fine-tuning works that
assume the existence of a large model pre-trained on generic
data, our approach focuses on settings where multiple pre-
trained models solving related tasks are available but none
of which alone has sufficient knowledge to solve a target
task. The core principle that underlies our approach is that
the output of a related black-box models on an appropriately
augmented (target) input can be leveraged into additional
features that enhance the solution quality on few-shot learn-
ing (target) task. Our repurposing framework is developed
to optimize such input augmentation functions so that their
induced black-box output is most informative of the target
label. Our empirical studies have demonstrated the feasibil-
ity and initial successes of the proposed approach in a variety
of (cross-domain) few-shot learning tasks.
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