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Abstract
Detecting out-of-distribution (OOD) data is essential to en-
sure the reliability of machine learning models when de-
ployed in real-world scenarios. Different from most previ-
ous test-time OOD detection methods that focus on design-
ing OOD scores, we delve into the challenges in OOD detec-
tion from the perspective of typicality and regard the feature’s
high-probability region as the feature’s typical set. However,
the existing typical-feature-based OOD detection method im-
plies an assumption: the proportion of typical feature sets for
each channel is fixed. According to our experimental anal-
ysis, each channel contributes differently to OOD detection.
Adopting a fixed proportion for all channels results in sev-
eral channels losing too many typical features or incorpo-
rating too many abnormal features, resulting in low perfor-
mance. Therefore, exploring the channel-aware typical fea-
tures is crucial to better-separating ID and OOD data. Driven
by this insight, we propose expLoring channel-Aware tyPi-
cal featureS (LAPS). Firstly, LAPS obtains the channel-aware
typical set by calibrating the channel-level typical set with
the global typical set from the mean and standard deviation.
Then, LAPS rectifies the features into channel-aware typical
sets to obtain channel-aware typical features. Finally, LAPS
leverages the channel-aware typical features to calculate the
energy score for OOD detection. Theoretical and visual anal-
yses verify that LAPS achieves a better bias-variance trade-
off. Experiments verify the effectiveness and generalization
of LAPS under different architectures and OOD scores.

Introduction
Deep neural networks exhibit remarkable effectiveness
when applied to scenarios where the training and test
datasets share the same label space (Sun et al. 2023, 2022;
Huang et al. 2023b,a). However, in open and dynamic en-
vironments, data outside the training label space poses a
significant challenge for deep neural networks (Yang et al.
2023b,a). For example, misclassifying novel diseases as
known could lead to significant medical errors (Han et al.
2022). To mitigate such scenarios and guarantee the secu-
rity of AI applications, substantial research endeavors have
recently been dedicated to OOD detection.
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Figure 1: Different channels contribute differently to OOD
detection. FPR95 and AUROC evaluate performance.

OOD detection methods can be classified into two main
categories: density-based and classification-based methods.
Since the performance of density-based methods (Zhou and
Levine 2021; Jiang, Sun, and Yu 2021) often lags be-
hind that of classification-based methods, and the train-
ing and optimization processes are more complex (Song,
Sebe, and Wang 2022), this paper focuses on classification-
based methods. The classification-based methods can be
further dissected into training-time and test-time methods.
The training-time methods (Du et al. 2022; He et al. 2022)
require model training or fine-tuning, while the test-time
methods do not require any retraining, making them con-
venient. The latter can be divided into four types: output-
based (Hendrycks and Gimpel 2016), distance-based (Lee
et al. 2018), gradient-based (Huang, Geng, and Li 2021),
and rectified-activation-based methods. The first three types
overlook exploring abnormal activations within the neural
network’s hidden layers. These abnormal activations cause
overconfidence in predicting OOD data and underconfidence
in predicting ID data, enlarging the overlap of ID and OOD
distribution and weakening the performance of OOD detec-
tion (Sun, Guo, and Li 2021; Zhu et al. 2022).

Rectified-activation-based methods aim to address abnor-
mal activations (features), which can be classified into two
categories: clip-based and typical-set-based methods. Clip-
based methods (Sun, Guo, and Li 2021; Kong and Li 2023)
employ a pre-defined threshold to clip extremely high acti-
vations or employ a low-pass filter to exclude activations.
Different from clip-based methods, the typical-set-based
methods consider typical features. Zhu et al. (2022) regards
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the feature’s high-probability region as the feature’s typi-
cal set and exhibits higher efficacy by leveraging the typ-
ical features. However, existing typical-set-based methods
imply an assumption: the proportion of typical feature sets
for each channel is fixed. Through Fig. 1, we discover a phe-
nomenon: different channels contribute differently to OOD
detection. Several studies have observed analogous phenom-
ena to ours, like Sun and Li (2022); Zhang and Xiang (2023).
Adopting a fixed proportion for all channels results in sev-
eral channels losing too many typical features or incorpo-
rating too many abnormal features, resulting in low perfor-
mance. Therefore, exploring channel-aware typical fea-
tures is crucial to better-separating ID and OOD data.

Based on the insight, we propose a novel typical-set-
based method called expLoring channel-Aware tyPical
featureS (LAPS). Firstly, LAPS obtains the channel-level
typical set based on BATS (Zhu et al. 2022) and the global
typical set by averaging the mean and standard deviation
of the channel-level typical set. Then, LAPS estimates the
channel-aware typical set by calibrating the channel-level
typical set with the global typical set from two perspec-
tives of mean and standard deviation. After that, LAPS rec-
tifies the features into channel-aware typical sets to obtain
channel-aware typical features. Finally, LAPS leverages the
channel-aware typical features to calculate the energy score
for OOD detection. Theoretical and visual analyses verify
that LAPS achieves better bias-variance trade-off, thus fa-
cilitating the distinction between ID and OOD data.

Our contributions can be summarized as follows:

• A fixed proportion of typical feature sets on different
channels hinders the detection of OOD data. Based on
this finding, we propose an insight: exploring channel-
aware typical features to enhance OOD detection.

• We propose a new typical-set-based OOD detection
method called LAPS, which rectifies the features into
channel-aware typical sets. Both theoretical and visual
analyses prove that LAPS can achieve a better bias-
variance trade-off.

• We perform extensive experimental evaluations on
ImageNet-1K, CIFAR benchmarks, showing that our
method outperforms the existing methods and can gen-
eralize to other architectures and OOD scores.

Related Work
Test-Time Out-of-Distribution Detection. Test-time
OOD detection methods save computing resources and
are naturally suitable for privacy protection tasks, as
they do not require retraining the model. These methods
can be categorized into output-based, distance-based,
gradient-based, and rectified-activation-based methods. (1)
Output-based methods harness the output of a pre-trained
classifier to devise OOD scores. MSP (Hendrycks and
Gimpel 2016) directly leverages the highest SoftMax
score for OOD detection. Meanwhile, ODIN (Liang,
Li, and Srikant 2017) incorporates temperature scaling
alongside gradient-based input perturbations. Furthermore,
Energy (Liu et al. 2020a) demonstrates that energy scores
offer superior discrimination between ID and OOD data

compared to softmax scores. MaxLogit (Hendrycks et al.
2019) uses maximum logit instead. (2) Distance-based
methods design OOD scores based on the distance between
test data and ID data. Mahalanobis (Lee et al. 2018)
measures the minimum Mahalanobis distance between test
data and training class centroids. RMD (Ren et al. 2021)
proposes relative Mahalanobis distance, a simple fix to
Mahalanobis. (3) Gradient-based methods derive OOD
scores from the gradient space. GradNorm (Huang, Geng,
and Li 2021) employs the vector norm of gradients to
enhance OOD detection. (4) Rectified-activation-based
methods aim to enhance the separability of ID and OOD
data by rectifying activations, which can be classified into
two categories: clip-based methods and typical-set-based
methods. Clip-based methods (Sun, Guo, and Li 2021;
Kong and Li 2023) employ a pre-defined threshold to clip
extremely high activations or employ a low-pass filter to
exclude activations. The typical-set-based method (Zhu
et al. 2022) exhibits higher efficacy by leveraging the typical
features of each channel for OOD detection. However, the
rectified-activation-based methods ignore the channel-level
typical set or the differences between channels, causing
suboptimal rectification of activation.

Preliminaries
OOD Detection
Following Zhu et al. (2022), we provide a summary of
the out-of-distribution detection from the perspective of
hypothesis testing (Ahmadian, Lindsten, and Zhou 2021;
Haroush et al. 2022; Zhang, Goldstein, and Ranganath 2021;
Bergamin et al. 2022). We consider a K-way classification
problem with a training set Dtrain

in = {(xi, yi)}ni=1 drawn
i.i.d. from a joint distribution P (X ,Y), where X is the input
space, Y is the label space, Y = {1, 2, . . . ,K} is the set of
ID classes, and n is the number of instances in Dtrain

in . We
denote the marginal distribution of P (X ,Y) for the input
variable X by P0. Given a test input x̂ from a test set Dtest,
the problem of out-of-distribution detection can be formu-
lated as a single-sample hypothesis testing task:

H0 : x̂ ∈ P0, vs. H1 : x̂ /∈ P0. (1)
According to Eq. (1), the null hypothesis H0 assumes

that the test input x̂ is an in-distribution sample. In out-of-
distribution (OOD) detection tasks, the goal is to define cri-
teria based on Dtrain

in to determine whether the null hypothe-
sis H0 should be rejected. This involves establishing a reject
region R, such that for any test input x̂ ∈ Dtest, the null hy-
pothesis is rejected if x̂ ∈ R. Typically, a test statistic and
a threshold define the reject region R. Let G : X 7→ RM

be a feature extractor pre-trained from Dtrain
in , where M

denote the dimension of features. Let F : RM 7→ RK

be a classifier pre-trained from Dtrain
in . The test-time OOD

detection methods use G and F to construct a test statis-
tic T (x̂;F ◦ G). Then the reject region can be written as
R = {x̂ : T (x̂;F ◦G) ≤ γ}, where γ is the threshold.

OOD Detection with Rectified Activations
Rectified-activation-based OOD detection methods aim to
enhance the separability of ID and OOD data by rectify-
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Figure 2: The visualization to verify that the proportion of high-density region [µ− λσ, µ+ λσ] is only determined by λ.

ing activations. According to Zhu et al. (2022), the rep-
resentative rectified-activation-based methods contain two
types: (1) clip-based methods, including ReAct (Kong and
Li 2023) and BFAct (Kong and Li 2023); (2) typical-set-
based method, including BATS (Zhu et al. 2022).

ReAct ReAct considers extremely high activations as ab-
normal activations because extremely high activations cause
overconfidence in predicting OOD data. To address the ex-
tremely high activations, ReAct proposes to clip them with
a pre-defined activation threshold c:

ReAct (z) = min(z, c) , (2)

where activation z denotes the output of feature extractor G,
c is set based on the percentile of ID activation distribution
of Dtrain

in . Then the reject region can be rewritten as R =
{x̂ : T (x̂;F ◦ ReAct ◦G) ≤ γ}, where γ is the threshold.

BFAct Since the extremely high activations are likely to
belong to the OOD data, clipping it to the upper bound c
still outputs large activations. To further eliminate the side
effect of extremely high activations, BFAct addresses the ex-
tremely high activations by a low-pass filter:

BFAct (z) =
z√

1 +
(

z
λ2

)2N
, (3)

where λ2 is equivalent to the threshold c used in ReAct and
N represents the order of the Butterworth filter. Then the
reject region can be rewritten as R = {x̂ : T (x̂;F ◦BFAct◦
G) ≤ γ}, where γ is the threshold.

BATS BATS rectifies the features into the feature’s typical
set and then uses these typical features to calculate the OOD
score. The feature’s typical set is set:

BATS (z) =

{
µ+ λσ, if z ≥ µ+ λσ ;
z, if µ− λσ < z ≤ µ+ λσ ;
µ− λσ, if z < µ− λσ ,

(4)
where λ is a tuning parameter. µ and σ denote the mean and
standard deviation of the channel-level feature distribution
of the training dataset. Then the reject region can be rewrit-
ten as R = {x̂ : T (x̂;F ◦ BATS ◦G) ≤ γ}.

Although these rectified-activation-based OOD detection
methods enhance the separability of ID and OOD data by

rectifying activation, they ignore the channel-level typical
set or the differences between channels, causing sup-optimal
rectification of activation. Through Fig. 1, we discover that
different channels contribute differently to OOD detection.
Therefore, exploring the channel-aware typical features is
crucial to better-separating ID and OOD data.

Exploring Channel-Aware Typical Features
Motivation
According to Zhu et al. (2022), exploring feature’s typi-
cal set to enhance OOD detection is an effective practice.
However, the existing typical-feature-based OOD detection
method implies an assumption: the proportion of typical fea-
ture sets for each channel is fixed. Through Fig. 1, we dis-
cover a phenomenon: different channels contribute differ-
ently to out-of-distribution (OOD) detection. Several stud-
ies have observed analogous phenomena to ours, like Sun
and Li (2022); Zhang and Xiang (2023). Adopting a fixed
proportion for all channels results in several channels los-
ing too many typical features or incorporating too many ab-
normal features, resulting in low performance. Therefore,
each channel’s fixed proportion of typical feature sets is un-
reasonable. Based on these findings, we propose expLoring
channel-Aware tyPical featureS (LAPS).

Identifying Typical Features
According to Zhu et al. (2022), the distribution of the deep
features is consistent with the Gaussian distribution. There
are high-probability regions and low-probability regions in
deep features. We define the features that fall in high-
probability regions as typical features, and the correspond-
ing regions are called feature’s typical sets. In contrast, we
define the features that fall in low-probability regions as ab-
normal features, including extremely high features and ex-
tremely low features. According to Kong and Li (2023),
extremely high features cause overconfidence in predicting
OOD data. According to Zhu et al. (2022), extremely low
features cause underconfidence in predicting ID data. The
overconfidence in OOD data and underconfidence in ID data
enlarges the overlap of ID and OOD data, weakenings the
performance of OOD detection.

To identify typical features, we should better define high-
probability and low-probability regions in each channel. We
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Figure 3: Estimating channel-aware typical sets. The shad-
owed denotes typical sets. The red and the blue denote the
boundary line. (a) and (d) denote global typical sets. (b) and
(e) denote typical sets estimated by BATS. (c) and (f) denote
typical sets estimated by LAPS.

denote the proportion of typical feature sets in i-th chan-
nel Ci by ri. According to Fig. 2, ri is only related to λi,
a hyperparameter in the high-probability interval. The mean
and standard deviation of i-th channel’s feature distribution
of the training dataset is µi and σi. Therefore, the high-
probability interval is [µi − λiσi, µi + λiσi]. The features
that fall into [µi − λiσi, µi + λiσi] can be regarded as typi-
cal features, and the others as abnormal features. Since these
abnormal features hinder OOD detection, we need to rectify
them into the feature’s high-probability interval by

LAPS (zi) =

{
µi + λiσi, if zi ≥ µi + λiσi ;
µi − λiσi, if zi ≤ µi − λiσi ;
zi, others ,

(5)

where zi denote the feature from i-th channel. According to
Eq. (5), LAPS rectifies the channel-level abnormal features
by performing channel-level truncating. Then, we perform
LAPS in Eq. (5) for all channels to obtain typical features.

Estimating Channel-Aware Typical Sets
The typical-feature-based OOD detection method implies an
assumption: the proportion of typical feature sets for each
channel is fixed. Through Fig. 1, we discover that different
channels contribute differently to out-of-distribution (OOD)
detection. Adopting a fixed proportion for all channels re-
sults in several channels losing too many typical features
or incorporating too many abnormal features, resulting in
low performance. Therefore, each channel’s fixed ri is un-
reasonable. Based on these findings, we propose an insight:
exploring channel-aware typical features is crucial to OOD
detection. According to Fig. 2, the proportion ri of typical
feature sets is only related to hyperparameter λi. To obtain
channel-aware typical features, we estimate channel-aware
hyperparameter λi by calibrating the channel-level typical
set with the global typical set from the mean and standard
deviation.

Firstly, we obtain the global typical set [µ̄ − λσ̄, µ̄ + λσ̄]
by global feature distribution Dg(µ̄, σ̄), where µ̄ and σ̄ are
defined by

µ̄ =
1

M

M∑
i=1

µi, σ̄ =
1

M

M∑
i=1

σi , (6)

where M denotes the number of channels, µi and σi denote
the mean and standard deviation of i-th channel’s feature
distribution. Next, we introduce the calibrating process from
mean and standard deviation.

Calibrating from Mean Fig. 3(a) shows the global fea-
ture distribution. The interval between the red and blue
boundary lines denotes the global typical set. Fig. 3(b)
shows the feature distribution of channel Ca. Compared with
the global typical set, Ca’s typical set is biased towards the
below, and partial Ca’s extremely high features are not ab-
normal. Therefore, Ca’s red boundary line should be moved
up. Similarly, compared with the global typical set, partial
Ca’s typical features are below the global blue boundary
line, which should be considered abnormal. Therefore, Ca’s
blue boundary line should also be moved up. To achieve the
movement of Ca’s red and blue boundary lines, we update λ
by

λ1
a = λ+m(µ̄− µa), λ2

a = λ−m(µ̄− µa) , (7)

where λ1
a and λ2

a correspond to Ca’s red and blue boundary
lines, and m is a coefficient to control the item of mean dis-
crepancy. The above assumes that the feature distribution of
channel Ca is below the global feature distribution. When
the feature distribution of channel Ca is above the global
feature distribution, updating λ by Eq. (7) still holds.

Calibrating from Standard Deviation Assuming that the
mean is fixed, we only consider the standard deviation in
this part. Fig. 3(d) shows the global feature distribution and
Fig. 3(e) shows the feature distribution of channel Cb. Cb’s
typical set is contained within the global typical set, and
partial Cb’s extremely high and low features are not abnor-
mal. Therefore, Cb’s red boundary line should be moved up,
and Cb’s blue boundary line should also be moved down. To
achieve the movement of Cb’s red and blue boundary lines,
we update λ by

λ1
b = λ+ n(σ̄ − σb), λ2

b = λ+ n(σ̄ − σb) , (8)

where λ1
b and λ2

b correspond to Cb’s red and blue boundary
lines, and n is a coefficient to control the item of standard
deviation discrepancy. The above assumes that the standard
deviation of channel Cb’s feature distribution is smaller than
the global feature distribution. When the standard deviation
of channel Cb’s feature distribution is larger than the global
feature distribution, updating λ by Eq. (8) still holds.

We summarize the above updating of λ into a complete
formula by

λ1
i = λ+m(µ̄− µi) + n(σ̄ − σi)

λ2
i = λ−m(µ̄− µi) + n(σ̄ − σi) .

(9)

We can effectively estimate channel-aware typical sets [µi−
λ2
iσi, µi + λ1

iσi] with Eq. (9).
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OOD Datasets
Textures SVHN LSUN iSUN Avg

Method FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP 83.67 73.41 84.22 71.50 66.58 83.73 82.71 75.51 79.28 76.04
ODIN 78.48 76.04 89.28 70.01 40.53 92.33 72.11 81.51 70.10 79.97
Energy 79.83 76.19 85.85 73.79 35.89 93.52 81.12 78.90 70.67 80.60
ReAct 68.38 83.37 77.59 87.59 33.66 92.99 79.91 74.66 64.89 84.65
BFAct 71.09 83.01 82.58 85.06 34.27 93.09 80.75 74.85 67.17 84.00
BATS 69.12 84.11 82.65 84.48 33.10 93.63 78.51 77.80 65.85 85.01
LAPS (ours) 63.59 85.06 70.71 89.18 30.80 93.46 78.03 74.92 60.78 85.66

Table 1: Comparison of OOD detection performance between LAPS and other baselines with CIFAR-100 as ID dataset.

OOD Datasets
iNaturalist SUN Places Textures Avg

Method FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP 64.29 85.32 77.02 77.10 79.23 76.27 73.51 77.30 73.51 79.00
ODIN 55.39 87.62 54.07 85.88 57.36 84.71 49.96 85.03 54.20 85.81
Energy 59.50 88.91 62.65 84.50 69.37 81.19 58.05 85.03 62.39 84.91
ReAct 45.27 92.40 53.29 87.58 61.04 84.39 41.13 90.85 50.18 88.80
BFAct 40.24 92.99 51.05 87.35 58.01 83.99 37.50 91.72 46.70 89.01
BATS 50.63 91.26 57.36 86.30 64.46 83.06 40.00 91.14 53.11 87.94
LAPS (ours) 18.82 96.76 30.07 92.98 39.70 90.10 51.37 88.29 34.99 92.03

Table 2: Comparison of performance between LAPS and other baselines under MobileNet with ImageNet-1K as the ID dataset.

Exploiting Typical Features for OOD Detection
LAPS is similar to ReAct (Sun, Guo, and Li 2021) and
BATS (Zhu et al. 2022) in that it is compatible with any
downstream OOD scores. We default to using the En-
ergy (Liu et al. 2020b) score as the OOD score but extend
to other scores on generalization analysis.

Given a test input x̂ from a test set Dtest, we first obtain
the channel-aware typical features by applying the LAPS
function in Eq. (5) for each channel. Based on channel-
aware typical features, we calculate the energy score:

Senergy(x̂) = − log

K∑
k=1

exp (F ◦ LAPS ◦G(x̂))k . (10)

Then, the reject region can be rewritten as R = {x̂ :
−Senergy(x̂) ≤ γ}, where γ is the threshold. We usually set
the threshold γ to accurately classify a significant portion of
the ID data (e.g., 95%).

Theoretical and Visualization Analysis
Understanding from Variance Reduction
Following Zhu et al. (2022), we analyze the benefits of
LAPS from the perspective of variance reduction. Assuming
the original feature distribution of channel Ci is N(µ, σ2),
where µ represents the mean and σ2 represents the vari-
ance. After rectifying the original feature distribution with
the LAPS function, the variance becomes:

σ̃
2

= σ
2 × C(λ

1
i , λ

2
i )

= σ
2 ×

(
1 −

λ1
iϕ(λ

1
i ) + λ2

iϕ(−λ2
i )

Φ(λ1
i ) − Φ(−λ2

i )
−
(

ϕ(λ1
i ) − ϕ(−λ2

i )

Φ(λ1
i ) − Φ(−λ2

i )

)2)
,

(11)

where λ1
i and λ2

i denote the updated λ in Eq. (9), ϕ(·) and
Φ(·) denote the probability density and cumulative distri-

bution function of the standard normal distribution, respec-
tively. According to Burkardt (2014), we can know that
C(0, 0) = 0 and C(+∞,+∞) = 1. The smaller λ1

i and λ2
i ,

the smaller the variance. Zhu et al. (2022) points out that the
extreme features increase the uncertainty and lead to over-
confidence in predicting OOD data and underconfidence in
predicting ID data. Our LAPS solves the above problem by
reducing the variance of the feature distribution, which im-
proves the estimation accuracy of the reject region.

The Bias Introduced by LAPS
While LAPS decreases the variance of the feature distribu-
tion, it can also introduce a bias term that captures the shift
in the feature distribution. A large bias can damage the per-
formance (Zhu et al. 2022), which is defined by

E[LAPS(z)]− E[z] = −σ
ϕ(λ1

i )− ϕ(−λ2
i )

Φ(λ1
i )− Φ(−λ2

i )
. (12)

According to Eq. (12), the bias term E[LAPS(z)]−E[z] con-
verges to zero as λ1

i and λ2
i approaches positive infinity. If

λ1
i and λ2

i are large enough, the bias can be very small. Thus,
there exists a bias-variance trade-off in LAPS.

A Better Bias-variance Trade-off of LAPS
Fig. 4(a), (b), and (c) show that a proper selection of λ can
improve the detection performance by significantly reduc-
ing variance and slightly changing the distribution of the
features (small bias). For example, we can get a good bias-
variance trade-off when λ = 1.5. Through Fig. 4(d), (e),
and (f), channel-aware λ1

i and λ2
i can achieve better bias-

variance trade-off by a proper selection of m and n.
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Figure 4: Bias-variance trade-off under [λ; m; n] with ID
(ImageNet) and OOD (iNaturalist) data.

Experiments
Set Up
We use CIFAR-100 (Krizhevsky and Hinton 2009) as ID
data for small-scale OOD detection benchmark. For the
OOD test data, we utilize Textures (Cimpoi et al. 2014),
SVHN (Netzer et al. 2011), LSUN (Yu et al. 2015) and
iSUN (Xu et al. 2015). For large-scale OOD detection
benchmark, we select ImageNet-1K (Huang and Li 2021)
as our ID dataset. For the OOD test datasets, following
Zhu et al. (2022), we choose iNaturalist (Horn et al. 2017),
SUN (Xiao et al. 2010), Places (Zhou et al. 2018), and Tex-
tures (Cimpoi et al. 2014).

Following Zhu et al. (2022), our experiments use AUROC
and FPR95 as test metrics for OOD detection. We choose
MSP (Hendrycks and Gimpel 2016), ODIN (Liang, Li, and
Srikant 2017), Energy (Liu et al. 2020a), ReAct (Sun, Guo,
and Li 2021), BFAct (Kong and Li 2023), and BATS (Zhu
et al. 2022) as baselines. Code is available at: https://github.
com/rm1972/LAPS.git.

Main Results
Table 1 reports the results on ID dataset CIFAR-100 with
four OOD datasets. Our algorithm significantly outperforms
all the comparison methods by a large margin on average
FPR95 and AUROC. It is evident that the energy score ob-
tained by applying the ReAct, BFAct, and BATS to the ac-
tivations is superior to the vanilla energy score. Our LAPS
further enhances the performance of the energy score.

  1           2            3            4            5

(a) the sensitivity of λ

  0     5   10   15  20   25  30   40  45   50           

(b) the sensitivity of m

Figure 5: The sensitivity analysis of λ and m.

Figure 6: The visualization of fixed {−λ, λ} by BATS and
channel-aware {−λ2

i , λ
1
i } by LAPS across each channel.

The FPR95 for BATS and LAPS are 30.16% and 23.68%.

We tackle the more challenging task of using ImageNet-
1K as the ID data and used MobileNet-V2 as the backbone.
Table 2 shows that our method outperforms all baselines on
average performance. Compared to BATS, LAPS shows a
18.12% decrease in average FPR95 and a 4.09% increase
in average AUROC. These results verify that using channel-
aware typical features to calculate the energy score can im-
prove the separability of ID and OOD data.

Sensitivity Analysis

LAPS has three important hyper-parameters (including λ,
m, and n). Here, we empirically show the influence of the
hyperparameter λ in Fig. 5(a). As λ tends to infinity, BATS
approaches the Energy Score (the horizontal lines). As λ
tends to zero, a large bias damages the performance. The
bias-variance trade-off shows that selecting proper λ is im-
portant. Fig. 5(b) and Table. 5 show the influence of the hy-
perparameter m and n, which verifies that selecting a proper
m and n help achieve better bias-variance trade-off.

Fig. 6 visualizes the fixed {−λ, λ} by BATS and channel-
aware {−λ2, λ1} by LAPS across each channel. The
channel-aware {−λ2, λ1} contributes to OOD detection,
which verifies our insight that exploring channel-aware typi-
cal features is crucial to better-separating ID and OOD data.

Ablation Study

Table 6 presents the results of the ablation study. We adopt
energy as a vanilla OOD score. BATS, BATS+variance,
BATS+mean, and BATS+mean+variance (i.e., LAPS) ob-
tain feature’s typical set by fixed λ, Eq. (7), Eq. (8), and
Eq. (9), respectively. According to Table 6, calibrating from
the mean and standard deviation contributes to obtaining
channel-aware typical features to enhance OOD detection.
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OOD Datasets
iNaturalist SUN Places Textures Avg

Method FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP 54.99 87.74 70.83 80.86 73.99 79.76 68.00 79.61 66.95 81.99
ODIN 47.66 89.66 60.15 84.59 67.89 81.78 50.23 85.62 56.48 85.41
Energy 55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17
ReAct 19.99 96.31 29.60 93.42 39.70 90.95 41.42 91.62 32.68 93.08
BFAct 20.69 96.20 21.02 95.24 30.33 92.62 54.20 87.78 31.56 92.96
BATS 24.98 95.51 25.68 94.27 37.34 91.11 32.62 93.47 30.16 93.59
LAPS (ours) 12.72 97.50 15.81 96.18 24.71 93.64 41.49 91.81 23.68 94.78

Table 3: Comparison of performance between LAPS and other baselines under ResNet50 with ImageNet-1K as ID dataset.

OOD Datasets
iNaturalist SUN Places Textures Avg

Method FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP 58.21 87.06 73.45 78.90 75.90 78.06 71.22 78.43 69.70 80.61
ODIN 46.13 91.66 59.83 85.03 66.44 82.64 50.53 86.65 55.73 86.50
Energy 56.47 89.75 59.73 86.04 64.97 83.56 53.19 86.25 58.59 86.40
ReAct 35.20 93.97 40.58 91.64 48.57 88.83 40.35 91.16 41.18 91.40
BFAct 27.31 94.95 29.88 93.76 38.25 90.52 40.23 91.77 33.92 92.75
BATS 39.71 92.68 40.83 91.45 49.46 88.15 37.61 91.96 41.90 91.06
LAPS (ours) 15.18 97.20 15.69 96.39 25.99 93.31 47.59 89.47 26.11 94.09

Table 4: Comparison of performance between LAPS and other baselines under ResNet18 with ImageNet-1K as ID dataset.

n 0.5 0.6 0.7 0.8 0.9 1.0

FPR95 ↓ 29.62 29.49 29.33 29.43 29.43 29.46

Table 5: Effect of n for OOD detection.

Method FPR95 ↓ AUROC ↑
Energy 58.41 86.17

BATS 30.16 93.59
BATS + variance 29.33 93.66
BATS + mean 26.73 94.21

BATS + mean + variance (LAPS) 23.68 94.78

Table 6: Ablation studies on ImageNet-1K with ResNet50.

Generalization Analysis
Generalizing to Other Architectures. We validate the
generalization of LAPS with different model architectures:
ResNet50 and ResNet18. Table 3 and 4 show that our ap-
proach outperforms competitive baselines, achieving the
best performance across different network architectures.
When utilizing ResNet50 as the backbone, LAPS achieved
a 6.48% reduction in average FPR95 compared to BATS,
alongside a 1.19% increase in average AUROC. These out-
comes underscore LAPS’s remarkable capacity to generalize
and maintain robustness across diverse architectures.
Generalizing to Other OOD Scores. Table 7 demonstrates
the generalizability of LAPS with different OOD scores.
Compared with MSP, ODIN, Energy score using BATS,
after replacing BATS with LAPS, the average FPR95 de-
creased by 9.16%, 4.14%, 6.48% respectively. Experimen-

tal findings consistently show that our method improves the
performance of all scoring functions.

Method MSP ODIN Energy

base 66.95 56.48 58.41
+ ReAct 55.68 37.27 32.68
+ BFAct 56.02 35.08 31.56
+ BATS 53.89 38.54 30.16
+ LAPS (ours) 44.73 34.40 23.68

Table 7: FPR95 on ImageNet-1K with ResNet50.

Conclusion
In this paper, we found that a fixed proportion of typical
feature sets across various channels hampers OOD detec-
tion. Based on this finding, we proposed an insight: explor-
ing channel-aware typical features to enhance ID-OOD sep-
arability. We designed a new typical-set-based OOD detec-
tion method called LAPS, which rectifies the features into
channel-aware typical sets. Both theoretical and visual anal-
yses proved that LAPS could boost the trade-off between
bias and variance. LAPS effectively reduced the variance in
the OOD score while maintaining bias control. Additionally,
extensive experiments demonstrated that LAPS outperforms
existing methods on CIFAR and ImageNet-1K.
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