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Abstract
AlphaZero and MuZero have achieved state-of-the-art
(SOTA) performance in a wide range of domains, including
board games and robotics, with discrete and continuous ac-
tion spaces. However, to obtain an improved policy, they of-
ten require an excessively large number of simulations, espe-
cially for domains with large action spaces. As the simulation
budget decreases, their performance drops significantly. In
addition, many important real-world applications have com-
binatorial (or exponential) action spaces, making it infeasi-
ble to search directly over all possible actions. In this paper,
we extend AlphaZero and MuZero to learn and plan in more
complex multiagent (MA) Markov decision processes, where
the action spaces increase exponentially with the number of
agents. Our new algorithms, MA Gumbel AlphaZero and MA
Gumbel MuZero, respectively without and with model learn-
ing, achieve superior performance on cooperative multiagent
control problems, while reducing the number of environmen-
tal interactions by up to an order of magnitude compared
to model-free approaches. In particular, we significantly im-
prove prior performance when planning with much fewer
simulation budgets. The code and appendix are available at
https://github.com/tjuHaoXiaotian/MA-MuZero.

Introduction
AlphaZero family algorithms have achieved great success
in many applications, such as playing board games like
Go and chess (Silver et al. 2016, 2017, 2018; Schrittwieser
et al. 2020), making planning decisions in robotics and au-
tonomous vehicles (Lenz, Kessler, and Knoll 2016), predict-
ing the structure of large protein complexes (Bryant et al.
2022), and discovering faster matrix multiplication algo-
rithms (AlphaTensor) (Fawzi et al. 2022) and sorting algo-
rithms (AlphaDev) (Mankowitz et al. 2023), etc.

However, these algorithms usually require a large number
of simulations before making a decision, which is compu-
tationally expensive. For example, in the board games Go,
chess, and Shogi, the search is run for 800 simulations per
move to pick an action (Schrittwieser et al. 2020). AlphaTen-
sor also uses 800 simulations for each MCTS (Fawzi et al.
2022). Hamrick et al. (2020); Grill et al. (2020) find that Al-
phaZero performs poorly when the simulation budgets are
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low. Thus, we cannot reduce the computational cost by sim-
ply decreasing the simulation budget.

In the real world, many important applications have com-
binatorial action spaces(Kemmerling, Lütticke, and Schmitt
2023; Ausiello et al. 2012). These problems include mul-
tiagent control, power grid management, combinatorial auc-
tions, resource allocation problems like job scheduling, rout-
ing problems like capacitated vehicle routing, chip design,
portfolio optimization, and optimizing large language mod-
els like ChatGPT (Ouyang et al. 2022), etc.

Applying AlphaZero to such problems is challenging as
larger action spaces require much more simulations to keep
a good performance. To improve the sample efficiency, var-
ious methods have been proposed. Instead of recomputing
the Q-values at the root node from scratch through sim-
ulations, Hamrick et al. (2020) integrate a model-free Q-
learning agent which learns a global Q-function to give a
better initialization of the Q-values in the tree, thus reduc-
ing the simulation numbers. Grill et al. (2020) show that Al-
phaZero’s search heuristics is an approximated solution to
a regularized policy optimization problem and propose to
directly compute the exact solution instead of using more
simulations to approximate. Danihelka et al. (2022) exploit
the idea of Grill et al. (2020) further and propose Gumbel
MuZero, employing the Gumbel top-k trick to sample k ac-
tions at the root node to further reduce the simulation cost.

While these methods could mitigate the performance drop
due to the low simulation budgets, they still cannot be di-
rectly applied to problems with combinatorial action spaces
where fully enumerating all possible actions is infeasible.
Hubert et al. (2021) propose Sampled MuZero, which ex-
tends MuZero to more complex action spaces such as high-
dimensional continuous ones. Rather than enumerating all
possible actions, its idea is to sample a small subset of ac-
tions with replacement and do policy evaluation and im-
provement with respect to the sampled actions. However, us-
ing sampling with replacement can be inefficient because it
may resample high-probability actions over and over again,
which are less informative. Besides, like MuZero, it has
to use more simulations to approximate the exact solution
shown in (Grill et al. 2020). When using a smaller number
of simulations, it even cannot guarantee a policy improve-
ment (Danihelka et al. 2022).

In this paper, combining the strengths of both Sam-
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pled MuZero and Gumbel MuZero, we propose MA Gum-
bel MuZero, which extends MuZero to combinatorial action
spaces. Specifically, we consider the challenging coopera-
tive multiagent control problems, where a potentially large
number of agents jointly optimize a global reward function,
which leads to exponential growth in the action space. Key
contributions of this work are summarized below:
• We extend MuZero to combinatorial action control prob-

lems and propose two novel algorithms: MA Gumbel Al-
phaZero and MA Gumbel MuZero.

• We adopt the idea of stochastic beam search to efficiently
sample top-k joint actions without replacement from the
combinatorial action space and devise a well-matched
sample-based policy improvement operator.

• Compared with Sampled MuZeo, ❶ we use sampling
without replacement instead of sampling with replace-
ment during both the selection and expansion phases of
MCTS, which is more sample efficient. ❷ We use the ex-
act solution to the regularized policy optimization as the
improved policy instead of using the visit count distri-
bution to approximate. A full comparison of the MuZero
family algorithms is summarized in Table 1.

• We delicately design a world model for accurately mod-
eling state transitions in multiagent domains.

• Extensive experiments validate that our method reliably
outperforms the prior algorithms especially when using
much fewer simulation budgets.

Preliminaries and Related Work
Notations. For more compact notation, we use bold fonts to
denote vector quantities and omit the dependency of quan-
tities on state s when the context is clear. For example, we
use q ∈ R|A| and π ∈ R|A| to denote the vectors of Qπ(s, ·)
and policy π(·|s), i.e., q[a] = Q(s, a) and π[a] = π(a|s).

Monte-Carlo Tree Search in MuZero
Monte-Carlo Tree Search (MCTS) (Browne et al. 2012) is
a famous heuristic search algorithm, which uses a resettable
simulator or an environment model to explore possible fu-
ture states and actions, with the aim of finding a better action
for the current state. Each search procedure iteratively per-
forms 3 steps: selection, expansion, and backpropagation.

Selection. MCTS starts traversing the search tree from the
current state s0 (root node) and selects the most promising
action according to the pUCT formula (Silver et al. 2018):

ak=argmax
a

[
Q(sk, a)+c · πθ(a|sk)

√∑
b N(sk, b)

1 +N(sk, a)

]
(1)

where Q(sk, a) is the currently estimated value of taking
action a from state sk and πθ(a|sk) is the prior probability
of selecting a in current policy. N(sk, a) is the number of
times of taking a from sk and N(sk, b) denotes that of a’s
siblings. c is a numerical constantwhich control the relative
importance of the Q-value and the exploration term. After
selecting a0, the search moves from node s0 to node s1. This
selection procedure is repeated for T −1 times until a new
action aT−1 that has not been explored is selected at sT−1.

Expansion. The unexplored aT−1 is executed in the sim-
ulator (or world model), resulting in a reward rT−1 and a
new state sT . The new state sT is appended to the tree, and
its value V (sT ) is estimated via a state-value function Vθ(s).

Backpropagation. The reward rT−1 and the value V (sT )
of the new leaf node are used to update the values of all its
parent states along the search path. For each state sk, k ∈
{T−1, ..., 0}, we get a T−k-step estimate of the cumulative
discounted reward bootstrapping from V (sT ):

Gk =
T−1∑
j=k

γj−krj + γT−kV (sT ) (2)

γ is the discount factor. For k ∈ {T−1, ..., 0}, we update:

Q(sk, ak) :=
N(sk, ak) ·Q(sk, ak) +Gk

N(sk, ak) + 1

N(sk, ak) := N(sk, ak) + 1

(3)

Get the improved policy. We refer to every 3-step (se-
lection, expansion, and backpropagation) as one simulation.
MCTS repeats the search process for Nsim simulations. Nsim
is a parameter depending on the computational budget. Then
we get the visit count distribution under the root node s0:

π̂(a|s0) ≜ N(s0, a)1/τ∑
b N(s0, b)1/τ

(4)

where τ is the temperature parameter. π̂(a|s0) will generally
reflect how good each action is and can be considered as
the improved policy. During training, one action is sampled
from π̂(a|s0) to execute in the environment and πθ(a|s0) is
updated towards π̂(a|s0) by minimizing the KL-divergence
loss DKL(π̂(·|s0), πθ(·|s0)).

Sampled MuZero
Hubert et al. (2021) propose Sampled MuZero, extending
MuZero to domains with continuous action spaces. It makes
2 changes. ❶ Instead of planning over the original large ac-
tion space, it uses the Monte Carlo method to sample k ac-
tions with replacement according to πθ(a|sk) as candidate
actions to search and expand. ❷ During MCTS, it replaces
πθ(a|sk) in Eq. 1 with β̂(a|sk), where β̂(a|sk) is the empir-
ical distribution of the k samples, and only selects actions
within the k samples. For all other parts, it keeps the same
with MuZero. As k increases, the performance will gradually
approach the one considering all actions. However, Sampled
MuZero still has the same problems as MuZero.

Problems of MuZero’s Action Selection
Grill et al. (2020) provide deeper analysis about the policy
update of MuZero and find its action selection criteria can
be interpreted as approximating the solution to the following
regularized policy optimization problem:

π̂ ≈ π̄ ≜ argmax
y∈S

[
q⊤y − λ KL (πθ,y)

]
, (5)

where πθ and q denote the vectors of the prior policy and
Q-values used in Eq. 1, S is the |A|-dimensional simplex,
and KL (πθ,y) ≜

∑
a πθ[a] log

πθ[a]
y[a] .
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The problem is that MuZero does not use the search Q-
values to compute the improved policy, but instead uses the
indirect visit count distribution π̂ to approximate. This de-
grades the performance especially when the low simulation
budgets are low. The reasons are: ❶ when a new high-value
leaf is discovered, many additional simulations are needed
before this information can be reflected in π̂; ❷ By defini-
tion (Eq. 4), π̂ is the ratio of two integers and has limited
expressiveness when Nsim is low; ❸ Due to the determinis-
tic action selection (Eq. 1), it may require a large number
of simulations before some actions can be sampled. Thus,
approximating Eq. 5 with π̂ may require prohibitively large
numbers of simulations, especially for domains with large-
scale action spaces. As evidenced by (Hamrick et al. 2020;
Grill et al. 2020; Danihelka et al. 2022), the performance of
MuZero drops significantly as Nsim decreases.

Gumbel MuZero
With this insight, MuZero-ALL (Grill et al. 2020) directly
use the exact solution of Eq. 5 as the policy target and use
it to guide the tree search. Similarly, Muesli (Hessel et al.
2021) and Gumbel MuZero (Danihelka et al. 2022) use the
exact solution to the following policy optimization:

πMPO ≜ argmax
y∈S

[
q⊤y − λ KL (y,πθ)

]
(6)

replacing KL (πθ,y) in Eq. 5 with KL (y,πθ), which is
also adopted by the MPO algorithm (Maximum a Posteriori
policy Optimization) (Abdolmaleki et al. 2018). We denote
it as πMPO for convenience. The exact solution to Eq. 6 is:

πMPO(a|s) = softmax
(
log(πθ) +

q

λ
)
)
[a] (7)

Appendix B.1 gives a detailed derivation. Gumbel MuZero
makes 5 critical changes to MuZero from 3 aspects:

(1) Search: select actions inner MCTS. ❶ Sample ac-
tions to search at the root node. As MuZero selects actions
according to Eq. 1 deterministically, some actions may never
be selected especially when Nsim< |A|. To help explore dif-
ferent actions, Gumbel MuZero randomly samples k actions
without replacement according to πθ as the candidate actions
to search by using the Gumbel-Top-k trick (Vieira 2014).

Gumbel-Top-k Trick. Sampling k actions without re-
placement from the categorical distribution πθ(·|s) is equiv-
alent to taking top-k actions by:

Ak
top ≜ {a1, . . . , ak} = arg top

k
(log(πθ) + g0) (8)

log(πθ) ∈ R|A| is the log-probability vector of πθ(·|s)
and g0 ∈ R|A| is a vector of independent Gumbel noises:
g0[a] ∼ Gumbel(0), a ∈ A i.i.d. Gumbel MuZero only
searchs over the sampled top-k actionsAk

top at the root node.
❷ Select actions at the root node according to:

aroot ≜ argmax
a∈Ak

top

(g0[a] + log(πθ[a]) + σ (q[a])) (9)

where σ(q) = (cvisit +maxb N(b)) cscale q is a monoton-
ically increasing transformation function, controlling the

scale1 of Q(s, a). cvisit > 0 and cscale > 0 are constants.
maxb N(b) is the visit count of the most visited action. Eq. 9
guarantees a policy improvement when q values are cor-
rectly evaluated, because for ∀g0∼Gumbel(0), we have

q[aroot] ≥ q[argmax
a∈Ak

top

(g0[a] + log(πθ[a]))] (10)

By the Gumbel-Max trick (Vieira 2014), sampling a from
πθ(·|s) is equivalent to argmax (g0[a] + log(πθ[a])). Thus,
Eg0

[q[aroot]]≥Eg0
[argmax(g0[a]+log(πθ[a]))]=Eπθ

[q[a]].
To minimize simple regret, Gumbel MuZero applies the Se-
quential Halving algorithm (Karnin, Koren, and Somekh
2013) at the root node. The Sequential Halving algorithm
evenly divides the Nsim simulation budget into log2(k)
search phases. At each search phase j ∈ {0, . . . , log2(k)},
it picks the top- k

2j remaining actions according to Eq. 9 as
considered actions and visits these actions evenly often.

❸ Select actions at non-root nodes. Gumbel MuZero
does not sample actions at non-root nodes. It sets λ in Eq. 7
to 1

(cvisit+maxb N(b))cscale
and designs a deterministic action se-

lection with the smallest mean-squared-error between the
improved policy πMPO(·|s) and the normalized visit counts.

πMPO(·|s) = softmax(log(πθ) + σ(q))) (11)

anon-root ≜ argmax
a

(
πMPO(a)− N(a)

1 +
∑

b N(b)

)
(12)

(2) Act: select actions in the environment. ❹ Gumbel
MuZero selects the singular action resulting from the Se-
quential Halving search procedure according to Eq. 9.

(3) Learn: outer-policy improvement. ❺ Gumbel
MuZero updates the policy network πθ towards the improved
policy πMPO (Eq. 11) at the root node by minimizing the KL-
divergence DKL(πMPO(·|s0), πθ(·|s0)), which guarantees a
policy improvement when q are correctly evaluated.

Gumbel MuZero matches the SOTA on Go, chess, and
Atari, and its performance is less affected by a small number
of simulations (Danihelka et al. 2022). Since the simulation
budget depends on the number of actions, these improve-
ments are critical in tasks with large numbers of actions, e.g.,
multiagent control problems with exponential action spaces.

Problem Description
Our target is to extend MuZero to more complex Multia-
gent Markov Decision Processes (MMDPs) (Boutilier 1996;
Bernstein et al. 2002). An MMDP can be defined as a tu-
ple ⟨N ,S,A, P, r⟩, where N = {1, 2, · · · , n} is the set
of n agents, S is the state space, A = A1 × · · · × An

is the joint action space, P (s, a⃗, s′) ∈ [0, 1] denotes the
probability of transiting to state s′ when applying the joint
action a⃗ = ⟨a1, · · · an⟩ at s, and r (s, a⃗, s′) ∈ R de-
notes the immediate global reward after taking action a⃗
at state s and ending at state s′. The joint policy π⃗ :
S → ∆(A) maps the global states to probability distri-
butions over the joint actions. We define the state value

1As the search progresses, this transformation progressively in-
creases the scale for q and reduces the effect of the prior policy.
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1 2 3 4

(a) Independent
π⃗(a⃗)=

∏n
i=1 π(ai)

1 2 3 4

(b) Markov chain
π⃗(a⃗)=

∏n
i=1 π(ai|ai−1)

1 2 3 4

(c) General network
π⃗(a⃗)=

∏n
i=1 π(ai |⃗apa(i))

1 2 3 4

(d) Sequence model
π⃗(a⃗)=

∏n
i=1 π(ai |⃗a1:i−1)

Figure 1: Different ways to factorize a joint policy π⃗(⃗a|s).
(d) has the strongest expressiveness.

function, the Q-value function, and the advantage func-
tion as V π⃗(s) ≜ Eπ⃗

[∑T−1
k=0 γkr (sk, a⃗k, sk+1) |s0 = s

]
,

Qπ⃗(s, a⃗) ≜ Eπ⃗

[∑T−1
k=0 γkr (sk, a⃗k, sk+1) |s0 = s,⃗a0 = a⃗

]
,

and Aπ⃗(s, a⃗)≜Qπ⃗(s, a⃗)−V π⃗(s) respectively. γ ∈ [0, 1] is
the discount factor. The target of solving an MMDP is to find
a joint policy π⃗ that can maximize the expected discounted
cumulative reward V π⃗ (s).

Literature commonly factorizes the joint policy π⃗ as
π⃗(⃗a|s)=π1(a1|s)× . . .×πn(an|s), where πi : S → ∆(Ai)
is the individual policy of agent i. As shown in Fig. 1, there
are multiple ways to factorize π⃗(⃗a) into local policies de-
pending on the problem (s is omitted), including (a) inde-
pendent factorization, factorization according to (b) Markov
chain, (c) general network, or (d) sequence model (like the
Transformer Decoder in ChatGPT). All these can be repre-
sented by a probabilistic directed acyclic graphical model.
Each node in the graph represents an agent. pa(i) indicates
the parents of node i (if any). Any directed acyclic graph
has at least one topological order (Kahn 1962). To simplify
notations, we assume [1, . . . , n] is a valid topological order
(reindexing the agents can achieve this) if some agents have
to make decisions based on previous agents’ actions.

Challenges of extending MuZero to MMDP. ❶ As the
joint action space grows exponentially with the increase of
the agent number, the available simulation budget is usually
much less than the size of the action space, i.e., Nsim ≪
|A|. Therefore, it’s computationally prohibitive to directly
run MCTS over the full joint action space. ❷ As it might
only be feasible to search over a small subset of actions,
which actions should be selected, and how to efficiently pick
out such actions? ❸ How to compute an improved policy
based on the evaluations of the selected subset of actions
and how to update the policy network? ❹ It is more difficult
to build an accurate world model in MMDP.

Multiagent Gumbel MuZero
Notations. For more compact notation, we omit the depen-
dency of π(a|s), Q(s, a), V (s) and N(s, a) on state s when
the context is clear. Here, we list the symbols we will use:
• a⃗1:i=⟨a1, . . . , ai⟩ denotes the actions selected by agents
{1, . . . , i}. Specially, a⃗1:0=⟨⟩ and a⃗1:n= a⃗.

• π⃗1:i is the partial joint policy of agents {1, . . . , i}.

Algorithm 1: Stochastically sample top-k joint actions with-
out replacement from the joint policy π⃗.

1: Input: n agents’ policies π1, . . . , πn; sample number k.
2: Initialize QUEUE empty.
3: Add (⃗a1:0 = ⟨ ⟩, ϕ(⃗a1:0) = 0, Gϕ(a⃗1:0) = 0) to QUEUE.
4: for each agent i = 1, . . . , n do
5: Initialize EXPANSIONS empty.
6: for (⃗a1:i−1, ϕ(⃗a1:i−1), Gϕ(a⃗1:i−1)) ∈ QUEUE do
7: Z ← −∞.
8: // Compute the log-probability ϕ(⃗a1:i) for action a⃗1:i.
9: for each action ai = 1, . . . , |Ai| do

10: a⃗1:i ← a⃗1:i−1 + ⟨ai⟩.
11: // a⃗par(i) is the actions selected by i’s parents (if i has).
12: ϕ(⃗a1:i)← ϕ(⃗a1:i−1) + log(πi(ai |⃗apar(i))).
13: Gϕ(a⃗1:i) ∼ Gumbel(ϕ(⃗a1:i)).
14: Z ← max(Z,Gϕ(a⃗1:i)).
15: end for
16: // Sample G̃ϕ(a⃗1:i) based on its maximum Gϕ(a⃗1:i−1).
17: for each action ai = 1, . . . , |Ai| do
18: G̃ϕ(a⃗1:i) = − log(exp(−Gϕ(a⃗1:i−1)) −

exp(−Z) + exp(−Gϕ(a⃗1:i))).
19: Add (⃗a1:i, ϕ(⃗a1:i), G̃ϕ(a⃗1:i)) to EXPANSIONS.
20: end for
21: end for
22: QUEUE ← take top-k of EXPANSIONS according

to their G̃ϕ(a⃗1:i)s.
23: end for
24: return QUEUE. // i.e., [. . . , (⃗a1:n, ϕ(⃗a1:n), G̃ϕ(a⃗1:n))

k].

• ϕ(ai) = log(πi(ai)) and ϕ(⃗a1:i) = log(π⃗1:i(⃗a1:i)) are
the log-probabilities of πi(ai) and π⃗1:i(⃗a1:i) respectively.

• Gϕ(a⃗1:i) = ϕ(⃗a1:i)+G0 ∼ Gumbel(ϕ(⃗a1:i)) is the per-
turbed log-probability, which can be obtained by adding
independent Gumbel noises G0 ∼ Gumbel(0) to the log-
probability (Kool, Van Hoof, and Welling 2019).

• πi(ai |⃗a1:i−1) is the conditional probability of selecting
ai for agent i given a⃗1:i−1 if i has any parents pa(i).

Sample Joint Actions without Replacement from π⃗

As it’s computationally prohibitive to directly run MCTS
over the full joint action space, following Gumbel MuZero,
our target is to stochastically sample top-k joint actions
without replacement according to π⃗(⃗a), i.e., π⃗1:n(⃗a1:n), as
the preferred actions to search and expand for both root
nodes and non-root nodes. However, directly applying the
Gumbel-top-k trick, i.e., Ak

top = arg topk
(
Gϕ(a⃗1:n)

)
, is im-

practicable as it is inefficient to enumerate all actions and
then pick out the top-k. To efficiently sample from the expo-
nentially large space, we apply the Stochastic Beam Search
algorithm (Kool, Van Hoof, and Welling 2019, 2020) to our
setting. For completeness, the algorithm is summarized in
Alg. 1. The key idea is that the perturbed log-probability of
a partial joint action a⃗1:i−1 is the maximum of perturbed
log-probabilities of its possible successors a⃗1:i, i.e.,

Gϕ(a⃗1:i−1) = max
ai∈Ai

Gϕ(a⃗1:i) (13)
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Algorithm
Support

combinatorial
action space?

Improved policy Sample actions Sample-based
policy

improvement?
visit count

distribution?
exact

solution?
Sample w/o

replacement?
Sample w/

replacement?
Sample actions
at root node?

Sample actions
at non-root node?

MuZero ✕ ✓ ✕ N/A N/A ✕ ✕ ✕

Gumbel
MuZero ✕ ✕ ✓ ✓ ✕ ✓ ✕ ✕

Sampled
MuZero ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✓

Multiagent
Gumbel
MuZero

✓ ✕ ✓ ✓ ✕ ✓ ✓ ✓

Table 1: Comparing the algorithmic properties of MuZero family methods in combinatorial action control problems.

This relation is the key to convert the bottom-up sampling
procedure to a top-down sampling one, with the benefit that
we do not have to enumerate all actions in A. Take factor-
izing π⃗(⃗a) in an auto-regressive way for example, for two
successive actions a⃗1:i−1 and a⃗1:i, we have ϕ(⃗a1:i−1) =
log
∑

ai∈Ai
exp(ϕ(⃗a1:i)) because

ϕ(⃗a1:i−1) = log(π⃗1:i−1(⃗a1:i−1) · 1)

= log

π⃗1:i−1(⃗a1:i−1) ·

 ∑
ai∈Ai

πi(ai |⃗a1:i−1)


= log

 ∑
ai∈Ai

[π⃗1:i−1(⃗a1:i−1)πi(ai |⃗a1:i−1)]


= log

∑
ai∈Ai

π⃗1:i(⃗a1:i)=log
∑

ai∈Ai

exp(log(π⃗1:i(⃗a1:i)))

= log
∑

ai∈Ai

exp(ϕ(⃗a1:i))

(14)
According to the Gumbel Max Trick (Maddison, Tarlow, and
Minka 2014), for any set Ai it holds that

max
ai∈Ai

Gϕ(a⃗1:i) ∼ Gumbel

(
log

∑
ai∈Ai

exp(ϕ(⃗a1:i))

)
(15)

Combining Eq. 14 with Eq. 15, we get Eq. 13, i.e.,

max
ai∈Ai

Gϕ(a⃗1:i)=Gϕ(a⃗1:i−1)∼Gumbel (ϕ(⃗a1:i−1)) . (16)

This property is applicable to all the policy factoriza-
tion formats shown in Fig. 1. As our target is to get
Ak

top = arg topk
(
Gϕ(a⃗1:n)

)
, with Eq. 13, we know the top-

k of Gϕ(a⃗1:n) must belong to the successors of the top-
k of Gϕ(a⃗1:n−1). Therefore, we can convert the bottom-up
sampling procedure to a top-down sampling one, i.e., we
can sample Gϕ(a⃗1:i−1) first and then sample G̃ϕ(a⃗1:i) ∼
Gumbel(ϕ(⃗a1:i)) conditionally on that their maximum equal
to Gϕ(a⃗1:i−1) (line 16-20 of Alg. 1). Refer to (Kool,
Van Hoof, and Welling 2019, 2020) for more details.

Planning at the root node. For the root node, at the
beginning of each MCTS, we stochastically sample top-
k joint actions Ak

top according to Alg. 1 as the candi-
date actions to search. Then we follow Gumbel MuZero

and use the Sequential Halving algorithm to evenly divide
the simulation budget Nsim into log2(k) search phases. At
each search phase j ∈ {0, . . . , log2(k)}, it only takes the
(top-k, top-k2 , . . . , top-1)[j] actions according to Eq. 9 as
considered ones and visits the considered actions evenly of-
ten, with the target of minimizing simple regret. See Fig. 1
of (Danihelka et al. 2022) for more details.

Sample-based Policy Improvement Operator
Compute the improved policy. After a number of simula-
tions, we get Q(s, a⃗) and N(s, a⃗) for all visited actions and
an estimated V-value V (s) for each state.
Assumption 1 Following (Danihelka et al. 2022), for all
unvisited actions, we assume that their Q-values can be ap-
proximated by the state value V (s).

Now we have Q(⃗a) =

{
Q(⃗a) if N (⃗a)>0

V, otherwise
. We normal-

ize Q(⃗a) and V to [0, 1] by their min and max values, i.e.,
Q̂(⃗a) = norm(Q(⃗a)) and V̂ = norm(V ), where norm(x) ≜

x−min(V,mina⃗ Q(a⃗))
max(V,maxa⃗ Q(a⃗))−min(V,mina⃗ Q(a⃗)) . Then we compute the

normalized advantages as ˆadv(⃗a)= Q̂(⃗a)−V̂ , whose scales
are within [−1, 1]. According to Eq. 11, we get the improved
policy π⃗MPO(·) as:

π⃗MPO(·)=softmax
(
log(π⃗θ(·)) + σ( ˆadv(·)))

)
(17)

where σ(x) = (cvisit +max⃗b N (⃗b))cscale ·x as mentioned in
Eq. 9. We can replace Q̂ with ˆadv because offsetting the
inputs of softmax by a constant value does not change the
output. After constructing the new improved policy π⃗MPO,
we can distill it to the policy network π⃗θ via minimizing the
cross-entropy between π⃗MPO(·|s) and π⃗θ(·|s):

LMPO(π⃗θ) = −
∑
a⃗∈A

π⃗MPO(⃗a) log(πθ (⃗a)) (18)

Sample-based policy improvement. As computing the ex-
act LMPO(π⃗) needs to enumerate all joint actions to obtain
the full π⃗MPO(·) distribution, and then apply the cross en-
tropy, it is infeasible for exponentially large action spaces.
Therefore, we propose to compute a stochastic estimate
of LMPO(π⃗) based on the sampled top-k actions, where
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k ≪ |A|. We define Ak
top ≜ ⟨⃗a1, . . . , a⃗k⟩ as the ordered

set of sampled top-k actions via Alg. 1, where the ac-
tions are sorted in descending order by their perturbed log-
probabilities G̃ϕ(a⃗)s.

Our target is using the top-k samples Ak
top to estimate

Eq.18, i.e., LMPO(π⃗θ) =−Ea⃗∼π⃗MPO(a⃗) log(π⃗θ (⃗a)). However,
the top-k samples are not sampled from π⃗MPO(⃗a) but sam-
pled from π⃗θ without replacement using the Gumbel-Top-k
trick. Thus, we cannot simply use the Monte Carlo method
to estimate LMPO(π⃗θ). Instead, we need to use importance
weights to correct for the changed sampling probabilities.
Derived from priority sampling (Duffield, Lund, and Tho-
rup 2007; Vieira 2017), we get an unbiased estimator:

LMPO(π⃗θ) =− Ea⃗∼π⃗MPO(a⃗) log(π⃗θ (⃗a))

≈−
∑

a⃗j∈Ak
top

π⃗MPO(⃗aj)

qθ,κ(⃗aj)
log(π⃗θ (⃗aj))

(19)

where qθ,κ(⃗aj) is the probability of a⃗j ∈ Ak
top. If we sam-

ple k + 1 actions from π⃗θ via Alg. 1 and denote κ as the
(k + 1)-th largest perturbed log-probabilities G̃ϕ(a⃗k+1), we
can consider κ as the empirical threshold for the Gumbel-
Top-k sampling (since a⃗ ∈ Ak

top if G̃ϕ(a⃗) > κ). We de-
fine qθ,κ(⃗aj) = P (G̃ϕ(a⃗j) > κ), which equals to 1 mi-
nus the Gumbel cumulative distribution function value, i.e.,
1− P (G̃ϕ(a⃗j) ≤ κ) = 1− exp(− exp(ϕ(⃗aj)− κ)). Due to
the space limit, please see Appendix B.2 for more details.

To compute π⃗MPO(⃗ak), we have to estimate the normal-
ization factor z of softmax in Eq. 17. As we use V to ap-
proximate the Q-values for the unsampled actions, their ad-
vantages are 0. Thus,

z =
∑
a⃗∈A

π⃗θ (⃗a) exp
(
σ( ˆadv(⃗a))

)
=

∑
a⃗∈Ak

top

π⃗θ (⃗a) exp
(
σ( ˆadv(⃗a))

)
+

∑
a⃗∈A\Ak

top

π⃗θ (⃗a)

=
∑

a⃗∈Ak
top

πθ (⃗a) exp
(
σ( ˆadv(⃗a))

)
+ 1−

∑
a⃗∈Ak

top

π⃗θ (⃗a)

= 1+
∑

a∈Ak
top

πθ (⃗a)
(
exp

(
σ( ˆadv(⃗a))

)
− 1

)
(20)

As k ≪ |A|, z can be efficiently computed. With z, for

∀a⃗ ∈ Ak
top, π⃗MPO(⃗a) =

π⃗θ(a⃗) exp(σ( ˆadv(a⃗)))
z and we can es-

timate LMPO(π⃗θ) according to Eq. 19 efficiently.
Planning at non-root nodes. At the time of expanding a

new non-root node, we stochastically sample top-k joint ac-
tionsAk

top via Alg. 1 as the candidate actions to search. Then
we directly select actions according to the locally improved
policy πlocal

MPO(Ak
top) at the non-root nodes:

πlocal
MPO(A

k
top)=softmax

(
log(π⃗θ(Ak

top)) + σ( ˆadv(Ak
top)))

)
(21)

i.e., only apply softmax on the sampled top-k actions to get
a locally improved policy. Due to the space limit, details of
the world model design are shown in Appendix B.3.

a1

a2 A B C

A 8 -12 -12
B -12 6 0
C -12 0 6

When a1=A

a2

a3 A B

A 0 0
B 23 12

When a1=B

a2

a3 A B

A 17 20
B 0 17

Table 2: (Left 1) payoffs of a 2-player matrix game. Each
player i ∈ {1, 2} has 3 actions {A,B,C}. (Right 2) payoffs
of a 3-player matrix game. Each player i ∈ {1, 2, 3} has 2
actions {A,B}. The complete payoff matrix is split into two
submatrices depending on player 1’s action a1. The boldface
indicates the payoffs of the optimal actions.

Empirical Results
In all experiments, we use the independent format shown in
Fig.1(a) to factorize the joint policy π⃗(⃗a). Each agent i’s in-
dividual policy πi(ai|oi) takes its own observation as input.

Single State Cooperative Matrix Game
First, we use two simple matrix games to verify the benefit
of using sampling without replacement (Algo. 1) instead of
sampling with replacement (Monte Carlo sampling) when
doing policy evaluation and improvement.

Setup. Table 2 shows the payoffs of a 2-player 3-action
matrix game and the payoffs of a 3-player 2-action matrix
game. These two games are challenging in the MARL liter-
ature (Son et al. 2019; Huang et al. 2022) as algorithms can
easily get stuck in suboptimal actions due to the large miss-
coordination penalty. We compare the following 3 methods.

• Sample without Replacement (SWOR). At each itera-
tion, we sample k joint actions without replacement ac-
cording to Algo. 1 and use Eq. 19 to improve the policy.

• Monte Carlo (MC). At each iteration, MC samples k
joint actions according to the joint policy π⃗ with replace-
ment and uses the same loss function Eq. 18 to improve
the policy but with the following Monte Carlo estimate:

LMPO(π⃗θ) ≈ −
1

k

k∑
j=1

π⃗MPO(⃗aj)

π⃗θ (⃗aj)
log(π⃗θ (⃗aj))

Replace Eq. 20 with z ≈ 1
k

∑k
j=1 exp

(
σ( ˆadv(⃗aj))

)
.

• MAPPO (Yu et al. 2022), which extends PPO (Schulman
et al. 2017) to cooperative multiagent settings. MAPPO
also samples k actions according to π⃗ per iteration and
updates the policy with the MAPPO loss.

We set k = 4 and keep all parameters the same for these
three methods. Each experiment is repeated for 10 times.

Results. Fig. 2 shows the learning curves of the three
methods. The left two figures show the average test rewards
and the right two figures show the percentages of optimal ac-
tions. Using sampling without replacement performs signif-
icantly better than sampling with replacement and MAPPO.
Our method can find globally better actions. Only changing
the sampling method can make a significant improvement.
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(a) 2-player 3-action matrix game results.
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(b) 3-player 2-action matrix game results.

Figure 2: Learning curves of the average test reward and the
percent of optimal actions in the matrix games. The mean
and the standard deviation are shown. Best viewed in color.

Figure 3: The starting state of Switch4. The 4 agents need to
reach their corresponding destinations. Each colored block
(yellow, blue, green, or red) with a number denotes an agent.
Black blocks are barriers. Blocks with colored boundaries
denote the destinations for the corresponding colored agents.

Multiagent Switch
As shown in Fig 3, Switch4 in MA-Gym (Koul 2019) is
a hard coordination task that 4 agents need to reach their
corresponding home by passing through the one-agent wide
narrow corridor. Each agent has 5 actions, resulting in a joint
action space size of 625. At each step, all agents get a step
penalty of -0.5. Having a collision with other agents results
in a penalty of -1. Once an agent reaches the goal, the team
will get a reward of +5. The target of the agents is learning to
reach their goals as soon as possible without having a colli-
sion with each other. The optimal solution requires 17 steps
to reach the goals. We compare the following 2 methods.

• MA Sampled AlphaZero: the multiagent version of Sam-
pled AlphaZero Hubert et al. (2021).

• MA Gumbel AlphaZero: our method with a perfect envi-
ronment model. We keep all designs (e.g., model archi-
tectures and hyperparameters) the same with MA Sam-
pled AlphaZero except that shown in Table 1.

The learning curves under different simulation budgets
are shown in Figure 4 and Figure 5. We set the sample num-
ber k = clamp(nsim/2,min=2,max=16). Results are aver-
aged over 5 random seeds. We see that under all simulation
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Figure 4: The average episode lengths (smaller is better) for
the two methods when training with nsim ∈ {2, 4, 8, 16, 32}.
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Figure 5: The average episode rewards (larger is better) for
the two methods when training with nsim ∈ {2, 4, 8, 16, 32}.

numbers, MA Gumbel AlphaZero (using sampling without
replacement and Eq. 17 as policy target) can find signif-
icantly better solutions than MA Sampled AlphaZero (us-
ing sampling with replacement and the visit count distri-
bution as policy target). MA Gumbel AlphaZero can even
achieve good performance with only 2 simulations, which
shows that the method is more robust to the simulation
budget. The full experimental results including MuZero-
based methods, model-free baselines, and experiments on
more complex StarCraft Multiagent Challenge benchmark
(Samvelyan et al. 2019) are shown in Appendix C.

Conclusion
In this paper, we propose MA Gumbel MuZero, which ex-
tends MuZero to learning and planning in discrete combi-
natorial action spaces. MA Gumbel MuZero adopts the idea
of stochastic beam search to efficiently sample top-k joint
actions without replacement from the combinatorial action
space. For both the root and non-root nodes, we sample top-
k actions without replacement as the candidate actions to
search and expand, which is more efficient than Sampled
MuZero’s sampling with replacement. We devise a well-
matched sample-based policy improvement operator. Em-
pirical results show that our method reliably outperforms
the prior algorithms in multiple cooperative multiagent con-
trol problems and its performance is less affected by a small
number of simulations. For future work, we will apply the al-
gorithms to more practical problems, e.g., combinatorial op-
timization and fine-tuning Large Language Models (LLMs).
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