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Abstract

The probability prediction of multivariate time series is a no-
toriously challenging but practical task. This research pro-
poses to condense high-dimensional multivariate time se-
ries forecasting into a problem of latent space time series
generation, to improve the expressiveness of each times-
tamp and make forecasting more manageable. To solve the
problem that the existing work is hard to extend to high-
dimensional multivariate time series, we present a latent
multivariate time series diffusion framework called Latent
Diffusion Transformer (LDT), which consists of a symmet-
ric statistics-aware autoencoder and a diffusion-based con-
ditional generator, to implement this idea. Through careful
design, the time series autoencoder can compress multivari-
ate timestamp patterns into a concise latent representation
by considering dynamic statistics. Then, the diffusion-based
conditional generator is able to efficiently generate realistic
multivariate timestamp values on a continuous latent space
under a novel self-conditioning guidance which is modeled
in a non-autoregressive way. Extensive experiments demon-
strate that our model achieves state-of-the-art performance
on many popular high-dimensional multivariate time series
datasets.

Introduction
Forecasting time series data is crucial across various sectors,
including finance (Sezer, Gudelek, and Ozbayoglu 2020),
energy (Cao et al. 2020), traffic (Liu et al. 2016; Feng et al.
2023) and human identification (Rao and Miao 2022; Rao
et al. 2021). Multivariate forecasting, prevalent in practi-
cal applications, is more important and popular in indus-
trial fields. For example, power companies analyze billions
of data points from numerous clients to monitor electricity
consumption, reflecting the complexity and significance of
this task.

Latent diffusion models (Rombach et al. 2022), a simple
and efficient way to significantly improve both the training
and sampling efficiency of denoising diffusion models (Ho,
Jain, and Abbeel 2020) without degrading their quality. This
particular class of latent generative models has gained sig-
nificant recognition and accomplishments in recent times,
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particularly in processing high-dimensional types of data
such as high-resolution images (Ho, Jain, and Abbeel 2020;
Takagi and Nishimoto 2023), natural languages (Li et al.
2022a; Yuan et al. 2022), and audios (Huang et al. 2022;
Ruan et al. 2023).

Multivariate time series forecasting seeks to predict future
trends accurately but faces challenges due to its complexity
and computational demands. The common approach of us-
ing deep, auto-regressive (Woo et al. 2022; Liu et al. 2022;
Wu et al. 2020) models to predict future timestamps is hin-
dered by the high dimensionality of the data and the model’s
structure. This leads to two main issues: significant com-
putational resource requirements, limiting scalability, and
the accumulation of errors in forecasts, particularly in high-
dimensional series. Therefore, there’s a pressing need for an
innovative forecasting framework that can efficiently and ef-
fectively predict future trends with reduced computational
load and increased speed.

Latent-space generation, an efficient alternative in time
series forecasting, employs a pre-trained autoencoder to mit-
igate data redundancy, transferring generation from the time
to a latent domain. The primary challenge is the distribution
shift problem, as statistical properties like mean and vari-
ance vary over time (Fan et al. 2023; Kim et al. 2021). Tra-
ditional models struggle with numerical inaccuracies when
using historical timestamps as the inputs of the autoencoder.
Our novel approach dynamically updates statistical param-
eters in pre-training, ensuring high-quality, accurate latent
representations for each timestamp.

Existing multivariate time-series diffusion models face
two major issues. First, the autoregressive structure (Rasul
et al. 2021) leads to poor long-range prediction, error ac-
cumulation, and slow inference. Second, most models excel
in low-dimensional series (Tashiro et al. 2021; Alcaraz and
Strodthoff 2022; Shen and Kwok 2023) but falter in high di-
mensions. To overcome these challenges, our approach em-
phasizes a non-autoregressive, resource-efficient denoising
network for forecasting. We introduce a self-conditioning-
based transformer denoising structure that effectively de-
noises time variables in a continuous latent space, incorpo-
rating covariant features akin to strategies in image genera-
tion (Chen, Zhang, and Hinton 2022; Yang et al. 2022; Ho
and Salimans 2022). This Transformer diffusion module sig-
nificantly reduces computational complexity, resource use,
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and increases sampling speed compared to autoregressive
models.

In this work, we introduce a novel two-stage, non-
autoregressive diffusion architecture for multivariate prob-
abilistic forecasting. Our experiments across various real-
world datasets demonstrate that this model has surpassed ex-
isting state-of-the-art generative models in high-dimensional
multivariate time series forecasting. The key contributions of
our work are:
• Introduction of the LDT model, a new approach in mul-

tivariate time series forecasting, leveraging latent space
representations for high-accuracy predictions in high-
dimensional scenarios.

• Development of a practical LDT structure featuring
a unique self-conditioning mechanism and a non-
autoregressive transformer, enabling constrained self-
conditioned predictions.

• We perform extensive experiments with multiple multi-
variate forecasting datasets, demonstrating LDT′s supe-
rior performance compared with the recent state-of-the-
art forecast methods, for multivariate time series proba-
bilistic predictions.

Background
Diffusion Models (Ho, Jain, and Abbeel 2020) diffusion
models are probability generative models proposed to gen-
erate the target data distribution p(x) by iterative denoising
a normally distributed variable. Diffusion probabilistic mod-
els are composed of the fixed forward process and the learn-
able reverse process, which is a Markov Chain of length T .
Forward Process It is a transition and fixed diffusion pro-
cess, from the data distribution to a Gaussian distribution.
Given a data sample x ∈ Rd ∼ p(x) and some latent
variables {z0, z1, · · · , zT }, which interpolate between the
data distribution and a Gaussian distribution with the dif-
fusion steps increase. The forward process can be formally
described as a Markov chain parameterized with a series of
variances βt and αt := 1− βt.

q (z1:T |z0) =
1∏

t=T

q (zt|zt−1) ,

where q (zt|zt−1) ∼ N
(√

1− βtzt−1, βtI
)
,

(1)

Since the more steps of the diffusion process, the more noise
added, q (zt|x) has a closed-form solution, which can be de-
scribed by a general form.

zt ∼ q (zt|x) = N
(√

αtx, (1− αt) I
)
,

zt =
√
αtx+

√
1− αtϵ, ϵ ∼ N (0, I),

(2)

where αt =
∏t

i=1 (1− βi) ∈ (0, 1), z0 = x and
zT ∼ N (0, I) As the diffusion steps increases, the latent
variable zt become noisier until the zT is approximately
a Gaussian variable, which is independent of the starting
point x.
Reverse Process The learnable reverse process is de-
fined by the inverted Markov chain pθ (z0:T ) =

p (zT )
∏T

t=t pθ (zt−1|zt), where p (zT ) = N (0, I)
is known. The pθ (zt−1|zt) can be approximately
driven from the following equation, q (zt−1 | zt,x) =
N

(
µt (zt,x) , σ

2
t I
)
, where µt (zt,x) has a closed-form

solution and σt is a hyperparameter. To get the pθ (zt−1|zt),
we train a denoising network θ to approximate the x given
noisy latent zt and the timestep t

L = Ex∼p(x),t∼U{1,··· ,T},zt

[
∥x̂θ (zt, t)− x∥22

]
, (3)

where zt ∼ q(zt|x) and pθ (zt−1|zt) is an approximation of
the q (zt−1 | zt, x̂θ (zt, t)), which enables us to sample from
a closed-form and denoise the latent variable by sampling
zt−1 until we get the z0 = x ∼ p(x).

zt−1 ∼ pθ (zt−1|zt) = q (zt−1 | zt, x̂θ (zt, t)) , (4)

For sampling from the trained diffusion model, we uti-
lize the inference distribution from Song et al. (2020) and
therefore derive the sampling from q(zt−1 | zt, x) =
N (µq (zt,x) ,Σq(t)I),

q (zt−1 | zt, x) ∝ N
(
zt−1; ᾱ

1
t zt + ᾱ2

tx, β̄tI
)
, (5)

while setting Σq(t) = 0 gives the deterministic DDIM sam-
pler, ᾱ1

t =
√
αt(1−ᾱt−1)

1−ᾱt
, ᾱ2

t =
√
ᾱt−1(1−αt)

1−ᾱt
and β̄t =

(1−αt)(1−ᾱt−1)
1−ᾱt

. The detailed training and sampling proce-
dures are shown in the Method section.

Method
Our approach to high-dimensional multivariate time se-
ries forecasting involves a two-stage process: a statistics-
based time autoencoder and a Latent Diffusion Transformer
(LDT) generator. The autoencoder dynamically updates
global statistics during training for accurate future times-
tamp reconstruction. The LDT generator then produces la-
tent conditions using self-conditions and a guidance mech-
anism, incorporating relevant covariates. This method effi-
ciently captures the inherent dynamics and correlations in
the time series data, as LDT is shown in Fig. 1. The specific
algorithm details are shown in Algorithms 1 and 2.

Symmetric Time Series Compression
In order to ensure the generality and effectiveness of our
model to generative high-power latent embedding, we con-
structed a simple and accurate autoencoder structure. Statis-
tical properties such as mean and variance often change over
time in time series, previous work ”RevIN (Kim et al. 2021),
DIT-sh (Fan et al. 2023)” had claimed that the discrepancy
between different input sequences can significantly degrade
the model performance. We found that in non-stationary
multivariate time series, different batch samples that were
randomly sampled will have high variance deviation, which
will degrade the stability and efficacy of autoencoder train-
ing. Therefore, we propose a simple yet effective symmetric
autoencoder structure with adaptive variance updating nor-
malization layer (VN).

More precisely, given the look-back window data X ∈
RT×d and target Y ∈ Rt×d in the time-space, the nor-
malization layer VN normalizes the target Y to the Ŷ =
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Figure 1: The framework of our proposed LDT (a). During the training process, the stage-I VAE is first trained to construct
time series latent with reconstruction task, while LDT is trained to generate the future targets conditioned by self-condition,
covariates, and diffusion step ẑ0m, t, c in the second stage. During the sampling process, the time series latent first be generated
by LDT, and then input to decoder De to get the future targets. The black dashed lines stand for operations only involved in
the training process. The details of the stage-II adaptive layernorm Transformer structure (Ed,Dd) are shown in (b) and the
structures of stage-I are shown in Appendix.

VN([X,Y ]). Then, the encoder E encodes Ŷ into a latent
representation Z = E(Ŷ ), and the decoder D reconstructs
the target time series from the latent, giving Y = D(Z) =

D(E(Ŷ )), where Z ∈ Rt×m(m << d). Importantly, the en-
coder downsamples the time series by a factor f = d/m,
and we use the factor f ≈ 2m, with m ∈ N. The reason
for choosing the size of f here is to reduce the training diffi-
culty of the noise-added high-dimensional multivariate time
series in the diffusion model. The framework overview of
our autoencoder is demonstrated in Fig.1.

As illustrated in the figure, we first use instance nor-
malization (Ulyanov, Vedaldi, and Lempitsky 2016) to
calculate the instance-specific mean and standard devia-
tion for scaling every input W i =

[
Xi, Y i

]
∈ Rτ×d

and τ = T + t, which are described as E
[
W i

]
=

1
τ

∑τ
j=1 W

i
j , Var

[
W i

]
= 1

τ

∑τ
j=1

(
W i

j − E
[
W i

])2
and

Ên+1
[
W i

]
= 1

n (E
n+1

[
W i

]
+ Ên

[
W i

]
× (n− 1)), where

n is the number of batches and the adaptive updated func-
tion of variances ˆV ar

n+1
is the x same as Ên+1, we nor-

malize the target Y i through these updated statistics as

Ŷ i = γd

(
Y i−Ên+1[W i]√

V̂n+1[W i]+ϵ

)
+ βd, where γd, βd ∈ Rd are

the learnable affine parameters. We gradually update the in-
stance variance and mean that were utilized for regulariza-
tion. On the one hand, the non-stationary information in the
target sequence can be weakened, making it easier to train
the autoencoder. Also, the generative results from the au-
toencoder make the diffusion model training in the second
stage more stable and accurate.

Specifically, our autoencoder structure is a symmetrical
model, and the specific modules are shown in Appendix
due to the limited space. Also, to avoid arbitrarily high-
variance latent spaces, we follow the regularization strategy
proposed in the ”Latent diffusion Model” which imposed a

KL-penalty (i.e. weight the KL term by a factor 10−8) to-
wards a standard normal on the learned latent that preserves
details of Y better and train all our autoencoder models in an
adversarial manner, such that a timestamp-based discrimina-
torDη is optimized to differentiate original target time series
from reconstructions D(E(Ŷ )). The full objective training
loss function L of our autoencoder reads:

L = min
E,D

max
η

(
Lrec(Y,D(E(Y )))− Ladv(D(E(Y )))

+ logDη(Y ) + Lreg(Y ; E ,D)
)
,

where Lreg is a regularizing loss term which is to regularize
the latent Z to be zero-centered and obtain a small variance.
We found that different time series always have large vari-
ances, which may lead to the extremely unstable training of
the following latent diffusion model. Detailed explanations
are described in the experiment.

Latent Diffusion Transformer
Generative Modeling of Latent Representations Com-
pared with applying the diffusion model directly in the time
domain of high-dimensional multivariate time series, we in-
troduce the trained time compression models consisting of E
andD that take the efficient and low-dimensional time series
representations to the following denoising network.

Unlike previous work that relied on autoregressive gener-
ative models in the time-space (Min et al. 2022b; Yi et al.
2023), we take advantage of the attention-based transformer
models (Min et al. 2022a; Xu et al. 2021) to establish a non-
autoregressive denoising network structure that includes
adaptive normalization layer (adaLN) (Park et al. 2019),
transformer encoder-decoder block and self-condition guid-
ance block. The details of our non-autoregressive denois-
ing network can be found in Fig.1(b). The training objective
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within our latent diffusion model now reads:

LLDM := EE(x),x∼p(x),t

[
∥E(x)− x̂θ (zt, c, t)∥22

]
, (6)

where the denoising backbone x̂θ of our model is a self-
guidance transformer structure and c is conditions like look-
back window data and covariates. Since the forward process
is fixed, zt can be efficiently obtained from trained E and we
found that training x improves the generative performance
compared to ϵ as the denoising target. And finally the sam-
ples from p(x) can be directly decoded to the time-space
with a trained decoder D.

Self-Conditioning Guidance
Firstly, conditional diffusion model can be simply described
as x̂θ (zt, c, t). To train the latent diffusion model in a
classifier-free guidance manner, we choose to train an un-
conditional denoising diffusion model pθ(z) parameterized
through a score estimator xθ(zt, t) together with the condi-
tional model xθ(zt, c, t). We use a single neural network to
parameterize both models, for the unconditional model we
only treat the look-back window conditions as the missing
value when training the denoising network, i.e. xθ(zt, t) =
xθ(zt, c = ∅, t). We jointly train these two models sim-
ply by setting the look-back window data conditions as ∅
with some probability pu which is set as a hyperparameter.
When the conditional latent diffusion model is trained, we
then perform sampling using a simple but effective linear
combination score estimates,

x̂θ (zt, c, t) = (1 + w)xθ(zt, c, t)− wxθ(zt, t), (7)

where w is the guidance strength, and when w = 0, the
equation becomes the standard conditional diffusion model.
When w > 0, the updated gradient of the denoising net-
work will be more offset to the first term and deviate from
the latter. Specifically, if we have access to the exact pre-
dicted scores x∗

θ (zt, c, t) and x∗
θ (zt, t), then the gradient of

this denoising network structure would be∇zt log p (c|zt) =
−σt [x

∗
θ (zt, c, t)− x∗

θ (zt, t)].
Moreover, we introduced a self-condition mechanism that

can be seen as to direct condition on previously gener-
ated samples of its own during the iterative sampling pro-
cess. Specifically, our conditional latent diffusion model
x̂θ (zt, c, t) is replaced by the slightly different denoising
network x̂θ (zt, ẑ0, c, t) where the ẑ0 is the previously es-
timated and updated iteratively. In our setting, we concate-
nate zt with previously estimated ẑ0 which is obtained from
the earlier prediction of the denoising network in the sam-
pling chain. During the training phase, with some probabil-
ity (e.g., 60%), we set ẑ0 = 0 which falls back to modeling
without Self-Conditioning. Apart from this, we first predict
ẑ0 = x̂θ (zt, 0, c, t) and then use it for self-conditioning. Note
that we do not backpropagate through the estimated ẑ0.

Latent Diffusion Transformer Network
The complete denoising network is shown in Figure 1(b).
For the time series forecasting in a non-autoregressive way,
we need to cover how to process time series inputs (look-
back window data, target) and the architecture of x̂θ.

First, we describe how we process time series data as in-
puts for the training of denoising networks. As defined in
Section 4.1, Êt

[
W i

]
and V̂ar

[
W i

]
come from the complete

time series includes look-back window data and forecast-
ing target. We first normalize the look-back window con-

ditions X ∈ RT×d using X̂ =
Xi

t−Ê[W i]√
V̂ar[W i]+ϵ

∈ RT×d

and rescale the latent representation Z = E(Y ) using
Ẑ ← Z

σ̂ = E(X)
σ̂ where σ̂2 = 1

btm

∑
b,t,m

(
zb,t,m − µ̂

)2
,

from the updated results from each training batch, where b
is batch size, t is prediction length, m is hidden size and
µ̂ = 1

btm

∑
b,t,m Zb,t,m, to obtain the input of the denois-

ing network Ẑ ∈ Rt×m. We then obtain the embedding
X̂emb ∈ RT×mof the X̂ and Ẑemb ∈ Rt×m of the la-
tent representation Ẑ by an input projection block consisting
of two multilayer perceptron layers. In our denoising net-
work, we introduce time embedding of semb = [s1:τ ] to learn
the temporal dependency which is obtained by single MLP
layer and Position embedding pemb= [p1:τ ] that is defined
in (Vaswani et al. 2017). Also, the diffusion-step embedding
temb ∈ Rn×1(n=4m) is encoded as a sinusoidal positional
embedding to guide the adaptive layer norm in transformer-
based residual layers, which replaces the standard layernorm
and defined as

γi,c = fc (x) , βi,c = hc (x) , (8)

where x indicates arbitrary vector inputs, γi,c and βi,c mod-
ulate a neural network’s activations Yi,c, whose subscripts
refer to the ith input’s cth feature map, via a feature-wise
affine transformation:

adaLN (γi,c, Yi,c, βi,c) = γi,cYi,c + βi,c, (9)

fc and hc can be arbitrary functions such as neural networks,
and in our practice, it is easier to refer to fc and hc as a sin-
gle function that outputs single vector (γ ∈ Rm, β ∈ Rm).
In our residual layers, we learn the dimension-wise scale and
shift parameters γi,c and βi,c through the diffusion step em-
bedding temb.
Training The overall structure of our LDT denoising net-
work is shown in Fig.1, and the training objective can refer
to Eq.6 in the Method section. Besides, the specific training
and inference procedure is shown in the Algorithm 1, 2.
Inference For each time step t in the reverse process, a
learned denoising distribution pθ parameterized by θ gen-
erates samples zt−1 conditioned on the former noisier sam-
ples zt. After the reverse denoising process reaches T = 0,
we round each timestamp of the generated z0 to its nearest
value in the embedding space and obtain the final target by
the trained decoder D:

zt−1 = α̂zt + γ̂xθ

(
zt, t | X

)
+ σtε, (10)

Y = D(z0), (11)

where α̂ =
√
αt(1−ᾱt−1)

1−ᾱt
, γ̂ =

√
ᾱt−1(1−αt)

1−ᾱt
, σt =

(1−αt)(1−ᾱt−1)
1−ᾱt

and ϵ ∼ N (0, 1). Note that in the whole dif-
fusion process of training and sampling, we apply xθ rather
than ϵθ. In the experiment, we found that it is difficult to
complete the multivariate time series forecasting with ϵθ.
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Algorithm 1: Training of LDT
Input: Sample x0

1:T (History) and x0
τ (Target) from training

set; Number of diffusion steps K; Encoder E in pretrained
autoencoder. Output: Trained denoising function xθ.

1: Repeat;
2: k ∼ Uniform({1, 2, . . . ,K});
3: ϵ ∼ N (0, I);
4: Generate latent embedding z0τ by E(x0

1:T , x
0
τ );

5: Generate noised latent zkτ =
√
ᾱkz

0
τ +
√
1− ᾱkϵ;

6: Obtain diffusion step k’s embedding pemb using sinu-
soidal positional embedding.;

7: x0
1:T ← ∅ with probability puncond;

8: Initialize the self cond ẑ0τ= zeros like(zkτ );
9: if Uniform(0, I)>0.5 then

10: z0pred = xθ(z
k
τ , x

0
1:T , ẑ

0
τ , k);

11: z0pred = Stop gradient(z0pred);
12: end if
13: Use the denoising network to generate denoised sample

z0 by xθ(z
0
pred, x

0
1:T , z

k
τ , t);

14: Obtainz0 by Eq.7, c= ∅ if x0
1:T ← ∅;

15: Calculate the loss Lk(θ) by Eq.6;
16: Take gradient descent step on∇θLk(θ);
17: Until Converged.

Algorithm 2: Generating of LDT
Input: Trained denoising network xθ, Decoder in pre-
trained autoencoder D and Sample x0

1:T (History), guidance
strength w. Output: Generated corresponding future targets
x̂0
τ .

1: zKτ ∼ N (0, I);
2: ẑ0τ= zeros like(zKτ );
3: x∅

1:T = zeros like(x0
1:T );

4: for k ← K to 1 do
5: ϵ ∼ N (0, I), if k > 1, else ϵ = 0;
6: Obtain diffusion step k’s embedding pemb using sinu-

soidal positional embedding.;
7: Obtain the self-cond ẑ0τ = xθ(zτ

k, x∅
1:T , ẑ

0
τ , p

emb);
8: Obtain the target z0 = xθ(z

k
τ , x

0
1:T , ẑ

0
τ , p

emb);
9: Obtain the guidance-based target z0 with x∅

1:T by the
Eq.7,

10: Estimate zk−1
τ by Eq.10.;

11: end for
12: Return x̂0

τ

Quantitative Experiments
Datasets We extensively evaluate the proposed LDT on five
real-world benchmarks, covering the mainstream multivari-
ate time series probabilistic forecasting applications, En-
ergy: Solar (Lai et al. 2018) (137 dimensions) and Electricity
(370 dimensions), Traffic (963 dimensions) and Taxi (1214
dimensions), Wikipedia (2000 dimensions). The properties
of the datasets used in experiments can refer to the previous
works (Rasul et al. 2021; Tashiro et al. 2021) and shown in
Appendix C.
Evaluation Metrics For probabilistic estimates, we re-

port both the continuously ranked probability score across
summed time series CRPS-sum ((Matheson and Winkler
1976; Jordan, Krüger, and Lerch 2017)) and MSE (mean
square error) error metrics, to measure the overall joint dis-
tribution pattern fit and fit of joint distribution central ten-
dency, respectively. Due to limited space, the specific form
of the metrics is shown in Appendix B.
Baselines We include several baseline methods. For the
classical settings and competitive multivariate time series
baselines probabilistic models: Gaussian process model(GP)
(Roberts et al. 2013), KVAE (Krishnan, Shalit, and Sontag
2017), Vec-LSTM-ind-scaling, GP-scaling, and GP-Copula
(Salinas et al. 2019). For the time series diffusion mod-
els, including TimeGrad (Rasul et al. 2021), CSDI (Tashiro
et al. 2021), SSSD (Alcaraz and Strodthoff 2022), D3VAE
(Li et al. 2022b) as the competitive auto-regressive base-
lines. Moreover, for the non-autoregressive modeling and
flow-based structures, we select TLAE (Nguyen and Quanz
2021) and HMGT (Ding et al. 2020), LSTM-Real-NVP and
LSTM-MAF (Rasul et al. 2020) in our work.
Implementation Details In our autoencoder structure of
the first stage, both the encoder and the decoder utilized
3 Transformer encoder layers with 4 heads of the atten-
tion, and we use one layer Transformer encoder layer with
4 heads of the attention mechanism in the discriminator.
The maximum look-back window data is 4 times the pre-
dicted target which is the same setting as in (Rasul et al.
2020), with embedding dimension m ≈ [1/4, 1/8] data fea-
tures, diffusion steps T = [50, 100, 200, 300], square-root
noise schedule(Li et al. 2022a) and quad variance schedule
β1 = 10 − 4 tillβT = 0.1. In our denoising network struc-
ture, we use a 3-layer transformer structure with 8 attention
heads and embedding dim=[32, 64, 128, 256]. Our method
is dependent upon the ADAM (Kingma and Ba 2014) op-
timizer with an initial learning rate of 1e−3, and the batch
size is 64. All experiments are repeated more than five times,
implemented in PyTorch (Paszke et al. 2019) and GluonTS
(Alexandrov et al. 2020). The specific experimental hyper-
parameters corresponding to different datasets are shown in
Appendix C.

Main Results
Real-World Datasets Results We compare the test time
prediction of our LDT to the above baselines with CRPS,
CRPS-sum, and MSE. The results for probabilistic forecast-
ing in a multivariate setting are shown in Table 1. Compared
with the other generative models, we observe that LDT
achieves the state-of-the-art (to the best of our knowledge)
CRPS-sum on almost all benchmarks. Notably, our model
has shown a significant CRPS-sum reduction in Electricity
16%(0.025 → 0.021), in Traffic 14.8%(0.047 → 0.040),
in Taxi 4%(0.130→ 0.125). Also, in terms of MSE metric,
we obtain 22%(2.1e5→ 1.6e5), 8%(4.5e− 4→ 4.1e− 4)
and 4%(2.2e → 2.3e) of improvement in the above three
datasets.
Uncertainty Estimation The uncertainty can be assessed by
estimating the noise of the outcome series when making the
prediction. We found that our model showed obvious uncer-
tainty estimation in two types of datasets. As shown in Fig-
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SOLAR ELECTRICITY TRAFFIC TAXI WIKIPEDIA

Method C-S MSE C-S MSE C-S MSE C-S MSE C-S MSE

GP 0.828(.010) - 0.947(.016) - 2.198(.774) - 0.425(.199) - 0.93(.003) -

KVAE 0.340(.025) - 0.051(.019) - 0.100(.005) - - - 0.095(.012) -

VLIS 0.391(.017) 9.3e2 0.025(.001) 2.1e5 0.087(.041) 6.3e-4 0.506(.005) 7.3e 0.133(.002) 7.2e7

GP-scaling 0.368(.012) 1.1e3 0.022(.000) 1.8e5 0.079(.000) 5.2e-4 0.183(.395) 2.7e 1.483(1.034) 5.5e7

GP-Copula 0.337(.024) 9.8e2 0.024(.001) 2.4e5 0.078(.002) 6.9e-4 0.208(.183) 3.1e 0.086(.004) 4.0e7

LSRP 0.331(.020) 9.1e2 0.024(.001) 2.5e5 0.078(.001) 6.9e-4 0.175(.001) 2.6e 0.078(.001) 4.7e7

LSTM-MAF 0.315(.032) 9.8e2 0.023(.000) 1.8e5 0.069(.002) 4.9e-4 0.161(.002) 2.4e 0.067(.002) 3.8e7

HMGT 0.327(.013) 9.4e2 0.022(.003) 2.1e5 0.052(.002) 4.4e-4 0.158(.042) 2.4e 0.074(.011) 3.0e7

TLAE 0.124(.014) 8.3e2 0.040(.001) 2.7e5 0.069(.005) 5.0e-4 0.130(.010) 2.6e 0.241(.012) 3.8e7

TimeGrad 0.317(.020) 9.9e2 0.025(.001) 2.1e5 0.050(.006) 4.6e-4 0.137(.013) 2.4e 0.064(.003) 3.1e7

CSDI 0.298(.004) 9.4e2 0.029(.002) 2.4e5 0.053(.009) 4.4e-4 - - - -

SSSD 0.275(.004) 5.4e2 0.026(.001) 2.3e5 0.047(.002) 4.5e-4 0.133(.006) 2.3e 0.065(.001) 2.99e7

D3VAE 0.332(.002) 9.2e2 0.030(.000) 2.4e5 0.049(.001) 4.5e-4 0.130(.011) 2.4e 0.069(.004) 3.2e7

LDT 0.253(.002) 7.7e2 0.021(.001) 1.6e5 0.040(.000) 4.1e-4 0.125(.007) 2.2e 0.061(.002) 2.92e7

Table 1: The Test set CRPS-sum(C-S) and MSE comparison(lower is better) of models from the baselines and our model LDT,
with - are runs failed with numerical issues, and (*) indicates the experimental variance. VLIS, LSRP are the abbreviations for
the Vec-LSTMind-scaling and LSTM- Real-NVP respectively. - in CSDI is out of memory.

SOLAR ELECTRICITY TRAFFIC TAXI WIKIPEDIA

Strategy C-S MSE C-S MSE C-S MSE C-S MSE C-S MSE

ϵθ 0.528(.006) 1.4e3 0.044(.007) 3.0e5 0.074(.012) 6.4e-4 0.218(.012) 3.2e 0.079(.010) 4.1e7

xθ 0.253(.002) 7.7e2 0.021(.001) 1.6e5 0.040(.000) 4.1e-4 0.125(.007) 2.2e 0.061(.002) 2.92e7

Table 2: The Test set CRPS-sum(C-S) and MSE comparison(lower is better) of models from ϵθ strategy and xθ denoising
strategy.

Solar Electricity
H 24 48 24 48
TimeGrad 104.51(.73) 203.16(.90) 302.61(.35) 615.02(.06)
SSSD 80.36(.28) 132.39(.71) 176.23(.82) 295.75(.54)
CSDI 92.23(.53) 147.52(.17) 203.52(.74) 314.23(.76)
D3VAE 87.53(.29) 153.43(.11) 198.61(.19) 304.76(.82)
LDT 13.72(.25) 14.03(.37) 22.13(.14) 25.29(.18)

Table 3: multivariate datasets Solar and Electricity with two
different forecasting lengths H=(24, 48).

Solar Electricity Traffic
Method C-S MSE C-S MSE C-S MSE
LDT-g 0.301(.001) 8.9e2 0.024(.000) 2.1e5 0.050(.003) 4.3e-4
LDT-c 0.264(.004) 8.0e2 0.023(.003) 1.8e5 0.047(.004) 4.5e-4
LDT 0.253(.002) 7.7e2 0.021(.001) 1.6e5 0.040(.000) 4.1e-4

Table 4: The Test set CRPS-sum(C-S) and MSE comparison
(lower is better) of models in Ablation studies and our model
LDT.

ure 2, for the Solar dataset, although the data had a strong pe-
riodicity, there were great differences in both the numerical
amplitude periodicity change and the length of periodicity
in the dataset that will cause two similar look-back window
data to result in two different forecasting targets. Also, in
the Taxi dataset which is with high stochasticity, we found
that the estimated uncertainty grows rapidly when extreme
values are encountered in our model.

Deterministic Estimation In addition to the aforemen-
tioned uncertainty estimation approach, our work has re-
vealed that our model exhibits deterministic estimation out-
comes when applied to datasets with limited extreme vari-
ations, such as Electricity and Traffic. Our one-shot LDT
can predict relatively stationary high-dimensional time se-
ries more accurately, as shown in Fig. 3. We find that the
change of guidance strength in our model will affect the per-
formance of deterministic prediction, which is also shown
in Appendix D. We observed that in datasets with determin-
istic predictions like Electricity and Traffic, a larger guid-
ance w will yield better results, whereas lower guidance w
is better in Solar and Taxi. This shows that our model can
adapt to different forecasting scenarios by adjusting guid-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11984



Figure 2: Undeterministic estimation of the prediction of the 8
samples in the Solar and Taxi datasets.

Figure 3: Deterministic estimation of the prediction in the
Electricity and Traffic datasets.

Figure 4: Visualizations on Electricity and Traffic by LDT-g,
LDT-c, and the proposed LDT.

ance strength to achieve deterministic and uncertainty pre-
dictions for different types of datasets.

Ablation Studies
In this section, we study the effectiveness of the proposed
components in our structure. Three representative multivari-
ate datasets are introduced in Table.1: Solar, Electricity, and
Traffic, which are non-stationary and high dimensional.

Self-Conditioning Guidance Mechanism In this exper-
iment, we study the effectiveness of the self-conditioning
guidance mechanism which is described in section 4.3. We
consider the three different settings to verify the effec-
tiveness of our module where LDT-g is without the self-
condition to train the denoising network, LDT-c is without
the guidance and LDT is proposed in our work. Table 4
shows the results of the two metrics MSE and CRPS-sum
with the same guidance strength w =3.0. To verify the role of
different parts, we visualized the results of a more complex
sample generation in the Electricity dataset. As seen in Fig-
ure 4, LDT-g can capture the detailed change pattern of the
forecasting targets, but there is a deviation in the accuracy of
the numerical value. LDT-c can effectively learn to forecast
the interval of the numerical change of the future targets, but
the details are not fine enough. And our proposed LDT ef-
fectively combines the advantages of these two factors. The
guidance factor learns the detailed patterns of the forecast-
ing targets, and the self-condition factor learns to predict the
numerical values of the predicted targets.

Predicting xθ vs. Predicting ϵθ In this experiment, we
will discuss the different denoising strategies in our work.
We compared two different training strategies on five
datasets and Table 2 shows our comparative results. We
found that the denoising process shows exactly poor perfor-
mance in ϵθ strategy, but we found that the autoregressive
diffusion-based method like TimeGrad can use ϵθ as the de-
noising target. We believe that there are two reasons for this
result, (1) In the non-autoregressive condition, the target is
set to noise, which makes the model ignore the correlation
between timestamps. (2) The time series usually contains
highly nonlinear noise, which can be easily confused with
the noise generated from the diffusion process.

Inference Efficiency In this experiment, we compare the
inference efficiency of the proposed LDT with the other time
series diffusion model baselines TimeGrad, SSSD, CSDI
and D3VAE. Table 3 shows the inference time on the multi-
variate datasets Solar and Electricity with two different fore-
casting lengths (24, 48). In terms of generation efficiency,
our one-shot latent structure LDT performs well.

Conclusions
In this study, we introduce a multivariate probabilistic time
series forecasting approach that leverages latent space rep-
resentations. Our method incorporates a self-conditioning
guidance mechanism, which combines self-condition bias
with condition-based guidance to enhance the denoising
process in our latent diffusion model. Furthermore, we
develop a one-shot, non-autoregressive Latent Diffusion
Transformer (LDT) for high-dimensional multivariate time
series prediction. Evaluation of our LDT model on five stan-
dard time-series benchmarks sets a new benchmark, outper-
forming existing generative methods. Ablation studies vali-
date the contribution of each component within our model.
We aim to refine denoising structures further for modeling
high-dimensional multivariate time series.
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