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Abstract

In this paper, we derive a PAC-Bayes bound on the generalisa-
tion gap, in a supervised time-series setting for a special class
of discrete-time non-linear dynamical systems. This class in-
cludes stable recurrent neural networks (RNN), and the moti-
vation for this work was its application to RNNs. In order to
achieve these results, we impose some stability constraints,
on the allowed models. Here, stability is understood in the
sense of dynamical systems. For RNNs, these stability condi-
tions can be expressed in terms of conditions on the weights.
We assume the processes involved are essentially bounded
and the loss functions are Lipschitz. The proposed bound on
the generalisation gap depends on the mixing coefficient of
the data distribution, and the essential supremum of the data.
Furthermore, the bound converges to zero as the dataset’s size
increases. In this paper, we 1) formalise the learning prob-
lem, 2) derive a PAC-Bayesian error bound for such systems,
3) discuss various consequences of this error bound, and 4)
show an illustrative example, with discussions on computing
the proposed bound. Unlike other available bounds the de-
rived bound holds for non i.i.d. data (time-series) and it does
not grow with the number of steps of the RNN.

Introduction
The Probably Approximately Correct (PAC)-Bayesian
framework has been a popular tool for obtaining generalisa-
tion bounds and to derive efficient learning algorithms, see
(Alquier 2021; Dziugaite and Roy 2017).

Contribution. In this paper we develop PAC-Bayesian
inequalities for a class of discrete-time dynamical systems
with hidden (unobserved) states. This class includes a wide
variety of dynamical systems, ranging from linear time-
invariant state-space representations (LTIs) to recurrent neu-
ral networks (RNNs). We view dynamical systems as hy-
potheses (predictors) which transform past inputs and out-
puts (labels) to estimates of the current output (label). That
is, our framework captures both time-series forecasting and
learning models which causally transform sequences of in-
puts to sequences of outputs. In the latter case, the dynamical
system at hand uses only past inputs. Furthermore, training
data represents a single time-series sampled from the input
and output processes. That is, the training data is not i.i.d.
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The PAC-Bayesian inequality of this paper proposes a
bound on the difference between the generalisation loss and
empirical loss. This bound holds with high probability, and
it depends on the number of data points N and on the pa-
rameter (learning rate) λ. Moreover, for a suitable choice of
λ the bound converges to zero at the rate O(1/

√
N). The

latter rate is consistent with most of finite-sample bounds
available in the literature for various types of models.

In order to consider non i.i.d. data we assumed that in-
puts and outputs are bounded and they are weakly depen-
dent. The latter represents a type of mixing condition. More-
over, we had to restrict attention to dynamical systems which
transform bounded and weakly dependent inputs to outputs
having the same properties. To this end, we required that
the dynamical systems satisfy the exponential convergence
(Pavlov and van de Wouw 2012) property. The latter concept
originates from control theory.

Motivation. PAC and PAC-Bayesian bounds are a major
tool for analysing learning algorithms. Moreover, by min-
imizing the error bound, new, theoretically well-founded
learning algorithms can be formulated. In particular, PAC-
Bayesian error bounds turned out to be useful for providing
non-vacuous error bounds for neural networks (Dziugaite
and Roy 2017). While there is a wealth of literature on PAC
(Shalev-Shwartz and Ben-David 2014) and PAC-Bayesian
(Alquier 2021; Guedj 2019) bounds, for static models, much
less is known on dynamical systems.

Generalization bounds for RNNs. PAC bounds for RNN
were developed in (Koiran and Sontag 1998; Sontag 1998;
Chen, Li, and Zhao 2020) using VC dimension, in (Wei
and Ma 2019; Akpinar, Kratzwald, and Feuerriegel 2020;
Joukovsky et al. 2021; Chen, Li, and Zhao 2020) using
Rademacher complexity, and in (Zhang, Lei, and Dhillon
2018) using PAC-Bayesian approach. All the cited papers
assume noiseless models, a fixed number of time-steps, that
the training data are i.i.d sampled time-series, and the sig-
nals are bounded. In contrast, we consider (1) noisy models,
(2) generalisation loss defined on infinite time horizon, (3)
only one single time series available for training data.

Our contribution is consistent with recent results for linear
RNNs (Emami et al. 2021; Cohen-Karlik et al. 2023), on
their ability to extrapolate to longer sequences by training on
short sequences with stochastic gradient descent. Thus we
provide a different perspective, while extending to a more
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general class of models.
PAC and PAC-Bayesian bounds for autoregressive and

linear models. In (Alquier and Wintenberger 2012; Alquier,
Li, and Wintenberger 2013) auto-regressive models with-
out exogenous inputs were considered, and the variables
were either assumed to be bounded or the loss function
was assumed to be Lipschitz. In contrast, we consider non-
linear state-space models with inputs. That is, the learning
problem considered in this paper is different from that of
(Alquier and Wintenberger 2012; Alquier, Li, and Winten-
berger 2013). However, we were inspired by (Alquier and
Wintenberger 2012; Alquier, Li, and Wintenberger 2013). In
(Eringis et al. 2021, 2023b) PAC-Bayesian bounds for linear
state-space models were derived. In contrast, in this paper
we derive bounds for non-linear state-space models. More-
over, the bound of (Eringis et al. 2021, 2022) does not con-
verge to zero for systems with unbounded noise and inputs.
The result of (Eringis et al. 2023b) for systems with bounded
noise and inputs, where the PAC-Bayesian bound converges
to zero, is a special case of the result of the present paper.

Finite-sample bounds for system identification. Guar-
antees for asymptotic convergence of learning algorithms
are a classical topic in system identification (Ljung 1999).
Recently, several publications on finite-sample bounds for
learning dynamical systems were derived, without claiming
completeness (Simchowitz et al. 2018; Simchowitz, Boczar,
and Recht 2019; Simchowitz 2021; Oymak and Ozay 2022;
Lale et al. 2020; Foster, Sarkar, and Rakhlin 2020; Hazan
et al. 2018; Tsiamis and Pappas 2019; Sarkar, Rakhlin, and
Dahleh 2021). First, all the cited papers propose a bound
which is valid only for models generated by a specific learn-
ing algorithm. In particular, these bounds do not charac-
terise the generalisation gap for arbitrary models, i.e., they
are not PAC(-Bayesian) bounds. Second, many of the cited
papers do not derive bounds on the infinite horizon predic-
tion error. More precisely, (Oymak and Ozay 2022; Sarkar,
Rakhlin, and Dahleh 2021; Lale et al. 2020; Tsiamis and
Pappas 2019; Simchowitz and Foster 2020) provided error
bounds for the difference of the first T Markov-parameters
of the estimated and true system for a specific identifica-
tion algorithm. However, in order to characterise the infi-
nite horizon prediction error, we need to take T = ∞. For
T = ∞ the cited bounds become infinite, i.e., vacuous. Er-
ror bounds for certain classes of non-linear dynamical sys-
tems were also derived in (Sattar, Oymak, and Ozay 2022;
Sattar and Oymak 2022; Blanke and Lelarge 2023; Foster,
Sarkar, and Rakhlin 2020; Mania, Jordan, and Recht 2022;
Sayedana et al. 2022; Shi, Mazhar, and De Schutter 2022;
Roy, Balasubramanian, and Erdogdu 2021; Ziemann, Sand-
berg, and Matni 2022; Ziemann and Tu 2022; Li et al. 2023),
but they assume full state observation and they provide an er-
ror bound for a specific learning algorithm. In contrast, we
consider models with unobserved (hidden) states.

Outline.We start off the paper with informally present-
ing the main result. We then define the class of dynamical
systems which plays the role of the hypotheses class. In the
following section we define the learning problem formally.
Finally, we state the main results of the paper, where the
PAC-Bayesian bound on the generalisation gap of dynami-

cal systems is stated. At the end, we present a short illustra-
tive numerical example. The detailed proofs can be found in
(Eringis et al. 2023a, Appendix).

Notation. Note that unless otherwise defined, this paper
will follow the notation defined by Goodfellow et al. (2016),
i.e. x is a vector, and x is a random vector. Let F denote a
σ-algebra on the set Ω and P be a probability measure on
F. Unless otherwise stated all probabilistic considerations
will be with respect to the probability space (Ω,F,P), and
we let E(z) denote expectation of the stochastic variable z :
Ω → Rnz . We shall denote the realisation of a stochastic
variable z as z(ω), with ω ∈ Ω. Each Euclidean space is
associated with the topology generated by the 2-norm ∥ ·
∥2, and the Borel σ-algebra generated by the open sets. The
induced matrix 2-norm is also denoted ∥ · ∥2. We use ≜ to
denote ”defined by”, and a.s.

= to denote that the equality holds
almost surely with respect to some underlying probability
measure.

Problem Formulation and PAC-Bayesian
Setting

In this paper we will consider time-series supervised learn-
ing problem. The goal will be to optimise a posterior dis-
tribution defined over some set of predictors (hypotheses)
H. To this end we assume that we have only one sequence
of training data. Let us fix bounded stochastic processes
y(t) ∈ Y ⊂ Rny ,x(t) ∈ X ⊂ Rnx that share the time-
axis t ∈ Z, i.e. y(t),x(t) are random vectors on (Ω,F,P).
The goal of each predictor h ∈ H is to estimate y(t) based
on current and past values {x(s)}ts=0 of x. Formally, we can
think of h as a function h :

⋃∞
k=1 Xk → Y, such that the pre-

diction ŷ(t) generated by h satisfies ŷ(t) = h({x(s)}ts=0).
We allow the process x to contain y as a component, i.e.,

x =
[
x̄T yT

]T
. In this case, the predictor uses past values

of y to predict the current one, i.e., the predictor is autore-
gressive. In particular, in this case, for the learning prob-
lem to be meaningful, the class of predictors H should be
such that h({

[
x̄T (s) yT (s)

]T }ts=0) does not depend on
the value y(t) of y at time instant t.

The training data is a single sample D =
{y(s)(ω),x(s)(ω)}N−1

s=0 , for some ω ∈ Ω, from the
random variables {y(s),x(s)}N−1

s=0 . We are interested in the
empirical loss

L̂N (h) ≜
1

N

N−1∑
t=0

ℓ(y(t), h({x(s)}ts=0)) (1)

and generalisation loss

L(h) ≜ lim
t→∞

E[ℓ(y(t), h({x(s)}ts=0))] (2)

for some loss function ℓ : Y × Y → R+. Note
that, classically generalisation loss is defined simply as
E[ℓ(y(t), h({x(s)}ts=0))]. However in the time-series set-
ting, this would depend on the time t, and as such would
not give the desired intuition. Indeed, in time series predic-
tion, the predictions are updated as new data points become
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available, so the relevant metric of generalisation power is
the prediction error as t→ +∞.

For now, we assume that the limit defining the generalisa-
tion loss L(h) exists for any h ∈ H. Later we will define the
class H in such a manner that this assumption holds.

With this in mind, the goal of the PAC-Bayesian frame-
work is to analyse the generalisation gap ∆N (h) ≜
d(Eh∼ρL(h), Eh∼ρL̂N (h)), where d is any convex func-
tion, and Eh∼ρL(h) and Eh∼ρL̂N (h) denote the expecta-
tion of L(h) and L̂N (h), when h is randomly sampled from
a probability distribution on H with the density ρ.
In this paper we look at the special case of ∆N (h) ≜
Eh∼ρL(h)−Eh∼ρL̂N (h), since bounding ∆N (h) will pro-
vide immediate bounds on Eh∼ρL(h). Furthermore we con-
sider predictors h realised by dynamical systems:

s(t+ 1) = f(s(t),x(t)), s(0) = s0,

h({x(s)}ts=0) = g(s(t),x(t)),
(3)

where s(t) ∈ Rns is the hidden state. Note that recurrent
neural networks (RNNs) represent a special case of the dy-
namical systems of the form of equation 3. Under suitable
assumptions, which will be discussed in later assumptions
section we derive the following Catoni-like PAC-Bayesian
inequality. Informally, let H be a family of predictors which
can be realised by a dynamical system of the form equa-
tion 3. Moreover, informally, let π be a probability density
on H and let Mπ denote the set of all probability densities
for which the corresponding probability measures are abso-
lutely continuous w.r.t. to the probability measure defined by
π. Formal details will be given in assumptions section.
Theorem 1 (Informal theorem). There exist constants G1

and G2, which depend on the class of predictors H, such
that for all λ > 0 and for any δ ∈ (0, 1/2), the following
holds with probability at least 1− 2δ on the data

∀ρ̂ ∈ Mπ : Eh∼ρ̂L(h) ≤ Eh∼ρ̂L̂N (h)

+
1

λ

[
DKL(ρ̂∥π) + ln

1

δ
+
λ2

N
G1 +

λ

N
G2

]
(4)

where DKL(ρ̂∥π) denotes the Kullback–Leibler (KL) diver-
gence between ρ̂ and π.

We refer to π as the prior and to ρ̂ as the posterior den-
sity on the space of predictors. However, there is no rela-
tion between these densities except for the condition that
the probability measure of ρ̂ has to be absolutely continu-
ous w.r.t. the probability measure of π. The bound in equa-
tion 4 suggests that for learning we could choose a posterior
ρ̂ which minimises the right-hand side of equation 4. Then
we can either randomly sample a model from that posterior
or choose the model with the highest likelihood (Alquier
2021). The posterior which minimises the right-hand side
of equation 4 is known as the Gibbs posterior (Alquier,
Ridgway, and Chopin 2016), which is defined by ρN (h) ≜

Z−1π(h)e−λL̂N (h),Z = Eθ∼π[e
−λL̂N (h)]. In particular, the

model which maximises ρN (h) is the one which minimises
the regularised empirical loss L̂N (h)− 1

λ ln(π(h)). This al-
lows us to use the bound for deriving learning algorithms,

similarly to Catoni-like bounds, and interpret the prior π as
a regularisation term added to the empirical loss functions.

Remark 1 (Asymptotic properties: O(1/
√
N) bound). The

derived bound has similar asymptotic properties to clas-
sical Catoni-like bounds. In particular, if we choose λ

to be of order O
(√

N
)

, then the bound rN (λ, δ, ρ̂) ≜

1

λ

[
DKL(ρ̂∥π) + ln

1

δ
+ λ2

N G1 +
λ
NG2

]
converges to zero

with the rate O(1/
√
N) for each fixed δ and posterior ρ̂.

This implies existence ofN∗ > 0, where the proposed bound
is non-vacuous for all N > N∗.

Remark 2 (Intuition behind the constants). Intuitively, the
bounds G1 and G2 are increasing functions of θ-mixing co-
efficients of the data, and certain quantities which are re-
lated to robustness of the predictors. In particular, the more
independent the data is, and the more robust the predictors
are, the smaller the bound is.

Proof strategy The proof relies on PAC-Bayes inequali-
ties obtained by applying Donsker-Varadhan change of mea-
sure, in the form of the following lemma.

Lemma 1 (Theorem 3 of Germain et al. (2016)). For any
measurable functions X,Y on H, any δ ∈ (0, 1], and λ > 0
the following holds with probability at least 1− δ

∀ρ̂ ∈ Mπ : Eh∼ρ̂(X(h)− Y (h))

≤ 1

λ

[
DKL(ρ̂∥π) + ln

1

δ
+Ψπ(λ,N)

]
, (5)

with Ψπ(λ,N) = lnEh∼πE[eλ(X(h)−Y (h))].

We first apply Lemma 1 by choosing Y (h) = L̂N (h) to
be the empirical loss and

X(h) = VN (h) ≜ lim
s̄→−∞

1

N

N−1∑
t=0

ℓ(y(t), h({x(s)}ts=s̄))

to be the infinite horizon loss, a version of the empirical loss
without the transient caused by the initial state. We bound
the moment generating function E[eλ(L̂N (h)−VN (h))], by as-
suming that the dynamical systems realising the predictors
have the exponential convergence property (see Def. 2), and
using (Alquier and Wintenberger 2012, Proposition 4.2) for
weakly dependent processes. In this way we obtain a first
PAC-Bayesian inequality in the form of equation 4, which
covers the issue of choosing the initial state of the predictor.

Next, we apply Lemma 1 such that Y (h) = VN (h) is
the infinite horizon empirical loss and X(h) = L(h) is the
generalisation loss. Since E[VN (h)] = L(h), we can bound
the moment generating function E[eλ(L(h)−VN (h))] by using
a generalisation of Hoefding’s lemma (Alquier and Winten-
berger 2012, Theorem 6.6), (Rio 2000) . We can apply this
lemma since the difference between the true and predicted
labels is weakly dependent. The latter is true, since the sys-
tem which generates this difference (Eringis et al. 2023a,
Lemma A.7) has the property that its outputs are weakly de-
pendent.
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We can apply union bound on the two obtained PAC-
Bayesian inequalities, resulting in the bound of Theorem 1.
In fact, we derive more general theorem, whose corollary is
Theorem 1. For full details see (Eringis et al. 2023a, Ap-
pendix).

Class of Dynamical Systems
In this paper we will consider predictors realised by a special
class of dynamical systems. Furthermore, later we assume
that the data is an output of such a system. In this section,
we define this class of systems. To this end, let us consider a
generalisation of the dynamical system in equation 3:

S

{
s(t+ 1) = f(s(t),v(t)),

y(t) = g(s(t),v(t)),

(6a)
(6b)

where v : T → V is an arbitrary input trajectory (e.g., x(t)
as in equation 3), s : T → S is the state trajectory, y :
T → Y is the output trajectory, and T ⊆ Z is an interval in
Z which has no upper bound. That is, either T is the whole
Z or T is an interval [t0,+∞) ∩ Z for some t0. Moreover,
the sets S ⊂ Rn, V ⊂ Rm, and Y ⊂ Rp are bounded. If
T = [t0,+∞) ∩ Z, then s is uniquely determined by the
initial state s(t0) = s0 and the input v, and we write s(t) =
sS(s0, t0,v; t) to emphasise the dependence on the initial
state s(t0) = s0 and input v. Moreover, if v is defined on the
whole time axis Z, then sS(s0, t0,v; t) will be understood as
the solution corresponding to the restriction of v to T. When
S is clear from the context, we use s(s0, t0,v; t) instead of
sS(s0, t0,v; t).

Likewise, we will use yS(s0, t0,v; t) to denote the
output y(t) which corresponds to the state trajec-
tory s(t) = sS(s0, t0,v; t), i.e., yS(s0, t0,v; t) =
g(sS(s0, t0,v; t),v(t)). As before, we drop the subscript S
if it is clear from the context.

In addition, we will identify systems of the form (6) with
the tuple S = (S,Y,V, f, g).

For systems (6) to be suitable for time-series prediction,
they should be robust. In other words, they should be ca-
pable of withstanding small perturbations in inputs and ini-
tial states without leading to significant changes in the state
and output trajectories over time. Without robustness, even
minor numerical rounding errors, when implemented, can
accumulate over time, resulting in increasingly inaccurate
predictions. Note that this is not much of an issue when the
prediction is a static function of a finite number of past in-
puts (auto-regression, systems with fully observed state), or
the length of the time-series used for prediction is small.
However, it becomes an issue when, as it is often the case
in time-series prediction, we use an increasing number of
data points in prediction, as more of them become avail-
able. Additionally, it is desirable for predictors to preserve
stationarity and mixing properties of the inputs. Predictors
are expected to generate one-step ahead approximations of
the input process. If they cannot even preserve such simple
properties, then there is little hope for them being accurate.
Both of these properties can be guaranteed by requiring cer-
tain stability properties to be defined below. To this end, we
recall the following

Definition 1 (UEC and steady-state state and output tra-
jectories (Pavlov and van de Wouw 2012)). The system S
from equation 6 is called uniformly exponentially convergent
(UEC) with constants C and τ ∈ [0, 1), if for each bounded
v : Z → V, there exists a unique bounded state trajectory
s = sS,v : Z → S of S, and for any initial state s0

∥sS(s0, t0,v; t)− sS,v(t)∥2 ≤ Cτ t−t0∥s0 − sS,v(t0)∥2

We refer to sS,v as the steady-state state trajectory of S as-
sociated with v. We call yS,v : Z ∋ t 7→ g(sS,v(t),v(t))
the steady-state output trajectory associated with v.

UEC guarantees robustness to perturbations in the initial
state, and existence of steady-state trajectories for every in-
put. The latter represent the asymptotic behavior of the sys-
tem as t→ +∞ for the given input, and they can be viewed
as the state trajectory starting at t0 = −∞, with arbitrary ini-
tial state, see (Eringis et al. 2023a, Lemma A.4). Although
UEC is stronger than other stability notions, many systems
used in practice have this property (Pavlov and van de Wouw
2012). Next, we define the class of systems which has all the
desired properties mentioned above.

Definition 2 (Class S system). We will say that the system
from equation 6 is a class S system, with associated con-
stants C ≥ 1, τ ∈ [0, 1), Lv > 0, Lg,s > 0, and Lg,v > 0 if
the following holds:

(UEC) S is UEC with constants C and τ
(Exponential robustness in inputs) For any two bounded

input trajectories v1,v2 : Z → V,

∥sv1
(t)−sv2

(t)∥2 ≤ Lv

∞∑
k=1

τk−1∥v1(t−k)−v2(t−k)∥2

(7)
(Lipschitz output) The output function g has Lipschitz con-
stants Lg,s, Lg,v > 0, i.e., ∥g(ξ1, v1) − g(ξ2, v2)∥2 ≤
Lg,s∥ξ1 − ξ2∥2 + Lg,v∥v1 − v2∥2, for all ξ1, ξ2 ∈ S,
v1, v2 ∈ V.

UEC implies robustness with respect to perturbations in
the initial state. Exponential robustness in inputs implies that
state is robust w.r.t. perturbations in the inputs. In fact, the
effect of an instantaneous perturbations in the input decays
exponentially fast. The requirement that the output function
is Lipschitz ensures that the output trajectories inherit the
favorable robustness properties of the state trajectories.

Remark 3 (Role of constants). The smaller the constants
C, τ , Lv and Lq,s, Lg,v are, the more robust the system is to
perturbations in inputs and states. Among these constants,
τ is the most significant one, as it determines how fast the
effect of perturbations will decay with time.

In addition, outputs of S systems generated by mixing and
stationary inputs are also mixing and stationary, see (Eringis
et al. 2023a, Lemma A.4). Some remarks are in order.

Contractive systems are of class S . By (Eringis et al.
2023a, Lemma A.6), a sufficient condition for belonging to
class S is that f, g are Lipschitz, and f is a contraction in its
first argument, i.e. ∥f(s, v)− f(s′, v)∥2 < τ∥s− s′∥2, with
τ ∈ (0, 1).
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Examples of RNNs which are of class S . In partic-
ular, for RNNs, f being contraction boils down to the
activation functions being Lipschitz and to the condition
Lip(σf )∥A∥2 < 1, see Table 1 for the corresponding con-
stants. Note that commonly used activation functions (ReLu,
tanh, sigmoid, linear, etc.,) are Lipschitz. Table 1 shows ex-
plicitly how to compute the necessary constants for RNNs.

A sufficient condition for Lip(σf )∥A∥2 < 1 to hold is
that the absolute values of all the entries of A are smaller
than (Lip(σf )n)−1. Note that many trained and used models
have small weights, e.g., (Woo et al. 2021). Furthermore,
weight regularisation, which tends to lower the norm of the
weights, is commonly used in learning.

Systems of class S which are not contractions A suffi-
cient condition for a system to be of class S is that f and
g are Lipschitz, and that there exist a quadratic Lyapunov
function, see conditions 1 and 2 of (Eringis et al. 2023a,
Lemma A.6). The latter may hold even if f is not a contrac-
tion. For instance, stable linear state-space systems, i.e., sys-
tems of the form f(s,x) = As+Bx and g(s,x) = Cs+Dx
for suitable matricesA,B,C,D such that the spectral radius
of A is smaller than 1, satisfy (Eringis et al. 2023a, Lemma
A.6), but they are not contractions.

For piecewise-affine functions f (e.g., RNNs with ReLu
activation) the conditions of (Eringis et al. 2023a, Lemma
A.6) can be checked using Linear Matrix Inequalities (LMI),
see (Pavlov and van de Wouw 2012, Theorem 2).

Interconnection of systems, multi-layer RNNs Class S
property is preserved under interconnection: series intercon-
nection of two class S systems is also S (see (Eringis et al.
2023a, Lemma A.8)). Furthermore, the corresponding con-
stants can be computed from those of the two systems. In
particular, multilayer RNNs which can be represented as a
series interconnection of several single layer RNNs will be
of class S , if each individual layer is of class S .

Assumptions on Data and Predictors
Let us now formally state our assumptions on the data and
the class of predictors.

In a nutshell, we would like the process y,x to be out-
puts of a class S system for an i.i.d. input process, and
the predictors (hypotheses) to be class S systems. To this
end, we need to consider S systems driven by stochastic in-
puts. More precisely, let S = (S,Y,V, f, g) be a system
of class S , and let v be an essentially bounded stochastic
process taking values in V. Then for any initial state s0,
time instances t0 ≤ t, we can define the random variable
yS(s0, t0,v; t) : Ω ∋ ω 7→ yS(s0, t0,v(ω); t), and we refer
to it as the output process of S at time t for the input v, initial
state s0 and initial time t0. Likewise, for every t ∈ Z, we
define the random variable yS,v(t) : Ω ∋ ω 7→ yS,v(ω)(t),
and we call the stochastic process formed by {yS,v(t)}t∈Z
the steady-state output process of S associated with v. We
are now ready to state our assumptions on the data.
Assumption 1 (Data Generator). There exists a system
Sg = (Sg,Y × X,Vg, fg, gg) of class S with constants
Cg, τg, Lg,v, Lgg,s, Lgg,v, and an essentially bounded i.i.d.

process eg such that
[
yT ,xT

]T
is the steady-state output

process of Sg associated with eg , i.e.,
[
yT (t),xT (t)

]T
=

ySg,eg
(t) for all t ∈ Z.

Note that, we assume the existence of the generator Sg ,
but we do not assume the knowledge of Sg .

Assumption 1 can be viewed as a realisability assump-
tion: we assume that the data generator is of the same type
as the predictor. Another reason for Assumption of 1 is that
it guarantees certain weak dependence properties of the data,
which, in turn, allow us to use extensions of Hoeffding in-
equalities (Rio 2000) to prove PAC-Bayesian bounds.

More precisely, recall from (Alquier, Li, and Winten-
berger 2013, Definition 5) the notion of the mixing coeffi-
cient θq∞,N (1), ∀ 1 ≤ N ∈ Z, of a process q. Following
(Alquier, Li, and Wintenberger 2013) we will say that q is
weakly dependent with constants Bq and θ̄q∞, if q is station-
ary, essentially bounded and for all t ∈ Z, Bq ≥ ∥q(t)∥∞
w.p. 1, and θ̄q∞(1) ≥ θq∞,N (1) for all N ≥ 1.

Lemma 2. Under Assumption 1, q = [y,x] is weakly de-
pendent with the constants

Bq ≜ 2∥eg(0)∥∞
(
Lgg,v +

Lg,vLgg,s

1− τg

)
,

θ̄q∞(1) ≜ 2∥eg(0)∥∞
Lg,vLgg,s

(1− τg)2

Later on we shall see that the bound on the generalisation
gap depends on the constantsBq and θ̄q∞(1). Hence, we will
assume that they are known. Intuitively, Bq is just an upper
bound on the norm of the data. The constant θ̄q∞,N (1) en-
codes the information on how non i.i.d. the data is. In par-
ticular, it is zero for i.i.d. data. The knowledge of these con-
stants is often assumed in the literature, e.g, (Alquier, Li, and
Wintenberger 2013; Alquier 2021).

Similarly, we assume that the predictors ŷ(t) =
h({x(s)}ts=0), take the form of class S system and they are
parametrised by elements of a parameter set Θ.
Assumption 2 (Parameterisation & realisation by class S).
There exists a compact set Θ ⊆ Rnθ , a bounded set S ⊆ Rn,
a function Π : Θ → H, and continuous functions

f̂ : S× X×Θ → S, ĝ : S× X×Θ → Y, ŝs : Θ → S

such that the following holds.
• For any θ ∈ Θ, consider the functions

f̂θ : S× X ∋ (s,v) 7→ f̂(s,v, θ) ∈ S,
ĝθ : S× X ∋ (s,v) 7→ ĝ(s,v, θ) ∈ Y

Then Sθ ≜ (S,Y,X, f̂θ, ĝθ) is a system of class S .
• The predictor hθ ≜ Π(θ) is such that for all t ≥ 0, t ∈ Z,
hθ({x(s)}ts=0) is the output of Sθ at time t for input x,
initial state ŝs(θ), and initial time 0, i.e.,

hθ({x(s)}ts=0) = ySθ
(ŝs(θ), 0,x; t).

This class of predictors includes RNNs (Θ is the set of
weights), and most of standard classes of state-space repre-
sentations used for time-series prediction and filtering. As-
sumption 2 guarantees existence of the generalisation loss
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System Conditions Constants

s(t+ 1) = σf (As(t) +Bx(t) + b1)
y(t) = σh(Cs(t) +Dx(t) + b2)

σf σh are Lipschitz
Lip(σf )∥A∥2 < 1

C = 1, τ = Lip(σf )∥A∥2
Lv = Lip(σf )−1∥B∥2,
Lg,s = Lip(σh)∥C∥2
Lg,v = Lip(σh)∥D∥2

Table 1: Example of Class S systems (Lip(ϕ) denotes the Lipschitz constant of ϕ)

defined in equation 2. To this end, for every θ ∈ Θ let us
denote:

ŷθ(t|0) ≜ ySθ
(ŝs(θ), 0,x; t) = hθ({x(s)}ts=0),

ŷθ(t) = ySθ,x(t)
(8)

i.e., ŷθ(t|0) is just the prediction at time t generated by hθ,
and ŷθ(t) is the output process ySθ,x(t) of the S system Sθ

associated with x.
From (Eringis et al. 2023a, Lemma A.4) it follows that the

limit
lim
t→∞

E[ℓ(y(t), hθ({x(s)}ts=0)) = lim
t→∞

E[ℓ(y(t), ŷθ(t | 0))

exists and equals E[ℓ(y(t), ŷθ(t))] hence the generalisation
loss L(hθ) is well-defined for all θ ∈ Θ.

Previously, we have informally taken expectation over
predictors. Assumption 2 makes its possible to define the
latter notion formally. LetBΘ be the σ-algebra of Lebesque-
measurable subsets of the parameter set Θ, andm denote the
Lebesque measure on Rnθ . If ρ is a probability density func-
tion on the measure space (Θ, Bθ,m), and F is a measurable
and absolutely integrable function on θ, then we denote by

Eθ∼ρF (θ) ≜
∫
θ∈Θ

ρ(θ)F (θ)dm(θ)

the expectation of F w.r.t. ρ. If F : H → R is a map such
that Θ ∋ θ 7→ F (hθ) is measurable and absolutely inte-
grable, then with an abuse of notation we use

Eh∼ρF (h) ≜
∫
θ∈Θ

ρ(θ)F (hθ)dm(θ)

to denote the expectation of Θ ∋ θ 7→ F (hθ) w.r.t. ρ.
In particular, with the convention above, the expectations
Eh∼ρL̂N (h) and Eh∼ρL(h) are well defined.
Assumption 3. The loss function ℓ is Lipschitz, with global
Lipschitz constant Lℓ > 0

Note that Assumption 2 implies that for any parameter
θ ∈ Θ, the output ŷθ(t|0) is bounded, i.e., ∥ŷθ(t|0)∥ ≤
GθB

q, where Gθ ≜ Lg,s(θ)Lv(θ)
1−τ(θ) + Lg,v(θ). Since all the

processes are bounded, one can use restrictions of locally
Lipschitz loss functions, e.g. square loss, to a bounded set,
and they will be Lipschitz. For example, the restriction of
the square error loss ℓ (ŷ,y) = ∥ŷ − y∥22, is Lipschitz with
a constant Lℓ = 2Bq max{1, supθ∈ΘGθ}.
Remark 4. In contrast to standard classification, classifica-
tion with soft labels also fit our framework (Hinton, Vinyals,
and Dean Dec. 2014). To this end, we use the softmax loss

function, ℓ(y, ŷ) = −
∑K

i=1 yi ln

(
eŷi∑K

j=1 eŷj

)
, see (Eringis

et al. 2023a, Lemma A.10).

Main Result
With the definitions and assumptions above, we can state the
main result formally. The informal theorem Theorem 1 is a
special case of this main result. To this end, for any prob-
ability density π on (Θ, Bθ,m), denote by Mπ the set of
all probability densities for which the corresponding proba-
bility measures are absolutely continuous w.r.t. to the prob-
ability measure defined by π. Furthermore, for any θ ∈ Θ,
denote by C(θ), Lg,s(θ), Lg,v(θ), Lv(θ), and τ(θ) ∈ [0, 1)
the constants of the class S system Sθ, and let ŝs(θ) be the
initial state of Sθ from which the hypothesis hθ is generated,
see Assumption 2. Let θ̄q∞(1) andBq be the constants of the
data generating system from Lemma 2.

Theorem 2. Under Assumptions 1,2, and 3, for any prob-
ability density π on (Θ, Bθ,m), for any δ ∈ (0, 0.5], and
λ > 0 the following holds with probability at least 1− 2δ,

∀ρ̂ ∈ Mπ : Eh∼ρ̂L(h) ≤ Eh∼ρ̂L̂N (h)

+
1

λ

[
DKL(ρ̂∥π) + ln

1

δ
+ Ψ̂π(λ,N)

]
, (9)

with Ψ̂π(λ,N) ≜ 1
2

(
lnEθ∼πΨ̂1(θ) + lnEθ∼πΨ̂2(θ)

)
,

Ψ̂1(θ) ≜ exp

{
2λ2L2

ℓ

N

(
Bq (Gθ +Hθ) + θ̄q∞(1)Gθ

)2}
,

Ψ̂2(θ) ≜ exp

{
2λLℓC(θ)

N
(2BqHθ + ∥ŝs(θ)∥2ψ0(θ))

}
,

Gθ ≜
Lg,s(θ)Lv(θ)

1− τ(θ)
+ Lg,v(θ), Hθ ≜

Lg,s(θ)Lv(θ)

(1− τ(θ))2
,

ψ0(θ) ≜
Lg,s(θ)

1− τ(θ)
and DKL(ρ̂∥π) ≜ Eθ∼ρ̂ ln

ρ̂(θ)
π(θ) is the

Kullback–Leibler (KL) divergence between ρ̂ and π.

The proof of Theorem 2 is presented in (Eringis et al.
2023a, Appendix A.5). The quantities Ψ̂1(θ), Ψ̂2(θ) can be
computed using Markov-Chain Monte-Carlo methods for
standard architectures, e.g. RNNs, for which the relevant
constants have explicit expressions (e.g., see Table 1). More-
over, Ψ̂i(θ), i = 1, 2 depend on the parameterisation, which
is reflected in the use of Eθ∼π to denote their averages w.r.t.
the prior π. In contrast, L(h) and L̂N (h) depend only on the
hypothesis class, and we use Eh∼ρ̂ to denote their averages
w.r.t. the posterior ρ̂.

Theorem 2, provides the most general case. Under more
strict assumptions, from Theorem 2 we can trivially arrive at
Catoni-like bounds:
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Corollary 1. If

G1 ≜ sup
θ∈Θ

2L2
ℓ

(
Bq (Gθ +Hθ) + θ̄q∞,N (1)Gθ

)2

,

G2 ≜ sup
θ∈Θ

2LℓC(θ)

(
2BqHθ +

∥ŝs(θ)∥2Lg,s(θ)

1− τ(θ)

) (10)

exist, then Theorem 1, with G1, G2 from equation 10 holds.

The constants G1 and G2 depend on the chosen
parametrisation of the hypothesis class.

Discussion on the bound The bound is increasing in :
(1) the magnitude of the data (term Bq , Lemma 2),
(2) in the mixing coefficient θ̄q∞(1) of the data see Lemma

2. The smaller this mixing coefficient is, i.e., the closer the
data is to being i.i.d., the smaller is the bound. In particular,
for i.i.d. inputs (i.e., θ̄q∞(1) = 0) we get back the classical
PAC-Bayesian bounds (Alquier 2021).

(3) In the degree of robustness of the predictors captured
by τ(θ), and to a smaller extent by Lg,s(θ), Lv(θ), Lg,v ,
C(θ). By Remark 3, the smaller these constants are, the
more robust the predictors are. That is, robustness is con-
nected to a smaller generalisation gap.

The role of the number of time steps In our setting, due
to the definition of the generalisation loss, the number of
time steps for which the predictor has been run during infer-
ence does not enter the bounds. The key for achieving this
was to assume that the predictors are stable dynamical sys-
tems. This is in contrast to other bounds for RNNs/dynam-
ical systems (Koiran and Sontag 1998; Sontag 1998; Chen,
Li, and Zhao 2020; Wei and Ma 2019; Akpinar, Kratzwald,
and Feuerriegel 2020; Joukovsky et al. 2021) which grow
with the number of time steps used for inference. The lat-
ter makes it difficult to use those bounds to characterise the
generalisation loss for inference from long sequences.

Role of the depth of RNNs As it was mentioned
previously, for multi-layer RNNs, the constants τ(θ),
Lg,s(θ), Lv(θ), Lg,v , C(θ) can be estimated based on the
corresponding constants for each layer. However, these es-
timates grow more conservatives, as the number of lay-
ers grows, resulting in a more conservative PAC-Bayesian

10
0

10
1

10
2

10
3

10
4

10
5

10
-2

10
-1

10
0

Figure 1: Theorem 2 is used to compute the results of the
numerical example, evaluated on 10 different realisations of
data.

bound. That is, similarly to other PAC(-Bayesian) bounds,
our bound may increase with the depth of RNNs, even
though the depths does not enter it directly.

Illustrative Example
In this section we shall explore a synthetic example to il-
lustrate the proposed bound. The code for this example is
available in Git repository in (Eringis 2023).We randomly
chose a generator as in Assumption 1 with:

sg(t+ 1) = ReLu (Agsg(t) +Bgeg(t) + bs,g) , (11a)[
y(t)
x(t)

]
= tanh (Cgsg(t) +Dgeg(t) + by,g) , (11b)

with ns = 2, ny = 1, nx = 1, see numerical values
of the weights (Ag, Bg, bs,g, Cg, Dg, by,g) in (Eringis et al.
2023a, equation 213, Appendix B). Then Lemma 2 holds
with Bq =

√
2, θ̄∞,N (1) = 2, and ∥eg(t)∥∞ ≤ 1.27

We generate data using equation 11 by sampling eg(t)
from a truncated Gaussian distribution. The predictors use
Relu and tanh activation functions, and 2 hidden states,
and all weights are parameterised including the initial state.
The loss function is square loss. We employ Markov Chain
Monte-Carlo sampling to compute the various expectations
over the prior and posterior appearing in the bound of Theo-
rem 2, see (Eringis et al. 2023a, Appendix B).

The prior is chosen as π = N (0, σ2I), with σ2 =
0.02. The posterior is the Gibbs posterior, i.e. ρ̂N (θ) ∝
π(θ)e−λN L̂(θ) with λN =

√
N .For this particular example,

the predictor output of which is always zero is the one with
the maximum prediction error, which is 1. In particular, as
we can see in Figure 1, the proposed bound is smaller than
1 and hence it is non-vacuous for N ≥ 9.

Conclusion
In this paper, we have provided non-asymptotic bounds on
the generalisation gap of exponentially stable dynamical
systems. Under suitable conditions on hyper-parameter λ,
we see that the bound on generalisation gap converges at a
rate of O(1/

√
N). The bound will converge either to 0 for

a fixed posterior or to a constant involving only KL diver-
gence, for Gibbs posterior. Furthermore the bound only de-
pends on quantities related to the magnitude of the label and
input processes, and the θ∞ mixing coefficient of these pro-
cesses. Not only does the proposed bound inform us how to
design priors that yield smaller generalisation gap, but since
the proposed bound only requires limited knowledge of the
data generator, we could potentially apply these bounds di-
rectly for various applications.

Potential future research directions include applying our
results to various architectures, which would require deriv-
ing tools to check if these architectures belong to class S .
Furthermore, designing LMIs or other tools to obtain tighter
system constants, would immediately yields tighter bounds
on the generalisation gap.
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