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Abstract

As responsible AI gains importance in machine learning al-
gorithms, properties such as fairness, adversarial robustness,
and causality have received considerable attention in recent
years. However, despite their individual significance, there
remains a critical gap in simultaneously exploring and inte-
grating these properties. In this paper, we propose a novel
approach that examines the relationship between individual
fairness, adversarial robustness, and structural causal models
in heterogeneous data spaces, particularly when dealing with
discrete sensitive attributes. We use causal structural models
and sensitive attributes to create a fair metric and apply it to
measure semantic similarity among individuals. By introduc-
ing a novel causal adversarial perturbation and applying ad-
versarial training, we create a new regularizer that combines
individual fairness, causality, and robustness in the classifier.
Our method is evaluated on both real-world and synthetic
datasets, demonstrating its effectiveness in achieving an ac-
curate classifier that simultaneously exhibits fairness, adver-
sarial robustness, and causal awareness.

1 Introduction
In the ever-evolving landscape of machine learning, respon-
sible AI has emerged as a pivotal focal point. Attributes such
as fairness, adversarial robustness, and causality have taken
center stage, each carrying its own weight in shaping ethi-
cal and socially reliable AI systems. Yet, the prevailing dis-
course often falls short of comprehensively addressing these
dimensions in a unified manner, leaving a gap in our under-
standing of how they intersect and influence each other.

Notably, within the realm of fairness, the scientific com-
munity has proposed various notions of fairness, broadly
categorized as group fairness, examining model’s perfor-
mance across different demographic groups, and individual
fairness, assessing model’s performance on different indi-
viduals (Pessach and Shmueli 2022; Mehrabi et al. 2021).
While group fairness can guarantee similar classification
performance on different demographic groups, it does not
always guarantee individual fairness, i.e., that similarly qual-
ified individuals, receive similar outcomes (Binns 2020).

Various formulations of individual fairness have been pro-
posed in the literature, including Lipschitz (Dwork et al.
2012) and ϵ-δ (John, Vijaykeerthy, and Saha 2020). These
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formulations presume existence of a metric on the individ-
uals that capture their (qualification) similarity. Such a sim-
ilarity metric, by definition, is assumed to capture relevant
features in the individuals that are important for the classifi-
cation outcome, and to ignore features that should be irrele-
vant. For instance, in a hiring scenario, the similarity metric
between the individuals could consider work experience and
academic degree but should not take into account sensitive
attributes. Due to this inherent fairness property in the defini-
tion of similarity metric, such metric is often referred to as a
fair metric. Various similarity functions have been proposed
as fair metrics, including weighted ℓp norms, Mahalanobis
distance, and feature embedding (Benussi et al. 2022).

In the domain of responsible AI, the study of causal-
ity is paramount, as the problems addressed often manip-
ulate systems where inter-variable relations are governed by
cause-and-effect mechanisms. In fact, many such sensitive
attributes such as socio-economic status broadly affect the
opportunities presented to individuals, which fair AI aims
to rectify. Despite the introduction of causality as a critical
lens in fairness literature (Kusner et al. 2017), the aforemen-
tioned definitions of fair metrics, and the studied domains
therein, have struggled to fully encompass the notion of ro-
bustness. While causal reasoning offers a foundation for ad-
dressing fairness, the inherent challenges of adversarial per-
turbations and their potential influence on fairness have re-
mained largely unexplored.

In response to this gap, the initial step in our study is
to propose a framework that defines a fair metric based on
the functional structure of the underlying structural causal
model. We propose a mathematical approach for protecting
sensitive attributes by employing the concept of a pseudo-
metric. Our proposed methodology enables the development
of a fair metric that effectively mitigates bias across differ-
ent levels of sensitive features in heterogeneous data spaces.
Using our proposed fair metric we establish a causal adver-
sarial perturbation (CAP) set to identify similar individuals.
Subsequently, we analyze the characteristics of the CAP and
its relationship with counterfactual fairness and adversarial
robustness. Finally, we define a novel causal individual fair-
ness notion based on the fair metric, which we refer to as
CAPI fairness.

After formulating CAPI fairness, the next step is to train
a classifier that guarantees this notion. This objective can be
accomplished by applying bias mitigation methods during
the in-processing stage. We ground our theoretical contri-
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butions in practicality by demonstrating the implementation
of CAPI fairness within different classifiers and datasets.
We initially examine the underlying cause of unfairness by
defining the concept of unfair area. We compute the unfair
area for a linear model and design a post-processing ap-
proach to obtain counterfactual fairness. Subsequently, to
attain CAPI fairness which is a stronger notion, we em-
ploy adversarial learning techniques (Madry et al. 2017) and
present the first in-processing approach of CAPI fairness
regularizer. To the best of our knowledge, this work is the
first work that simultaneously addresses adversarial robust-
ness, individual fairness, and causal structures in training a
machine learning model. Our contributions are as follows:

• Causal Fair Metric (§ 3.1). Our primary contribution
involves the establishment of a semi-latent space for the
formulation of a fair metric. The introduction of this
semi-latent space is essential to counteract the inherent
bias embedded in the structural causal model. Achieving
fairness necessitates the assurance that all potential inter-
ventions related to varying levels of sensitive attributes
are considered. Based on this concept, we develop a fair
metric that not only demonstrates effectiveness across di-
verse sensitive attributes but also incorporates the intri-
cate aspects of the causal framework.

• Causal Adversarial Perturbation (§ 3.2) Building upon
the foundation laid by our proposed causal fair metric, we
introduce the concept of the causal adversarial perturba-
tion. By leveraging the insights gained from our fair met-
ric, causal adversarial perturbation emerges as a mecha-
nism capable of capturing the similarity set in the pres-
ence of causal models.

• CAPI Fairness (§ 3.3) Our third contribution entails
the introduction of a novel fairness notion CAPI fair-
ness. This concept emerges as a pivotal bridge that seam-
lessly connects individual fairness, adversarial robust-
ness, and the underpinnings of causal structures. Fur-
thermore, we establish a theoretical foundation for CAPI
fairness, demonstrating its connections with counterfac-
tual fairness and adversarial robustness.

• Unfair Area (§ 4.1) We further advance the discourse by
defining the notion of the unfair area, grounded within
the context of CAPI fairness, and precisely explain this
concept within the framework of a linear structural causal
model and a classifier with a post-processing approach.

• CAPI Fairness Classifier (§ 4.2) Our fifth contribution
is the introduction of a pioneering in-processing adver-
sarial learning method named CAPIFY. This method
stands as the first of its kind to address CAPI fair-
ness—simultaneously embodying individual fairness,
adversarial robustness, and an awareness of causal dy-
namics.

• Evaluation (§ 5) We validate the efficacy of our ap-
proach through extensive evaluations on both real-world
and synthetic datasets. These evaluations demonstrate the
effectiveness of our proposed framework to simultane-
ously embody individual fairness, adversarial robustness,
and causal awareness.

Related Work. Several studies have explored individual
fairness by utilizing adversarial robustness techniques. Do-
herty et al. (2023) investigated the association between ad-
versarial robustness and ϵ-δ individual fairness in Bayesian

neural network inference. They considered a specified sim-
ilarity metric and ensured that the network’s output falls
within a specified tolerance. Benussi et al. (2022) introduce
a method for certifying the ϵ-δ individual fairness formu-
lation in feed-forward neural networks. They define adver-
sarial perturbation using dfair and incorporate an adversarial
regularizer in the training loss to achieve a balance between
model accuracy and IF. Xu et al. (2021) highlight that ad-
versarial training may lead to notable discrepancies in both
performance and robustness concerning group-level fair-
ness. To address this issue, they propose a framework called
fair robust learning that aims to enhance a model’s robust-
ness while ensuring fairness. Yeom and Fredrikson (2020)
employed randomized smoothing techniques to ensure in-
dividual fairness in accordance with a specified weighted
ℓp metric. Several methods tackle individual fairness us-
ing Wasserstein distance and distributionally robust opti-
mization (Yurochkin, Bower, and Sun 2019; Yurochkin and
Sun 2020; Vargo et al. 2021; Jiang et al. 2020b,a). These
approaches employ projected gradient descent and optimal
transport with Wasserstein distance to optimize a model with
perturbations that substantially modify the sensitive infor-
mation within a specified distribution. Ruoss et al. (2020)
introduced a mixed-integer linear programming approach to
develop data representations that exhibit IF. These represen-
tations are designed to capture similarities among individ-
uals by generating latent representations that remain unaf-
fected by specific transformations of the input data.

Numerous prior studies (Grari, Lamprier, and Detyniecki
2023; Jung et al. 2019; Kim, Reingold, and Rothblum 2018;
John, Vijaykeerthy, and Saha 2020; Adragna et al. 2020;
Petersen et al. 2021) have explored the connections among
fairness, robustness, and causal structures individually or in
pairs. However, to our knowledge, no previous research has
explicitly examined the simultaneous interplay of all these
properties.

2 Preliminaries
Notation. In this study, random variables are indicated by
boldface letters (V), while regular lowercase letters (v) rep-
resent assignments or instances. Matrices are denoted by
bold uppercase letters, such as F, with [F]i referring to the
i-th column vector of F and [F]i,j representing the entry at
row i and column j of F. The feature space V is constructed
using n random variables, denoted as V = (V1, . . . ,Vn).

Structural Causal Model (SCM). We make the as-
sumption that feature variables V are generated by a
SCM (Pearl 2009) denoted as M, as described by a tu-
ple ⟨G,V,U,F,PU ⟩. Here, G represents a known directed
acyclic graph (DAG), V = {Vi}ni=1 denotes a set of ob-
served (indigenous) random variables, U = {Ui}ni=1 rep-
resents a set of noise (exogenous) random variables is as-
sumed to be independent, and F is the set of structural
equations, defined as F = {Vi := fi(VPa(i),Ui)}ni=1.
These equations describe the causal relationship between
each endogenous variable Vi, its direct causes VPa(i), and
an exogenous variable Ui using deterministic functions fi.
Additionally, PU represents the probability distribution over
the exogenous variables. The structural equations F estab-
lish a mapping F : U → V from exogenous to endoge-
nous variables, along with an inverse image F−1 : V → U
that satisfies the property F

(
F−1(v)

)
= v for all v ∈ V .
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The latent variable distribution entails a unique distribution
P(V) =

∏n
i=1 P(Vi | VPa(i)) over the variables V (Peters,

Janzing, and Schölkopf 2017). The marginal probability dis-
tribution of PV with respect to the feature Vi is denoted as
PVi .

Additive Noise Model (ANM). In order to infer the
unique causal structure G from observational data V , it is
necessary to impose additional assumptions on the under-
lying SCM. One of the causally identifiable classes within
SCMs is additive noise models (Hoyer et al. 2009), which
posit that the assignments follow the form:

F = {Vi := fi(VPa(i)) + Ui}ni=1 =⇒
U = V − f(V) =⇒ V = (I − f)−1(U)

(1)

where Ui is an independent known distribution. As observed
in Eq. 1, obtaining U from V is straightforward, where I
represents the identity function (I(v) = v). Henceforth, we
denote the inverse of (I − f)−1 as F . A specific class of
ANMs is represented by linear SCMs, where the functions
fi are assumed to be linear.

Counterfactuals. SCMs are employed to examine the ef-
fects of interventions, which entail external manipulations
to modify the data generation process (Peters et al., 2017).
Two primary types of interventions exist, hard interven-
tions and soft interventions Interventions facilitate the ex-
amination of counterfactual statements vCF for a given in-
stance v under hypothetical interventions on a variable. The
counterfactual maps for hard interventions are denoted as
vCF

θ := CF(v, do(VI :=θ)) = Fθ(F−1(v)) where Fθ is a
simplified notation for Fdo(VI :=θ).

Sensitive Attribute. A sensitive attribute, such as race,
is an ethically or legally significant characteristic used in
decision-making processes like hiring, lending, or criminal
justice to determine fair treatment or outcomes for individu-
als or groups. Let S ∈ {V1, . . . ,Vn} be a sensitive attribute
that has finite levels S = {s1, . . . , sk}. For each instance v
of V , the set of counterfactual twins w.r.t protected variable
S is defined as V̈ = {v̈s = CF(v, do(S:=s)) : s ∈ S}.

Fairness. In fairness, a sensitive attribute defines a pro-
tected group, ensuring that machine learning models or al-
gorithms do not disadvantage them. Researchers have pro-
posed different notions of fairness, such as group fairness
and individual fairness (IF) (Tang, Zhang, and Zhang 2022;
Le Quy et al. 2022; Mehrabi et al. 2021).

Individual-level fairness, introduced by Dwork et al.
(2012), ensures that individuals who exhibit similarity ac-
cording to predefined metrics are treated similarly with re-
gard to outcomes. Various mathematical formulations have
been proposed, including the Lipschitz Mapping-based for-
mulation (Dwork et al. 2012) and the ϵ-δ formulation (John,
Vijaykeerthy, and Saha 2020). The classifier h satisfies the
L-Lipschitz IF condition when:

dY(h(v), h(w)) ≤ L dV(v, w) ∀v, w ∈ V (2)

where dX and dY represent metrics on the input and output
spaces respectively, and L ∈ R+.

Counterfactual fairness, introduced by Kusner et al.
(2017), is another notion of individual-level fairness that

deems a decision fair for an individual if it maintains con-
sistency in both the real and a counterfactual scenario. For-
mally, it can be expressed as:

EPV
[max
s∈S

dY(h(V), h(V̈s))] ≤ ϵ (3)

Adversarially Robust Learning. Adversarially robust
learning aims to create algorithms and models that can with-
stand adversarial attacks, which involve purposeful pertur-
bations or modifications to input data to induce misclassi-
fication or misleading predictions (Goodfellow, Shlens, and
Szegedy 2014; Madry et al. 2017). In this framework, mod-
els are trained considering the most challenging perturba-
tions of the data rather than the original data itself:

min
ψ

E(v,y)∼PD [ max
δ∈B∆(v)

ℓ(hψ(v + δ), y)] (4)

where, B∆(v) is the set of perturbations for the instance
v, PD is observation distribution, ℓ is the classification loss
function, and ψ are the weights of the classifier.

3 Causal Fair Metric
Achieving individual fairness necessitates the formulation
of a fair metric, which, in pursuit of this goal, gives rise
to two primary challenges. Firstly, the presence of diverse
feature types within the SCM, such as categorical or contin-
uous attributes, introduces complexities stemming from its
heterogeneous nature. Secondly, inherent biases may be en-
coded within the SCM, thereby necessitating that our classi-
fier comprehends the full spectrum of hypothetical interven-
tions applied to instances relative to the levels of sensitive
attributes. These twin focal points constitute the primary fo-
cus of the ensuing chapter.

3.1 Fair Metric
When dealing with independent features, constructing sim-
ilarity functions based on their attributes and aggregating
them through a product metric is relatively straightforward.
However, in the context of a causal structure, the integra-
tion of causality into metric formulation becomes pivotal.
To tackle this, instances undergo a transformation into an
independent space where a metric is established. This estab-
lished metric is subsequently employed in defining a simi-
larity function within the original feature space via the push-
forward metric technique.

In the presence of SCM and a sensitive attribute, the sim-
ilarity function d should be robust to twins and slight pertur-
bations of non-sensitive features. This means that d should
not significantly change after a hard intervention (do(S :=
s)) with respect to the levels of S, or after an additive inter-
vention on continuous features. In ANMs, a hard interven-
tion removes the causal structure of S and is equivalent to
setting fi to zero and fixing Ui := s. Moreover, additive in-
tervention is equivalent to adding δ to Ui while keeping fi
unchanged. Consequently, the latent space changes during
the hard intervention, replacing the sensitive latent variable
Ui with S following the distribution PS. This motivates the
definition of a semi-latent space.
Definition 1 (Semi-latent Space) Consider SCM M with
sensitive features indexed by I . We define the semi-latent
space Q as a combination of observed sensitive features Vi
with distribution PVi where i ∈ I , and latent variables Uj
for other features with distribution PUj

.
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Let v = (v1, v2, . . . , vn) be an instance in the observed
space and u = (u1, u2, . . . , un) = F−1(v) be the cor-
responding instance in the latent space. The mapping T :
V → Q transforms v to the semi-latent space q =
(q1, q2, . . . , qn) = T (v), where qi is defined as follows:

qi :=

{
vi i ∈ I
ui i /∈ I

(5)

The inverse function v = T−1(q) is determined as follows:

vi :=

{
qi i ∈ I
fi(vpa(i)) + qi i /∈ I

(6)

The identity v = T−1(T (v)) holds straightforwardly.
The semi-latent space allows us to describe the counter-

factual of instance v w.r.t. hard action do(VI :=θ):

CF(v, do(VI :=θ)) = T−1(T (v)⊙I θ) (7)

Here, v⊙I θ represents a masking operator that modifies the
values of I entries in vector v by replacing θ.

In the semi-latent space, a causal structure-independent
similarity function can be readily established. Let (Ui, dUi

)
denote the metric space for the latent space corresponding
to Vi. For sensitive variables Si, (Si, dSi

) is considered a
pseudometric or metric space. Thus, the semi-latent space
(Q, dQ) has a metric obtained as the product of metrics. To
establish a fair metric, incorporating sensitive features into
the similarity function is crucial. We adopt the approach by
Ehyaei et al. (2023), treating the protected feature as a pseu-
dometric.
Definition 2 (Pseudometric Protected (Ehyaei et al. 2023))
In SCM M, suppose the sensitive feature S endowed with a
pseudometric space (S, dS). S is partially protected if there
are two levels with zero distance:

∃s, s′ ∈ S s.t. dS(s, s
′) = 0 ∧ s ̸= s′ (8)

If for all s, s′ ∈ S we have dS(s, s′) = 0, then S is called
protected feature.

By employing the pseudometric for sensitive attributes
within the semi-latent space metric, a fair metric can be es-
tablished in the feature space using the push-forward metric:

dfair(v, w) = dQ(T (v), T (w)) (9)
fair metric enables us to define small perturbations of factual
values to identify similar instances.

3.2 Causal Adversarial Perturbation
Adversarial perturbation involves the manipulation of input
data to evaluate the resilience of machine learning models.
The introduction of a fair metric contributes to the definition
of adversarial perturbation in alignment with causal relation-
ships.
Definition 3 (Causal Adversarial Perturbation) Let M
be an SCM with sensitive attributes, and dfair be its fair
metric. The CAP for instance v is defined as:

BCAP
∆ (v) = {w ∈ V : dfair(v, w) ≤ ∆} (10)

where ∆ ∈ R≥0. CAP can be seen as transforming the unit
ball in the semi-latent space using the inverse mapping func-
tion T−1:

BQ
∆(q) = {p ∈ Q : dQ(q, p) ≤ ∆}. (11)

then BCAP
∆ (v) = T−1(BQ

∆(T (v))).

Remark 1 When all features are continuous or all sensi-
tive features don’t have parents, CAP simplifies interpre-
tation. In these cases, the semi-latent space coincides with
the latent space, and CAP is achieved by transforming the
unit ball in the latent space using the mapping function F .
Specifically, BCAP

∆ (v) = F (BU
∆(F

−1(v))), where BU
∆ repre-

sents a closed ball with radius ∆ in the latent space.

Building upon Remark 1, we seek a concise geometric inter-
pretation of CAP by perturbing only the continuous feature
of the SCM. Let q = (z, x) ∈ Q with x as the continuous
part and z as the categorical part of features. We define BQ+

∆
as the unit ball with a radius of ∆, specifically designed for
the continuous part:

B
Q+
∆ (q) = {q′ = (z′, x′) ∈ Q : z′ = z ∧ dX (x′, x) ≤ ∆}

Without loss of generality, assuming a norm on the contin-
uous part, we define the closed unit disk as DX

∆ = {δ :
∥δ∥ ≤ ∆ ∧ δ|Z = 0} where Z is categorical part of
feature space. Thus, in this scenario, BQ+

∆ is derived from:

B
Q+
∆ (q) = {q + δ : δ|X ∈ DX

∆} (12)

By defining B+
∆(v) = T−1(B

Q+
∆ (T (v))), the CAP can be

decomposed into B+
∆, as stated in the following proposition.

Proposition 1 Let BCAP
∆ (v) represent the CAP around in-

stance v = (z, x) with radius ∆, and let Θ∆ = {θ ∈
Z : (θ, .) ∈ BQ

∆(T (v))} denote the set of categorical levels
within the perturbation ball. The counterfactual perturba-
tion can be expressed as:

BCAP
∆ (v) =

⋃
θ∈Θ∆

B
+
∆θ

(CF(v, θ)) (13)

where ∆θ represents the value of the continuous part of ∆.
For instance, in the case of using the L2 product metric,
∆θ =

√
∆2 − dZ(θ, s)2.

The decomposition of perturbation allows analyzing the
shape of CAP for a sensitive attribute, especially for small
∆ values. This aspect is elaborated upon in the subsequent
corollary.

Corollary 1 If S is a protected feature and other categori-
cal variables in M are not partially protected, there exists a
∆0 such that for all ∆ ≤ ∆0:

BCAP
∆ (v) =

⋃
s∈S

B
+
∆(v̈s) (14)

Consequently, for all v, w ∈ V̈, we have BCAP
∆ (v) =

BCAP
∆ (w).

The CAP definition considers causal similarity in relation to
counterfactuals. The subsequent lemma shows that a CAP
with a diameter 0 represents the set of twins.

Corollary 2 If S is a protected feature and other categori-
cal variables in M are not partially protected, the counter-
factual twins correspond to the zero-radius CAP:

V̈ = BCAP
0 (v) := lim

∆→0
BCAP

∆ (v)
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Figure 1: The difference in unit ball shape between considering the sensitive attribute as a Euclidean metric (a) and as a trivial
pseudometric (b). The geometric interpretation of CAP is mapping a closed unit ball in semi-latent space (c). Causal adversarial
perturbation is the union of continuous perturbations around each twin (d).

3.3 CAPI Fairness
This section presents our innovative concept of causal indi-
vidual fairness, denoted as CAPI fairness. Within the Lip-
schitz formulation of IF, we introduce the metric dfair as a
measure in the feature space:

dY(h(v), h(w)) ≤ dfair(v, w)

Here, dY represents the metric applied in the outcome space.
By incorporating a fair metric as a similarity function, indi-
vidual fairness now encompasses both the causal structure
and the sensitive protected feature.

Proposition 2 CAPI Fairness implies both Counterfactual
Fairness and Adversarial Robustness:

CAPI Fairness ⇒ Counterfactual Fairness
CAPI Fairness ⇒ Adversarial Robustness

However, the inverse statements are not necessarily true.

4 Fair Classifier
In this section, we will initially explore the origins of un-
fairness concerning IF in the context of an SCM. Following
that, we will introduce IF classifiers based on CAPI fairness.

4.1 Unfair Area
To analyze the bottlenecks in designing fair classifiers, we
should understand the origins of unfairness. We begin by
defining unfair areas for CAPI fairness, inspired by Ehyaei
et al. (2023).

Definition 4 (Unfair Area) Let M denote an SCM, ∆ di-
ameter of CAP, and h be a binary classifier operating on V.
The unfair area includes instances where the CAPI fairness
property is not met:

A̸=
∆ := {v ∈ V : ∃v′ ∈ BCAP

∆ (v) s.t. h(v) ̸= h(v′)}

To understand the shape of the unfair area, we aim to deter-
mine A̸=

∆ assuming linear SCMs and classifiers (see Fig. 2).

Proposition 3 Consider a linear SCM with a binary linear
classifier h(v) = sign(wT · v − b), where w ∈ Rn. As-
sume M has one binary sensitive attribute S ∈ {0, 1} and
other features X are continuous. Without loss of generality,
let V1 represent the sensitive attribute. The unfair area A̸=

C
for counterfactual fairness is delineated as follows:

{v = (s, x) ∈ V : sign((s− (1− s)) ∗ h(v)) ≥ 0 ∧

dist(x, L) ≤ |wT • [F ]1|
∥w∥p∗

}

The unfair area A̸=
∆ is defined as the band parallel to the

classifier boundary L:

A̸=
∆ = {v = (s, x) ∈ V : dist(x,A ̸=

C) ≤
∆∥wT−1 × F−1∥p∗

∥w∥p∗
}

Here, L denotes the decision boundary of the classifier,
while w−1 and F−1 represent the continuous components
of w and F , respectively.

According to Prop. 3, a straightforward condition can be
derived for ensuring counterfactual fairness.
Corollary 3 Considering the condition in Prop. 3, achiev-
ing a counterfactually fair classifier for M is impossible un-
less F andw satisfy the equationwT ·[F ]1 = 0. This implies
that the classifier h relies solely on a subset of variables that
are non-descendants of S in M.
In assessing CAPI unfairness, a meaningful indicator is the
probability associated with the unfair area in the trained clas-
sifier.
Definition 5 (Unfair Area Indicator (UAI)) Let M be the
SCM with parameters denoted by ⟨G,V,U,F,PU⟩, and ĥ
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Figure 2: The unfair area for linear SCM and classifier consists of two parts: counterfactual and adversarial robustness (left)
The counterfactual fairness mitigation idea is based on the property that the twin of the twin is equal to the instance v (right).

be the trained binary classifier. The probability PV(A
̸=
∆), re-

ferred to as the Unfair Area Indicator, quantifies the likeli-
hood of the CAPI unfairness for ĥ.
Taking into account the concept of unfair areas and the in-
herent property that a twin’s twin is an identity function, we
present a post-processing technique involving label-flipping.
This method aims to mitigate counterfactual fairness issues.
Proposition 4 (Counterfactual Unfairness Mitigation)
Let A̸=

C+ and A̸=
C− represent the positive and negative

regions of counterfactual unfairness A̸=
C , respectively (see

Fig. 2). Assuming C ⊂ A̸=
C−, the unfair area mitigation

method involves flipping the labels of instances in C to
positive. By changing labels, the reduction in unfairness
area is given by:

PV(A
̸=
C)− PV(C)− PV(C+) (15)

Here, C+ is a subset ofA̸=
∆+, representing the points inA̸=

∆+
whose corresponding twins belong to the set C. If we set C =

A̸=
C−, complete mitigation of counterfactual fairness can be

achieved.
Remark 2 The label-flipping direction (+ to −) does
not inherently impact counterfactual unfairness mitigation.
However, fairness considerations often involve a preferred
direction. In such cases, flipping the sign of the unfair re-
gion in relation to this preferred direction can be employed
to promote fairness.
Label flipping alone is insufficient to remove CAPI unfair-
ness. Therefore, in the next section, we introduce an addi-
tional in-processing method to mitigate unfairness.

4.2 Causal Adversarial Learning
Fair adversarial learning aims to achieve high accuracy in
predicting the target variable while ensuring fairness regard-
ing sensitive attributes. This involves formulating a min-max

optimization problem, where the model simultaneously min-
imizes the classification error and maximizes the adversar-
ial loss. In previous chapters, the concept of CAP was dis-
cussed. Now, we formulate the objective function for Causal
Adversarial Learning (CAL). Let D = {(vi, yi)}ni=1 rep-
resent the set of observations. The objective function to be
minimized over the classifier space in CAL is as follows:

min
ψ

E(v,y)∼PD [ max
w∈BCAP

∆ (v)
ℓ(hψ(w), y)] (16)

The optimization objective in Eq. 16 promotes the proxim-
ity of values for hwithin the neighborhoodBCAP

∆ (v) to h(v).
According to Lem. 1 in appendix, we can establish the in-
equality f(v + δ) ≤ f(v) + |δT∇vf(v)| + γ(∆, v). By
setting f(v + δ) = ℓ(h(T−1(T (v) + δ), y), we can utilize
Cor. 1 to represent the expression within the expectation of
Eq. 16 as follows:

max
w∈BCAP

∆ (v)
ℓ(h(w), y) = max

s∈S
max

w∈B+
∆(v̈s)

ℓ(h(w), y) =

max
s∈S

max
δ∈DX

∆

ℓ(h(T−1(T (v̈s) + δ), y) ≤

max
s∈S

max
δ∈DX

∆

ℓ(h(T−1(T (v̈s)), y) + |δT∇X
v̈sf(v̈s)|+

γ(∆, v̈s) ≤ ℓ(h(v), y) + max
s∈S

ℓ(h(v̈s), y)+

max
s∈S

max
δ∈DX

∆

|δT∇X
v̈sf(v̈s)|+ γ(∆, v̈s) =

ℓ(h(v), y) + max
s∈S

ℓ(h(v̈s), y)︸ ︷︷ ︸
II

+

max
s∈S

(∥∇X
v̈sf(v̈s)∥∗ + γ(∆, v̈s))︸ ︷︷ ︸

II

The symbol ∇X denotes the gradient operator for contin-
uous features. The validity of the final equation can be es-
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Figure 3: Figure depicts our numerical experiment’s results, showcasing diverse trainers and datasets to evaluate CAPIFY
performance. The initial bar plot assesses trainer performance through UAI values (favoring lower values) at ∆ = .05. The
subsequent bar plot contrasts methods based on prediction performance (favoring higher values).

tablished by bounding |δT∇X
v̈s
f(v̈s)| using the dual norm

∥∇X
v̈s
f(v̈s)∥∗.

The adversarial loss function, in the above equation, com-
prises a regular loss function and a regularizer, which can be
decomposed into two components. The first component ad-
dresses counterfactual fairness by capturing the discrepancy
between the instance y and the corresponding twins’ classi-
fier label. The second component measures the adversarial
robustness of classifier h regarding the continuous features
surrounding each twin. Assuming random observations, the
evaluation of the robustness property is narrowed down to
the instance denoted as v. Hence, the reformulated expres-
sion for the regularizer can be stated as follows:

R(v) = µ1 ∗max
s∈S

ℓ(h(v̈s), y) +

µ2 ∗ γ(∆, v) + µ3 ∗ ∥∇X
v f(v)∥∗

(17)

where the hyperparameters µi ∈ R determine the extent of
regularization in the model.

5 Numerical Experiments
In this study, we empirically validate the theoretical propo-
sitions presented in the paper. We assess the performance
of the CAPIFY and CAL training methods in compar-
ison to conventional empirical risk minimization (ERM)
and other pertinent techniques, including Adversarial Learn-
ing (AL) (Madry et al. 2017), Locally Linear Regularizer
(LLR) training (Qin et al. 2019), and Ross method (Ross,
Lakkaraju, and Bastani 2021). Our experimentation involves

real datasets, specifically Adult (Kohavi and Becker 1996)
and COMPAS (Washington 2018), which are pre-processed
according to (Dominguez-Olmedo, Karimi, and Schölkopf
2022). Furthermore, we consider three synthetic datasets re-
lated to Linear (LIN), Non-linear (NLM), and independent
futures (IMF) SCMs, along with the semi-synthetic Loan
dataset based on (Karimi et al. 2020).

We utilize a multi-layer perceptron with three hidden lay-
ers, each comprising 100 nodes, for the COMPAS, Adult,
NLM, and Loan datasets. Logistic regression is employed
for the remaining datasets. To evaluate classifier perfor-
mance, we measure accuracy and Matthews correlation co-
efficient (MCC). Furthermore, we quantify CAPI fairness
using UAI across various ∆ values, including 0.05, 0.01, and
0.0. Additionally, we compute UAI for non-sensitive scenar-
ios, employing ∆ values of 0.05 and 0.01 to represent the
non-robust data percentage. Additional comprehensive de-
tails about the computational experiments are available in
the appendix.

We performed our experiment using 100 different seeds,
and the results are presented in Table 1. Figure 3 illustrate
that the CAPIFY method exhibits a lower unfair area (U∆)
for ∆ = 0.05, ∆ = 0.01, and ∆ = 0.0. However, the
CAL method shows unsatisfactory accuracy due to the is-
sues reported previously (Qin et al. 2019). Compared to
ERM, CAPIFY shows slightly lower accuracy, a trade-off
noted in multiple studies (Pessach and Shmueli 2022). No-
tably, real-world data indicates a greater reduction in unfair-
ness than in accuracy. Moreover, CAPIFY exhibits robust-
ness and counterfactual fairness attributes (see Tab. 1), mak-
ing it the favored model when assessing both concepts. For
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Real-World Data Synthetic Data
Adult COMPAS IMF LIN Loan NLM

Trainer U.05 CF R.05 U.05 CF R.05 U.05 CF R.05 U.05 CF R.05 U.05 CF R.05 U.05 CF R.05

AL 0.22 0.18 0.04 0.18 0.14 0.04 0.30 0.28 0.11 0.90 0.90 0.26 0.27 0.27 0.16 0.55 0.53 0.37
CAL 0.23 0.18 0.05 0.14 0.10 0.04 0.35 0.34 0.13 0.90 0.90 0.26 0.26 0.26 0.19 0.48 0.46 0.24
CAPIFY 0.07 0.03 0.05 0.06 0.01 0.04 0.04 0.00 0.04 0.19 0.15 0.09 0.22 0.22 0.14 0.38 0.36 0.24
ERM 0.21 0.18 0.04 0.21 0.17 0.04 0.05 0.02 0.04 0.44 0.43 0.18 0.35 0.35 0.23 0.57 0.54 0.41
LLR 0.23 0.19 0.04 0.35 0.32 0.04 0.22 0.20 0.08 0.31 0.31 0.27 0.27 0.26 0.12 0.41 0.39 0.20
ROSS 0.22 0.08 0.11 0.22 0.16 0.06 0.05 0.02 0.04 0.47 0.44 0.11 0.38 0.38 0.27 0.55 0.52 0.43

Table 1: The table displays the outcomes of our numerical experiment, wherein different trainers are compared based on their
input sets in terms of CAPI fairness metrics (U.05, lower values are better), Counterfactual Unfair area (CF , lower values
are better), and the non-robust percentage concerning adversarial perturbation with radii 0.05 (R.05, lower values are better).
The best-performing techniques for each trainer, dataset, and metric are indicated in bold. The findings highlight that CAPIFY
outperforms other trainers in reducing CAPI unfairness. The standard deviation average for CAPIFY is 0.028, whereas for the
other methods, it is 0.038.

more results, see appendix

6 Discussion and Future Work

In this study, we introduce a comprehensive method con-
sidering individual fairness (IF) and robustness within an
underlying causal model. We establish adversarial learning
through the use of CAP. Remarkably, our CAP strategy sets
itself apart by not requiring assumptions for all categori-
cal features, a departure from the approach by Ehyaei et al.
(2023). Our CAP framework exclusively focuses on sensi-
tive features.

In this study we use the discrete sensitive features for
simplicity, every theoretical and numerical part are satis-
fied for continuous sensitive attribute as well. Our approach
avoids specific assumptions for defining IF based on the L-
Lipschitz formulation. Instead, we can reframe everything
using the ϵ-δ formulation. The optimization in Eq. 16 may
yield nonlinear decision boundaries, particularly with nu-
merous features. To tackle this, we adopt the locally linear
regularizer (LLR) proposed by Qin et al. (2019). LLR is ad-
vantageous in deep learning for countering overfitting, en-
hancing generalization through smoother function learning,
and attaining leading computational performance.

An objection to our approach is that, like many fair learn-
ing methods, although we address unfairness by introducing
a regularizer, there’s no assured theoretical guarantee for the
resulting classifier to uphold individual fairness. In future
research, our goal is to develop a classifier with theoretical
foundations that endorse CAPI fairness principles.
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