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Abstract

Multi-kernel learning (MKL) is a representative supervised
multi-view learning method widely applied in multi-modal
and multi-view applications. MKL aims to classify data by
integrating complementary information from predefined ker-
nels. Although existing MKL methods achieve promising
performance, they fail to consider the tradeoff between diver-
sity and classification accuracy of kernels, preventing further
improvement of classification performance. In this paper, we
tackle this problem by generating a number of high-quality
base learning kernels and selecting a kernel subset with max-
imum pairwise diversity and minimum generalization errors.
We first formulate this idea as a nonconvex quadratic inte-
ger programming problem. Then, we transform this noncon-
vex problem into a convex optimization problem and show
it is equivalent to a semidefinite relaxation problem, which a
semidefinite-based branch-and-bound algorithm can quickly
solve. Experimental results on the real-world datasets demon-
strate the superiority of the proposed method. The results also
show that our method works for the support vector machine
(SVM) classifier and other state-of-the-art kernel classifiers.

Introduction
Numerous methods of learning from multi-view data by con-
sidering the diversity of different views have been developed
recently. These views can come from multiple sources or
modalities. Multiple kernel learning (MKL) is a representa-
tive supervised multi-view learning method widely applied
in multi-modal and multi-view applications (Arabacı et al.
2021; Zhang et al. 2020; Peng et al. 2019; Wu et al. 2020;
Jiang et al. 2022; Shah et al. 2021; Yang et al. 2020). MKL
was initially proposed to regulate the capacity of the search
space for potential kernel matrices to achieve better general-
ization (Gönen 2013). However, it has been extensively uti-
lized in multi-view data scenarios because MKL kernels in-
herently correspond to various sources or views.

For MKL analysis, learning an optimal linear or nonlin-
ear combination of a predefined set of kernels is the foun-
dation of using the complementary information within them
and improving learning performance. Some approaches con-
sider using linear combination methods to combine these
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kernels, such as fixed rule, heuristic, and optimization meth-
ods. Fixed rule methods learn the kernel as a weighted linear
combination of the available kernels without training (Ben-
Hur and Noble 2005). Heuristic methods find the combina-
tion parameters by some heuristic measures like conditional
class probabilities calculated from the kernel matrices or the
performance values trained by each kernel separately (Aiolli
and Donini 2015; Fan et al. 2017; Liu et al. 2020). Optimiza-
tion methods usually learn the kernel combination parame-
ters together with the parameters of the base learner (e.g.,
parameter C in SVM) by solving an optimization problem
(Han et al. 2018; Wang, Lu, and Zhang 2018; Chamakura
and Saha 2022). Some other approaches consider designing
a nonlinear combination method that uses nonlinear func-
tions of kernels, namely, multiplication, power, and expo-
nentiation (Gu et al. 2016; Song et al. 2018). Although
the algorithms mentioned above achieve promising perfor-
mance, they fail to consider the tradeoff between diversity
and classification accuracy of kernels, preventing further im-
provement of classification performance.

Diversity and accuracy have been considered two es-
sential characteristics in kernel combinations (Xia and Hoi
2013; Liu et al. 2016). Ko et al. (Ko, Sabourin, and de Souza
Britto Jr 2009) studied the correlation between accuracy and
diversity and established theoretically and empirically that
the two are indeed correlated. These studies assert that to
get a good combination, the combined kernels should be
as diverse as possible without sacrificing accuracy. In pre-
vious studies on MKL, various approaches have been used
to select base learning kernels. Some approaches (Han et al.
2018; Shen et al. 2021) studied predefined kernels from
commonly used kernels (e.g., linear, Gaussian, and Poly-
nomial) with different parameters. Chamakura and Saha
(Chamakura and Saha 2022) used linear kernel, Intersec-
tion kernel, and Chi-squared kernel as base learning kernels.
Ding et al. (Ding, Tang, and Guo 2020) used the Gaussian
Interaction Profile of the network (GIP) kernel as a base
learning kernel. Yu et al. (Yu, Gong, and Jiang 2020) gen-
erated multiple base kernels from a specific kernel set, in-
cluding the Hadamard, RBF, and linear kernels. To summa-
rize, predefined kernels can be different kernels or the same
kernel with different parameters. Since a kernel learning al-
gorithm (e.g., SVM) is sensitive to kernel parameters, few
parameter candidates usually perform best. To this end, con-
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sidering only the diversity between kernels cannot ensure
their good performance. In addition, quantifying the diver-
sity of kernels, however, is difficult as there is no formal def-
inition. For this reason, few MKL approaches concentrated
on the diversity and/or the accuracy of combined kernels.

The recent work in (Ding et al. 2021a,b) proposed a ran-
domized kernel and established theoretically and empiri-
cally that SVM with the randomized kernel is not sensitive
to kernel parameters. The key idea of the randomized ker-
nel is to assign a random parameter to each input dimen-
sion (or feature). Then each input dimension is allowed to
have a different parameter value. Randomizing the kernel
parameters many times can obtain a pool of randomized ker-
nels while retaining their performance. The randomized ker-
nel was proved to satisfy Mercer’s theorem. Motivated by
this work, this paper proposes a new MKL learning method
named RMKL that optimizes kernel weights over combi-
nations of randomized kernels. We first introduce a kernel
quality measure by considering kernels’ diversity and gen-
eralization errors. By maximizing the pairwise diversity and
minimizing the generalization errors of kernels, we formu-
late the optimization problem of the RMKL as a noncon-
vex quadratic integer programming problem. We transform
this nonconvex problem into a convex optimization prob-
lem and show that it is equivalent to a semidefinite pro-
gramming (SDP) relaxation problem. Further, wo develop a
branch-and-bound branch-and-bound algorithm to solve the
proposed quadratic integer programming problem. Experi-
mental results on the real-world datasets demonstrated the
superiority of the proposed method.

To sum up, our main contributions are:
• We propose a new MKL method that optimizes the ker-

nel weights by considering both kernels’ diversity and
performance and formulating it as a nonconvex quadratic
integer programming problem.
• We transform this nonconvex problem into a convex op-

timization problem and develop an efficient solution.
• We validate the effectiveness of the proposed method on

real-world multi-view datasets of different types.

Preliminaries
We consider the classification learning problem from data
{xi, yi}Ni=1, where xi ∈ Rd belongs to some input space X ,
and y = (y1, ..., yN )T ∈ {1, 2, ..., c}N denoting the class
labels of samples xi.

Multiple Kernel Learning
A classifier is a function f : X → Y which labels each
sample x ∈ X with some y ∈ Y .

We denote by {kl(x, z) : X × X 7→ R, l = 1, ...,m} the
set of m basis kernels to be combined. For each kernel func-
tion kj(·, ·) denote by Kl = [kl(xi, zi)]N×N the associated
kernel matrix. We denote by η = (η1, ..., ηm)

T ∈ Rm+ the
vector of kernel weights used to combine the basis kernels
and denote by k(x, z;η) =

∑m
l=1 ηlKl(x, z) and k(η) =∑m

l=1 ηlKl the combined kernel function and kernel matrix,
respectively.

MKL approach can be considered as the search of the
kernel k(x, z;η) with reproducing kernel Hilbert space
(RKHS) Hη that have good generalization properties. For
a binary classification problem, we learn the optimal com-
bination of kernels by solving the following optimization
problem

minf∈Hη,η∈%
1

2
‖f‖2Hη + C

∑
i

ξi

s.t. yi(f(xi) + b) ≥ 1− ξi, ∀i
ξi ≥ 0, ∀i

(1)

where % is a domain for kernel weights vector η, b ∈ R is
the bias term, and ξi are positive slack variables.

The main task of MKL is to learn the kernel weights η.
Different strategies differ in the way they put restrictions on
η: the linear combination (η ∈ Rm), the conic combina-
tion (η ∈ Rm+ ) or the convex combination (η ∈ Rm+ and∑m
l=1 ηl = 1). A more general practice is to restrict η to a

probability distribution, leading to the following definition
of domain %

% =

{
η ∈ Rm+ : ‖η‖1 =

m∑
l=1

|ηl| ≤ 1

}
. (2)

Using the domain % defined in (2), one can obtain a sparse
solution of kernel combination weights, eliminating irrele-
vant kernels.

Randomized Kernel
For an SVM classifier, the Gaussian kernel is the most com-
monly used kernel function

kGau (x, z) = exp

(
−‖xi − zi‖2

2σ2

)
, (3)

where σ is the kernel parameter. Standard Gaussian kernel
has a single kernel width σ that controls the “spread” of the
kernel. Actually, this kernel width is invariant to the region
of the input space, which means all features share the same
width. Different regions of the input space have different
data characteristics, and more kernel parameters should be
introduced to ensure each feature is associated with a kernel
width value.

To this end, the work in (Ding et al. 2021b) proposed a
randomized kernel, which can be expressed as

kRCG (x, z) = exp

(
−1

2

d∑
i=1

(xi − zi)2

(dσi)2

)
, (4)

where σ1, ..., σd are kernel parameters.
All kernel parameters are randomly assigned in the ran-

domized kernel based on a uniform distribution. SVM with a
randomized kernel is not sensitive to kernel parameters, and
repeated runs can achieve good performance. In addition, a
randomized kernel with d-dimensional parameter vector can
capture the data characteristics in different regions of the in-
put space. Therefore, different randomized kernels may pro-
vide complementary information for data distribution inves-
tigation.
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The Proposed Method
Measuring the Quality of Kernels
By performing the random assignment of kernel parameters
M times, a pool of M randomized kernels is obtained, de-
noted as

M = {k1, ..., kM} . (5)
In ensemble classification, accuracy–diversity tradeoff

has been well studied (Aksela and Laaksonen 2006), and it
is opined that accuracy should not be sacrificed for diversity.
Motivated by this work, we select a subset of kernels from
the setM while maximizing their diversity and minimizing
their generalization error. Two sub-problems are involved:
measuring randomized kernels’ diversity and performance.

The diversity of kernels is generally accepted as a nec-
essary condition for combining them. However, quantifying
the diversity of classifiers is difficult as there is no general
agreement about quantifying diversity among a set of ker-
nels. Giacinto and Roli (Giacinto and Roli 2001) proposed a
double-fault measure to measure diversity between two basis
classifiers. The intuition defines this measure as two diverse
classifiers performing differently on the same dataset. Sim-
ilarly, the double-fault measure measures diversity between
a pair of basis kernels.

Given two basis kernels ki and kj , let Nab be the num-
ber of samples on which the predictive output of a classifier
with kernels ki and kj is a and b, respectively. The diversity
between the two basis kernels is measured by

D(ki, kj) =
Nab +N ba

Naa +N ba +Nab +N bb
. (6)

We train a classifier with the basis kernels on the validation
set and calculate their average k-fold cross-validation er-
ror rates to measure the basis kernels’ performance. Specifi-
cally, we denote the average error rate of kernel ki byE(ki).

Optimizing the Kernel Weights
The selected kernels should be as accurate and diverse as
possible to obtain a good combination of basis kernels in
the set M. We then propose an optimization objective by
selecting a subset of kernels from a pool of kernel candidates
to minimize the objective function, which allows accuracy
and diversity to be incorporated within a single measure. By
introducing binary kernel weights, the objective of selecting
a subset of kernels can be formulated by

min
M∑
i=1

M∑
j=1

ηiηj
D(ki, kj)

and
M∑
i=1

ηiE(ki)

s.t. ηi ∈ {0, 1} , i = 1, ...,M,

(7)

where ηi = 1 means that the kernel ki is selected in the ker-
nel subset. When we obtain the kernel weights η, we con-
sider a convex linear combination of basis kernels

k(xi,xj) =

∑M
l=1 ηlkl(xi,xj)∑M

l=1 ηl
. (8)

A direct way of solving (7) is to traverse the whole set M
to find the best combination of basis kernels, which leads to
the impractical computation cost.

To solve it efficiently, we employ a matrix Q to store the
pairwise diversity terms of kernels in the setM. Let the off-
diagonal entry Qij be the inverse of the pairwise diversity
given by kernels ki and kj , that is, Qii = 1

D(ki,kj)
, and let

all diagonal entries Qii be 0. In addition, we use a vector r
to store the accuracy terms where ri = E(ki).

By introducing a free parameter m, we transform the
problem (7) to the following quadratic-(0,1) integer pro-
gramming problem

min p(η) = ηTQη + rTη

s.t.
M∑
i=1

ηi = m,

ηi ∈ {0, 1} , i = 1, ...,M,

(9)

with Q being a symmetric M × M matrix, r is a M real
vector, and m ∈ R. Here, the parameter m denotes the total
number of selected kernels.

Semidefinite programming is well known to provide pow-
erful relaxations for quadratic-(0,1) integer programming
problems. As a relaxation for the boolean quadric polytope
of (9), we model the dyadic product ηTη by a matrix vari-
able X, and denote the diagonal of this matrix by D.

Then, we define the SDP relaxation of the problem (9)

min p(η) = rTη +

M∑
i=1

M∑
j=1

qijXij

s.t. Xij = Di, i = 1, ...,M

M∑
j=1

Xij = mDi, i = 1, ...,M

eTη = m

X− ηηT � 0,

(10)

where X ∈ SM , e denotes the M -vector of all ones, and qij
denotes the general term of matrix Q.

Solving the Problem

It is known that the integer programming problem of (9)
is NP-complete (Hartmanis 1982). Note that the objective
function in (9) is not convex due to the Q diagonal terms. By
introducing two parameters u ∈ RM and v ∈ RM , we can
transform this nonconvex problem into the following convex
optimization problem

min p′(η)

s.t.
M∑
i=1

ηi = m, ηi ∈ {0, 1} , i = 1, ...,M,
(11)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11795



where

p′(η) = ηTQη + rTη +
M∑
i=1

ui(η
2
i − ηi)

+
M∑
i=1

viηi(
M∑
i=1

ηi −m)

= ηTQ1η + rT1 η +
M∑
i=1

ui(η
2
i − ηi)

= ηTQ2η + rT2 η,

and Q1 = Q+ 1
2

(
uT e+ eTu

)
, Q2 = Q1+Diag(v), r1 =

r − uTm, r2 = r1 − v. Here, Diag(v) denotes a diagonal
M ×M matrix with the elements of v on the diagonal.

To solve (11), we can use the Branch-and-Bound (B&B)
algorithm based on the relaxation of the constraints η ∈
[0, 1]

M , and denote S :=
{
η : eTη = m,η ∈ [0, 1]

M
}

by
the set of feasible solutions of the continuous relaxation of
(9). For all η ∈ S, it is easy to see that the objective function
p′(η) equals p(η). The main idea of the B&B algorithm is
to divide the problem into smaller subproblems by branch-
ing the variables into possible values, creating a lower bound
of the function in a specific domain, and finding approxi-
mate solutions that converge to the optimal solution. In the
case of problem (11), the bound can be solved by finding
the optimum value of the continuous relaxation. To this end,
we should solve parameters u and v in p′(η) to find a tight
bound. Specifically, we need to solve the following problem

max
u,v

min
η∈S

p′(η)

s.t. Q2 � 0.
(12)

Theorem 1. (Lemaréchal and Oustry 1999) The optimal
value of problem (12) is equal to the SDP relaxation (10).

For problem (12), optimal values u∗i are solved are by
the optimal values of the dual variables associated with con-
straints Xij = Di, i = 1, ...,M of (10), and optimal values
v∗i are solved are by the optimal values of the dual variables
associated with constraints

∑M
j=1Xij = mDi, i = 1, ...,M

of (10).

The Branch-and-Bound Method
We present an exact solution for solving the problem (9) by
designing a B&B framework using relaxation (10) discussed
above for getting lower bounds. Global optimization meth-
ods based on B&B techniques hinge on two pivotal proce-
dures aimed at calculating upper and lower bounds for the
global optimum in nonconvex problems. In the context of a
minimization problem, the upper bound can be derived by
selecting any point within the feasible set. Typically, a local
search method is employed to refine and enhance this up-
per bound. Conversely, the lower bound can be determined
through a convex relaxation of the original nonconvex prob-
lem.

Algorithm 1: SDP based Branch-and-Bound algorithm
Input: The minimization problem (9)
Initializaiton: Global upper-/lower-bounds GUB=+∞,
GLB=−∞, priority queue L

1: while L 6= ∅ do
2: Perform Subproblem selection: O=sel(L).
3: Perform Bounding: [ UB,LB,η,X ] =bound(O).
4: Update global bounds:
5: GLB=min(LB,minO′∈LLB(O′)).
6: if GUB<UB then
7: GUB=UB, η∗ = η.
8: end if
9: Perform Pruning:

10: L← L \ {O′|O′ ∈ L,LB(O′) > GUB}.
11: Perform Branching:
12: if LB<GUB then
13: [O1,O2]=bra(O).
14: L← {L,O1,O2}.
15: end if
16: end while
17: Return η∗.

There are several essential components in B&B: Bound-
ing (bound(O)), Subproblem selection (sel(L)), and Branch-
ing (bra(O)). At each iteration of the B&B algorithm (Algo-
rithm 1), we choose a subproblem from the priority queue
L, and compute its upper and lower bounds LB/UB. Sub-
sequently, the global upper bound (GUB) is updated as the
minimum of the upper bounds across all branches, while the
global lower bound (GLB) is updated as the minimum of
the lower bounds over all leaf branches. Any subproblems
with a lower bound not exceeding the global upper bound
are pruned. In cases where the selected subproblem can-
not be pruned, its feasible set O is partitioned into at least
two convex sets. The B&B algorithm converges when the
global upper-bound and lower-bound closely approximate
each other.

Subproblem selection The selection strategy involves
choosing a subproblem from the priority queue L for further
exploration. At each iteration of the B&B algorithm, we se-
lect the subproblem with the lowest upper-bound estimate.
This approach prioritizes exploration in the most promising
regions of the solution space first.

Bounding The bounding strategy involves producing an
upper bound and a lower bound. The lower bound can be ob-
tained by solving (10) the spectral bundle method proposed
by Helmberg and Rendli (Helmberg and Rendl 2000), well-
established for equality-constrained semidefinite programs.

We employ a heuristic to acquire a lower bound, which
is invoked at each node in the B&B tree. Our approach
involves applying a variable fixation heuristic inspired by
(Létocart, Plateau, and Plateau 2014). This heuristic lever-
ages the solution of the semidefinite relaxation obtained at
each node. It fixes variables under a defined threshold and
subsequently applies the primal heuristic (Billionnet and
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Calmels 1996) over the reduced problem. We update the so-
lution through a fill-up and exchange procedure performed
on the unreduced problem to enhance it. This iterative pro-
cedure, which increments at each iteration, continues until
the reduced problem is empty.

Branching The branching strategy refers to a method for
generating subproblems. The branching strategy utilizes the
optimal semidefinite solution provided by the semidefinite
bounding procedure, as outlined below. First, we define z =
(η+e)/2. Next, we employ the “most-fractional” branching
rule to determine which variables to branch on next: specif-
ically, we choose a variable zi for which zi is closest to 0.5.

Branching on variable zi creates two new subproblems: zi
is fixed to 0 and zi is fixed to 1. These subproblems corre-
spond to nodes in the B&B search tree. The branching pro-
cess generates two nodes, which are subsequently added to
the search tree.

Experimental Results
We conduct experiments on eight benchmark datasets to
evaluate the performance of our proposed RMKL algo-
rithm. Among these datasets, four are public multi-view
datasets, and the other is gene expression microarray one-
view datasets publicly available at the SchliepLAB web-
site 1. Their characteristics are summarized in Table 1. All
dataset inputs are normalized to zero mean and unit variance
range.

Dataset Abbr Sample View Class Feature

3Sources D1 169 3 6 10259
MSRC-v1 D2 210 6 7 2418
Caltech101-7 D3 1474 6 7 3766
NUS-WIDE D4 30000 5 31 634
Armstrong D5 72 1 2 12582
Chen D6 179 1 2 22699
Chowdary D7 104 1 2 22283
Emanuel D8 253 1 2 15154

Table 1: Summary of the datasets

3Sources 2: The 3Sources dataset was collected from
three well-known online news sources: BBC, Reuters, and
Guardian. A total of 169 articles were manually annotated
with one or more of the six topical labels: business, enter-
tainment, health, politics, sport, and technology.

MSRCv1 3: This is a scene recognition dataset containing
240 images in 8 categories. Following (Cai et al. 2011), we
select 7 classes composed of tree, building, airplane, cow,
face, car, bicycle and each class has 30 images. Six visual
feature vectors are extracted from each image, which are the
CM feature of dimension 48, the HOG feature of dimension
100, the GIST feature of dimension 512, the LBP feature of

1https://schlieplab.org/Static/Supplements/CompCancer/datasets.htm
2http://mlg.ucd.ie/datasets/3sources.html
3http://research.microsoft.com/en-

us/projects/objectclassrecognition/

dimension 256, the SIFT feature of dimension 200, and the
CENTRIST feature of dimension 1320.

Caltech101-7 4: This is an object recognition data set
containing 101 categories of images. Following (Xu, Han,
and Nie 2016), we select 7 classes composed of Dolla-
Bill, Face, Garfield, Motorbikes, Snoopy, Stop-Sign and
Windsor-Chair and each class has 1474 images. Six visual
feature vectors are extracted from each image, which are the
Gabor feature of dimension 48, the wavelet feature of di-
mension 40, the GIST feature of dimension 512, the LBP
feature of dimension 928, the SIFT feature of dimension
200, and the CENTRIST feature of dimension 254.

NUS-WIDE 5: This is a real-world web image dataset for
object recognition problem. We select the front 25 from the
all 31 categories in alphabetical order (bear, bird, ... ,tower),
and choose the first 120 images for each class. Five low-level
features are extracted to represent each image: 64 color his-
togram, 144 color correlogram, 73 edge direction histogram,
128 wavelet texture, and 225 block-wise color moment.

Experimental Design
Baseline Methods We compare our RMKL method with
several state-of-the-art MKL methods:

GMKL (Chamakura and Saha 2022): GMKL improved
localized MKL using graph modularity.

ALMKL (Liu et al. 2020): ALMKL proposed an ap-
proach for automatically learning the multiple parameters of
kernel collaborative representation classification (KCRC).

TSMKL (Wang, Lu, and Zhang 2018): TSMKL intro-
duced a fuzzy MKL model based on the Hilbert-Schmidt
independence criterion (HSIC) for classification.

RPMKL (Han et al. 2018): RPMKL introduced a more
general matrix regularized MKL via (r;p)-norm.

EAMKL (Aiolli and Donini 2015): The algorithm com-
bined some weak kernels to solve a quadratic problem.

ELMKL (Guo et al. 2023): The algorithm employed
ELM as the base learner, and l1-norm constraints on the ker-
nel weights controlled the sparsity of the linear combination
of kernels.

DMKL (Strobl and Visweswaran 2013): DMKL em-
ployed the idea of deep learning to implement MKL.

PMKL (Kloft et al. 2011): PMKL extended MKL to ar-
bitrary norms.

NMKL (Cortes, Mohri, and Rostamizadeh 2009): The
algorithm introduced a nonlinear kernel combination strat-
egy based on kernel ridge regression (KRR) and polynomial
combination of kernels.

For each method, 20 repeated runs are considered, and
the average performance and the standard deviation across
20 runs are reported. For each run, half of the samples (as
shown in column 3 of Table 1) are randomly chosen as a
training set, and the remaining samples are retained as a test
set.

Parameter Setting In the proposed RMKL, two param-
eters need to be set. They are the number of randomized

4http://www.vision.caltech.edu/Image Datasets/Caltech101/
5https://lms.comp.nus.edu.sg/wp-content/
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Figure 1: The performance comparison of RMKL for differ-
ent classifiers.

kernels M and the number of selected kernels m. For multi-
view datasets, the m value is set as the number of views in
the datasets. The M value is generally 2 to 3 times the m
value. This conclusion is based on a large number of experi-
mental results. In the following experiments, we setM = 10
and m = 5 as default for one-view datasets.

Like other MKL algorithms, we employ SVM as the base
learner in the proposed RMKL. In RMKL, GMKL, TSMKL,
and ELMKL, the regularization parameter C is tuned on{
10−2, 0.1, 1, 10, 102, 103

}
. In ALMKL, the regularization

parameter λ is experimentally set to 10−3.
In EAMKL, the regularization parameter λ is tuned

on {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. In PMKL, pa-
rameters pairs (p, C) are tuned on {1, 2, 4, 10} ×{
10−2, 0.1, 1, 10, 102, 103

}
. In RPMKL, parameters pairs

(r, p, C) are tuned on {1, 2, 4, 10} × {1, 2, 4, 10} ×{
10−2, 0.1, 1, 10, 102, 103

}
.

Evaluation Metrics We adopt three metrics average
classification accuracy (ACC), rank1 times (Rank1), and
win/tie/loss count to evaluate algorithm performance: ACC
quantifies the average classification accuracy and standard
deviation over 20 runs; Rank1 evaluates ranking informa-
tion of the methods; The win/tie/loss count shows three val-
ues on a measure, i.e., the classification accuracy for which
the performance of a method is significantly better/equal/-
worse than other methods. Here, we apply Wilcoxon’s test
to compare the difference statistically via pairwise compar-
isons (95% significance level).

Performance Comparison
Table 2 shows the performance of the compared methods
in terms of three evaluation metrics. For each row, the best
results are in boldface. To be more intuitive, the last but three
row of Table 2 shows the average ACC (Ave) of each method
among all datasets. The following observations are obtained
according to the experimental results on these datasets:

• RMKL simultaneously considers the diversity and the
performance of kernels. As a result, it outperforms other
MKL methods consistently. In terms of Ave, the RMKL
clearly obtains the best result.

• Instead of using different kinds of kernels or the same
kernel but with different parameters, introducing mul-
tiple randomized parameters in kernels leads to high-
quality kernels such that good performance can be ob-
tained. This is another reason that RMKL outperforms
conventional MKL methods.

• On all datasets, EAMKL achieves the second-best ACC
four times, TSMKL achieves the second-best ACC
two times, while PMKL, RPMKL, LMKL, and DMKL
achieve the second-best ACC only one time. These re-
sults show that the baseline methods do not work for all
datasets.

In the following experiment, we test the performance of
RMKL on other famous kernel learning machines, such as
SVM without bias (SVMWB)(Steinwart, Hush, and Scovel
2011), least square SVM (LSSVM)(Suykens and Vande-
walle 1999), and LSKELM(Huang et al. 2012). The exper-
imental results are demonstrated in Figure 1. We find four
classifiers achieve similar performance on the D8 dataset,
and LSSVM performs much worse than other classifiers on
the remaining datasets. These results demonstrate that the
proposed RMKL method works for SVM, SVMWB, and
LSKELM classifiers on all datasets.

Impact of Parameters
For one-view datasets, we study the impacts of parameters
ofm andC on the performance of RMKL. The parameterm
is used to determine the number of kernels that are selected
for combination. Parameter C controls the tradeoff between
achieving a low training error and minimizing the norm of
the weights of a classifier. Figure 2 shows the performance
of RMKL on D5 with varying parameters m and C. As can
be observed, the performance of RMKL grows linearly with
the number of m, although the increase is not significant.
We setm = 5 as the default valule to save the computational
cost. This result demonstrates the robustness of the proposed
method again.

Conclusion
In this paper, we have studied a new MKL method based on
combining high-quality kernels, which can learn the kernel
weights by considering both kernels’ diversity and gener-
alization errors. The optimization problem of the proposed
method can be formulated as a nonconvex quadratic inte-
ger programming problem. Then, we transform this noncon-
vex problem into a convex optimization problem and prove
it is equivalent to an SDP relaxation problem. The exper-
imental results on both multi-view and one-view datasets
demonstrated the superiority of the proposed method. In fu-
ture work, we will extend our method to more general tasks
and demonstrate its effectiveness in a broader range of ap-
plications.
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Figure 2: Parameter study on the D5 dataset in terms of ACC for a) SVM; b) SVMWB; c) LSSVM; and d) LSKELM classifiers.

Dataset Metric NMKL EAMKL ELMKL PMKL RPMKL TSMKL LMKL ALMKL DMKL RMKL

D1 ACC 88.01 89.28 89.12 88.67 88.65 88.06 88.17 88.21 86.76 89.49
STD 1.37 1.25 1.51 1.24 1.22 1.10 1.26 1.65 1.30 1.25

D2 ACC 97.57 96.89 97.64 98.04 97.98 98.11 97.81 97.50 97.12 98.18
STD 0.80 1.14 0.74 0.71 0.82 0.71 0.84 0.66 0.72 0.73

D3 ACC 94.10 98.13 96.46 96.15 96.22 95.49 98.13 98.01 96.13 98.58
STD 2.24 1.76 2.19 2.03 1.93 1.43 1.33 1.54 1.52 1.29

D4 ACC 40.88 41.93 40.82 41.41 41.27 38.37 40.94 40.63 38.39 42.08
STD 1.43 1.52 1.62 1.48 1.68 2.28 1.51 1.96 1.62 1.63

D5 ACC 70.83 90.42 72.78 95.28 95.42 94.17 94.17 93.33 93.33 96.11
STD 7.24 4.72 9.73 3.62 3.41 3.48 4.02 4.72 2.27 3.87

D6 ACC 92.42 88.31 93.15 93.31 93.09 90.67 93.20 93.08 93.27 94.10
STD 2.39 3.19 2.84 2.35 2.61 3.74 2.29 2.13 2.54 3.46

D7 ACC 94.12 97.45 93.33 94.51 96.57 96.08 95.00 95.20 96.47 97.65
STD 4.89 2.02 4.56 3.46 2.19 2.46 3.74 3.63 2.17 2.07

D8 ACC 91.48 96.72 89.69 99.01 98.89 99.32 98.64 98.33 99.01 99.32
STD 2.19 2.38 5.24 1.03 1.19 0.85 0.89 1.22 1.17 0.75

Ave 83.68 87.39 84.12 88.30 88.51 87.53 88.26 88.04 87.56 89.44
Rank1 0 0 0 0 0 0 0 0 0 8
W/T/L 7/1/0 6/2/0 7/1/0 6/2/0 6/2/0 7/1/0 7/1/0 7/1/0 7/1/0 /

Table 2: The performance comparison (%) of the compared methods on benchmark datasets.
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