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Abstract

Federated Learning (FL) has emerged as a promising solution
to perform deep learning on different data owners without ex-
changing raw data. However, non-IID data has been a key
challenge in FL, which could significantly degrade the accu-
racy of the final model. Among different non-IID types, label
skews have been challenging and common in image classifi-
cation and other tasks. Instead of averaging the local models
in most previous studies, we propose FedConcat, a simple
and effective approach that concatenates these local models
as the base of the global model to effectively aggregate the
local knowledge. To reduce the size of the global model, we
adopt the clustering technique to group the clients by their la-
bel distributions and collaboratively train a model inside each
cluster. We theoretically analyze the advantage of concate-
nation over averaging by analyzing the information bottle-
neck of deep neural networks. Experimental results demon-
strate that FedConcat achieves significantly higher accuracy
than previous state-of-the-art FL methods in various hetero-
geneous label skew distribution settings and meanwhile has
lower communication costs. Our code is publicly available at
https://github.com/sjtudyq/FedConcat.

Introduction
A good machine learning model usually needs a large high-
quality dataset to train. However, due to privacy concern
and regulations such as GDPR (Voigt and Von dem Bussche
2017), sometimes it is not allowed to collect original data for
centralized training. Federated learning (FL) (Kairouz et al.
2019; Li et al. 2019a,b; Yang et al. 2019) is proposed to let
data owners collaboratively train a better machine learning
model without exposing raw data. It has become a hot re-
search topic (Li, Wen, and He 2020; Dai, Low, and Jaillet
2020; He, Annavaram, and Avestimehr 2020; Li et al. 2020a;
Karimireddy et al. 2020; Liu et al. 2020; Wu et al. 2020). FL
has many potential practical applications (Bonawitz et al.
2019; Hard et al. 2018; Kaissis et al. 2020). For example,
different hospitals can collectively train a FL model for diag-
nosing diseases through medical imaging, while protecting
the privacy of individual patients.

A typical framework of FL is FedAvg (McMahan et al.
2016), where the clients train and send their local models
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to the server, and the server averages the local models to
update the global model in each round. It has been shown
that data heterogeneity is a challenging problem in FL, since
non-IID data distributions among FL clients can degrade
the FL model performance and slow down model conver-
gence (Karimireddy et al. 2020; Li et al. 2020b; Hsu, Qi, and
Brown 2019; Li et al. 2021). According to Li et al. (2021),
non-IID data includes label skews, feature skews and quan-
tity skews. In this paper, we focus on label skews (i.e., the
label distributions of different clients are different), which
is popular in reality (e.g., disease distributions vary across
different areas).

Researchers have put some promising effort to address the
above label skew challenge. For example, FedProx (Li et al.
2020a) uses the L2 distance between the local model and
the global model to regularize the local training. MOON (Li,
He, and Song 2021) regularizes the local training using the
similarity between representations of the local model and the
global model. FedRS (Li and Zhan 2021) restricts the up-
dates of unseen classes during local training. FedLC (Zhang
et al. 2022) further calibrates logits to reduce the updates of
minority classes. The key idea of existing studies is usually
to reduce the drift produced in local training (Li et al. 2020a;
Li, He, and Song 2021; Karimireddy et al. 2020; Li and Zhan
2021; Zhang et al. 2022) or design a better federated averag-
ing scheme in the server (Wang et al. 2020b,a). Those algo-
rithms are based on the averaging framework. They attempt
to address the label skew problem by mitigating its side ef-
fect in federated averaging. However, existing methods can-
not achieve satisfactory performance. In label skews, the av-
eraging methods may not make much sense, as each party
may have very different models to predict different classes.
Especially under extreme label skews where each client has
quite different classes (e.g., face recognition), since the local
optima are far from each other, averaging these local models
leads to significant accuracy degradation. Even worse, it is
challenging to quantify how label skews influence the model
due to the diversity of label skews in practice.

In this paper, we think out of the model-averaging
scheme, and propose to use model concatenation as the ag-
gregation method. Since each local model is good at classi-
fying samples of several classes due to label skews, we pro-
pose to concatenate the features learned by the local mod-
els to combine the knowledge from the local models. For
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example, in the label skew setting, one client has sufficient
data on cats with little data on dogs, while another client has
sufficient data on dogs with little data on cats. Then, each
client can train a local model which is good at predicting one
class. Intuitively, concatenating those models can gather all
key information, which can help train a good classifier for
all classes among clients. This seemingly simple idea fun-
damentally changes the way of existing methods regarding
label skews as an issue to avoid or mitigate.

With this idea, we propose a novel FL algorithm to ad-
dress label skews named FedConcat. First, the server divides
clients into a few different clusters according to their la-
bel distributions. To address the privacy concern of upload-
ing label distribution information, we develop an effective
method to infer label distribution directly from the model.
Second, FedAvg is conducted among each cluster to learn
a good model for each kind of label distribution. Third, the
server concatenates encoders of models of all clusters (i.e.
neural networks except the last layer). Finally, with the pa-
rameters of the concatenated encoders fixed, the server and
the clients jointly train a classifier on top of it using FedAvg.
We theoretically justify that concatenation keeps richer mu-
tual information than averaging in the feature space by ap-
plying the information bottleneck theory.

Among each cluster, clients have similar label distribu-
tions. The label skew problem is alleviated inside the cluster,
so FedAvg is competent to train a good model for each clus-
ter with slight label skews. Since the concatenated encoders
have already extracted good features, the task of training a
linear classifier in the final stage becomes simpler. There-
fore, FedAvg can achieve good accuracy for the simplified
task. Moreover, through clustering, we can control the size
of global model by adjusting the number of clusters.

We conduct extensive experiments with various label
skew settings. Our experimental results show that FedCon-
cat can significantly improve the accuracy compared with
the other state-of-the-art FL algorithms including FedAvg
(McMahan et al. 2016), FedProx (Li et al. 2020a), MOON
(Li, He, and Song 2021), FedRS (Li and Zhan 2021) and
FedLC (Zhang et al. 2022). The improvement is more sig-
nificant under extreme label skews. Besides, FedConcat can
achieve better accuracy with much smaller communication
and computation costs compared with baselines.

Our contributions can be summarized as follow:

• Instead of averaging, we propose a new aggregation
method in FL by concatenating the local models. More-
over, we apply clustering technique to alleviate label
skew and control the size of global model.

• We theoretically show that concatenation preserves more
information than averaging from the information bottle-
neck perspective, which guarantees the effectiveness of
our approach.

• We conduct extensive experiments to show the effective-
ness and communication efficiency of FedConcat. Under
various label skews of a popular FL benchmark (Li et al.
2021), FedConcat can outperform baselines averagely by
4% on CIFAR-10, by 8% on CIFAR-100, by 2% on Tiny-
ImageNet, and by 1% on FMNIST and SVHN datasets.

Background and Related Work
Denote Di = (Xi, Y i) the local dataset of client i. Label
skews mean that P (Y i) differs among clients. According to
Li et al. (2021), label skews can lead to significant accu-
racy degradation of the global model. It is also prevalent in
real-world scenarios. For example, the disease distributions
differ in different regions, which leads to label skews when
training a global automatic disease diagnosis system.

Previous studies like FedAvg (McMahan et al. 2016) av-
erage all models submitted by clients. However, under the
non-IID data distribution cases, each client trains a good lo-
cal model towards its local optimum. While the local op-
tima may be far from each other, simply averaging the local
models may produce a global model that is also far from
the global optimum. There are many existing studies aim-
ing to solve the non-IID data distribution problem based on
FedAvg (McMahan et al. 2016).

A popular way is to improve local training so that the lo-
cal model is not too far from the global optimum. For ex-
ample, FedProx (Li et al. 2020a) adds a regularization term
which measures the distance between the local model and
the global model. MOON (Li, He, and Song 2021) shares
a similar motivation, regularizing by a contrastive loss to
measure the distance between representations of the local
model and the global model. Both methods add one more
term to the loss function and require extra computations than
FedAvg. SCAFFOLD (Karimireddy et al. 2020) adjusts the
local gradient by keeping a correction term for each client,
therefore its communication cost doubles. Wang et al. (2021)
propose to monitor the class imbalance of each client based
on uploaded gradient together with a small public dataset.
Then they mitigate the imbalance by their Ratio Loss. Fe-
dRS (Li and Zhan 2021) proposes to restrict the updates of
missing classes by down-scaling their logits, however it only
deals with missing classes. To further deal with minority
classes, FedLC (Zhang et al. 2022) proposes to calibrate log-
its based on the label statistics of local training data. FedOV
(Diao, Li, and He 2023b) introduces the “unknown” class
and trains open-set classifiers in local training for a better
ensemble. More techniques are discussed in Appendix A.1
and A.2 of our full version (Diao, Li, and He 2023a).

Our Method: FedConcat
Problem Statement
Federated learning aims to train a global model on multiple
clients without exposing their raw data. Denote Di the local
dataset of client i. Suppose there are K clients, and the local
loss function for each client is L(·, ·). Formally, our goal
is to train a global model f that minimizes the following
objective.

L =

∑K
i=1 |Di| · E(Xi,Y i)∼Di [L(f(Xi), Y i)]∑K

i=1 |Di|
(1)

Motivation
Pitfalls of existing methods in label skews Under label
skews, the local models can be much different as they are
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Figure 1: Accuracy of local models and averaged model on
two clients under label skews.

trained on different classes. Therefore it hardly makes sense
to average each parameter of these models with quite differ-
ent tasks. As an example, we train FedAvg on two clients
of CIFAR-10 under label skews. The first client only has
samples of class 0 and 2, while the second client only has
samples of class 1 and 9. For both clients, we train 10 lo-
cal epochs per round. We show the accuracy of local models
and averaged global model of two rounds in Figure 1. As we
can see, the accuracy of local classes increases during local
training, while the averaging operation leads to significant
accuracy degradation. This example illustrates the problem
of averaging local models under extreme label skews.

An alternative view of label skews Let us view the neural
network as a feature extractor (all the layers in the network
except the last layer) and a classifier (the last layer). Since
each client’s model is well-fitted in its own dataset, we al-
ready have quite a few locally well-trained feature extrac-
tors. Intuitively, concatenating the features from different lo-
cal extractors can provide a better feature representation for
label skews. Thus we propose the idea of concatenating fea-
ture extractors and training a global classifier.

If we concatenate the models of all clients, our final model
size can grow much large if there are many clients, and
the overhead of training the global classifier is much more
expensive. In practice, although label skews are prevalent,
some parties may have similar label distributions. For exam-
ple, hospitals in the same region may encounter similar types
of diseases. Therefore, we adopt the clustering method be-
fore training. By clustering all clients into a few groups via
their label distributions, we can control the size of global
model. Inside each group, since grouped clients have similar
label distributions, the trained model can capture this kind of
data well.

In brief, we tackle the label skew problem by generat-
ing solutions for each group individually. Next, we combine
those solutions together to get a better global model with
smaller communication cost.

Figure 2: The workflow of FedConcat. (1) Clustering stage:
clients are clustered based on label distributions; (2) Aver-
aging stage: each cluster trains a model using FedAvg; (3)
Post-training stage: all well-trained feature extractors (E1,
E2) are concatenated. All clients train a global classifier (C)
collectively with feature extractors fixed. For FedConcat-ID,
label distributions are inferred in the clustering stage.

Proposed Algorithm
Our framework is illustrated in Figure 2. It has three stages:
clustering, averaging and post-training. First, clients with
similar label distributions are grouped into same cluster.
Then, each cluster performs FL to train a model that fits well
inside the cluster. Finally, the server collects feature extrac-
tors of all clusters with their parameters fixed, and train a
global classifier among all clients. The overall algorithm is
shown in Algorithm 1. In the following, we elaborate those
stages in detail.

Stage 1-A: Clustering with label distributions In order
to alleviate the label imbalance problem, we perform clus-
tering based on label distributions, so that each cluster hosts
clients with similar label distributions. Formally, for client
i, suppose there are Ni,j samples of class j, and there are
a total of Ni =

∑
j Ni,j samples. Its label distribution is

defined as vector

Pi(y) = (
Ni,1

Ni
,
Ni,2

Ni
, ...,

Ni,m

Ni
), (2)

where there are m classes globally. In this paper, we use K-
means algorithm (Lloyd 1982) to perform clustering. For the
hyper-parameter K, one can utilize elbow method to select
the best value. We use K-means as it is simple, popular and
sufficiently good for our study. With clustering, we can con-
trol the number of different models generated by the clients,
which helps to reduce the model size in our later concatena-
tion.

Stage 1-B: Clustering without label distributions If
clients are unable to upload label distributions due to privacy
concerns, we propose to utilize the uploaded local models of
the first round to infer the approximate label distribution of
each client. In this way, we only upload trained models like
FedAvg, which does not cause any extra privacy leakage.
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During local training, if a class appears more frequently,
the model is prone to output a higher probability for that
class. Many works (Johnson and Khoshgoftaar 2019; Bahng
et al. 2020) have observed that predictions of deep learning
model are biased towards the majority classes of the train-
ing set. Intuitively, if we put a large batch of random inputs
into the client model, the average prediction can indicate the
label distribution of training data. Thus, we generate ran-
dom data (i.e., images that each pixel is randomly generated
from range zero to one) and input these random data into
each client model. Then, we calculate the average prediction
probability for each class as the inferred label distribution of
each client. Formally, denote the model of client i as fi. We
randomly generate r inputs X1, ..., Xr, the inferred distribu-
tion of client i

P ID
i (y) =

1

r

r∑
j=1

σ(fi(Xj)), (3)

where σ is the softmax function.
We refer to this variant as FedConcat with Inferred Distri-

bution (FedConcat-ID). A neural network classifier can be
viewed as a function p(Y |X) learned on its training data.
In an ideal scenario, if the inputs X are independent of Y ,
the equation p(Y ) = p(Y |X) holds true. The underlying
intuition of Eq. (3) is to employ uninformative inputs to ap-
proximate p(Y ).

Stage 2: Averaging Within each cluster, we use FedAvg
(McMahan et al. 2016) to train a model that fits well for
such cluster. Inside a cluster, since the label distributions of
the clients are similar, we expect the global model to have a
good performance on the dominant classes of the cluster.

Stage 3: Post-training Now that we have K models, we
stack their encoders (all layers but the last layer) as the
global feature extractor. Then we broadcast the global fea-
ture extractor to all clients for one time, and ask clients to
jointly train a classifier using FedAvg, with the global fea-
ture extractor fixed. Since the encoder training is stopped,
we can calculate the features of raw data in a forward pass
for only one time. For other training rounds, we can directly
feed features into the linear classifier to train it. Therefore in
this stage, our major computation and communication hap-
pens only for the linear classifier.

Theoretical Analysis and Discussion
Analyzing FedConcat by Information Bottleneck
To answer the question why concatenating encoders works
for extreme label skews, we refer to the information bottle-
neck theory (Shwartz-Ziv and Tishby 2017). Suppose a deep
neural network f is trained on dataset D. Denote a random
train sample (X,Y ) ∼ D where X are input variables and
Y are desired outputs. Suppose the extracted features (rep-
resentation before the last fully-connected layer) is Z, the
neural network learns an encoder which minimizes

E(X,Y )∼D[I(X;Z)− βI(Z;Y )], (4)
where I(·; ·) denotes the mutual information between two
variables and β is a positive trade-off parameter related to
the task.

Algorithm 1: FedConcat and FedConcat-ID
Input: number of clients N , number of clusters K,

number of training rounds of the encoder Te,
number of training rounds of the classifier Tc

Output: the final model w
1 if FedConcat then
2 S1, S2, ..., SK ← Kmeans(Pi(y)

N
i=1) // Perform

K-means based on label distributions
3 if FedConcat-ID then
4 Initialize global model fg
5 for i = 1, 2, ..., N in parallel do
6 fi ← TrainLocal(fg) // Send model to each

client for local training

7 S1, S2, ..., SK ← Kmeans(P ID
i (y)

N

i=1) // Infer
label distributions by Eq. (3) and perform
K-means

8 Initialize encoder Ei and classifier Ci for each cluster
9 for t = 1, 2, ..., Te do

10 for i = 1, 2, ...,K do
11 Ei, Ci ← FedAvg({Ei, Ci}, Si) // Run

FedAvg to train encoder and classifier for
each cluster

12 E = {E1, E2, ..., EK}
13 Initialize global classifier C
14 for t = 1, 2, ..., Tc do
15 C ← FedAvg(C,

⋃K
i=1 Si) // Fix E and run

FedAvg on all clients to train C

16 return final model w = {E,C}

In brief, the encoder of deep neural network aims to re-
member the features related to the target outputs (maximiz-
ing I(Z;Y )), while forgetting the information of inputs un-
related to the target outputs (minimizing I(X;Z)).

Consider the label skews in federated learning. Suppose
there are two clients with local datasets D1 and D2 respec-
tively. Their locally trained encoders are fe1 and fe2. Denote
the FedConcat encoder as fe(·) = {fe1(·), fe2(·)} and the
FedAvg encoder as favg . We have the following theorem.
Theorem 1. I(favg(X);Y ) < I(fe(X);Y ), ∀(X,Y ) ∼
D1 ∪D2.

Proof. According to the information bottleneck theory, the
local model of the first client minimizes

E(X1,Y 1)∼D1 [I(X1; fe1(X
1))− β1I(fe1(X

1);Y 1)]. (5)

Similarly, the second client’s local model minimizes

E(X2,Y 2)∼D2 [I(X2; fe2(X
2))− β2I(fe2(X

2);Y 2)]. (6)

For a good global encoder fe, it should minimize

E(X,Y )∼D1∪D2 [I(X; fe(X))− βI(fe(X);Y )]. (7)

For the mutual information between representation and
target, no matter whether (X,Y ) ∼ D1 or (X,Y ) ∼ D2,
we have

I(fe(X);Y ) ≥ max{I(fe1(X);Y ), I(fe2(X);Y )}, (8)
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which means the representation of concatenated encoders
are more related to the global targets than single locally op-
timized encoder.

For the part of forgetting task-unrelated information, we
have
I(fe(X);X) ≥ max{I(fe1(X);X), I(fe2(X);X)}, (9)

which is a disadvantage according to information bottle-
neck theory. According to experimental results in Shwartz-
Ziv and Tishby (2017), when deep neural network reaches
convergence, the mutual information between last layer rep-
resentation and raw input (i.e. I(fe(X);X)) becomes very
small, as compared to I(fe(X);Y ). Therefore, we regard
I(fe(X);Y ) as the main part. We also justify such hypoth-
esis by experiments, which are included in Appendix C of
our full version (Diao, Li, and He 2023a).

For the averaging solution, under label skews, the aver-
aged global model becomes very different from local op-
tima. Thus, for (X,Y ) ∼ D1, we have

I(favg(X);Y ) < I(fe1(X);Y ) ≤ I(fe(X);Y ). (10)
Similarly, for (X,Y ) ∼ D2, we have
I(favg(X);Y ) < I(fe2(X);Y ) ≤ I(fe(X);Y ). (11)

Combining Eq. (10) and (11), for (X,Y ) ∼ D1 ∪D2, we
have I(favg(X);Y ) < I(fe(X);Y ).

Implication Under label skews, the averaged encoder con-
tains less mutual information about the labels compared with
the concatenation of well-trained local encoders. This ex-
plains why the averaged model suffers from accuracy decay
compared with local models, as shown in Figure 1.

Privacy
FedConcat needs client label distribution information, there-
fore it is applicable when local label distribution is not sen-
sitive. For scenarios that also consider label distribution pri-
vacy, users can adopt FedConcat-ID, which only transfers
the models and provides the same privacy level as FedAvg.
The inference attack towards client model is a complex topic
and defense mechanisms against them fall outside this pa-
per’s scope. It is an interesting topic to explore more robust
measures to prevent such breaches in future works.

Communication
Suppose the model size is w, and its last classifier layer size
is cw (c < 1). For Te encoder rounds, each client’s com-
munication cost is 2Tew. Downloading the concatenated
model costs Kw. Next, for classifier rounds each client costs
2TcKcw. The total cost of FedConcat is 2wN(Te +K/2 +
cKTc). For FedAvg with T rounds, the cost is 2wNT . Sup-
pose T = Te + Tc (i.e., we train the same communication
rounds for FedAvg and FedConcat). Given the same model
size w and the number of clients N , communication over-
head can be saved by choosing small c,K, i.e. limiting the
classifier size and number of cluster. Experimental results in
Appendix D.2 of our full version (Diao, Li, and He 2023a)
verify that our approach achieves higher accuracy and more
stable convergence given the same communication cost with
FedAvg and other baselines.

Experiments
We have conducted extensive experiments to evaluate our
method. Through comprehensive experiments, we find that
our techniques consistently outperform baseline methods,
delivering superior accuracy and more stable convergence
under various label skews. Importantly, our methods remain
effective in scenarios characterized by partial client partic-
ipation, large models, and an increased number of clients.
The introduced label inference and clustering components
are both straightforward and effective. Due to the space
limit, we put the following experiments in Appendix of our
full version (Diao, Li, and He 2023a).

• D.2: training curves with communication costs.
• D.3: training curves with computation costs.
• D.4: compared to baselines on the concatenated model.
• D.5: varying the number of clusters.
• D.6: more results on varying the clustering strategies.
• D.7: client partial participation settings.
• D.8: more results and analysis on large models.
• D.9: more results on varying the number of clients.
• D.10: analyzing FedConcat-ID label inference module.

Experiment Setups
Datasets Our experiments engage CIFAR-10 (Krizhevsky,
Hinton et al. 2009), FMNIST (Xiao, Rasul, and Vollgraf
2017), SVHN (Netzer et al. 2011), CIFAR-100 (Krizhevsky,
Hinton et al. 2009), and Tiny-ImageNet datasets (Wu,
Zhang, and Xu 2017) to evaluate our algorithm. The par-
tition strategy from Li et al. (2021) generates various non-
IID settings, with a focus on label skews, given their signif-
icant accuracy degradation (Li et al. 2021). In experiments,
#C = k represents clients with k unique labels, while
pk ∼ Dir(β) denotes the Dirichlet distribution sampled
proportion of each class samples assigned to each client. By
default, we divide whole dataset into 40 clients.

Baselines Our method is compared with well-known,
open-sourced FL methods including FedAvg (McMahan
et al. 2016), FedProx (Li et al. 2020a), MOON (Li, He, and
Song 2021), FedRS (Li and Zhan 2021), and FedLC (Zhang
et al. 2022). The baseline settings replicate those from Li
et al. (2021), running 50 rounds with each client training 10
local epochs per round, batch size 64, and learning rate 0.01
using SGD optimizer with weight decay 10−5.

Models To investigate diverse scenarios with different
clients’ capacities, we experiment with three different neural
networks: simple CNN, VGG-9, and ResNet-50. By default,
we use simple CNN. Appendix D.1 of our full version (Diao,
Li, and He 2023a) provides more details on the setups.

Effectiveness
We evaluate the performance of FedConcat and FedConcat-
ID against other baselines. By default, our configuration in-
cludes a division of the 40 clients into K = 5 clusters, and
200 rounds allocated for training the classifier. In order to
equate the communication cost of FedConcat to that of 50

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11788



Dataset Partition FedAvg FedProx MOON FedRS FedLC FedConcat FedConcat-ID

CIFAR-10

#C = 2 53.6% 53.1% 53.4% 53.8% 49.8% 56.9% 56.5%
#C = 3 57.6% 57.4% 58.6% 59.1% 58.1% 62.0% 61.8%

pk ∼ Dir(0.1) 53.0% 52.8% 53.1% 54.8% 53.7% 57.7% 56.9%
pk ∼ Dir(0.5) 59.9% 59.9% 61.2% 61.5% 61.5% 64.2% 63.7%

SVHN

#C = 2 82.8% 82.6% 83.0% 79.5% 75.7% 83.4% 83.2%
#C = 3 85.2% 85.2% 84.7% 85.7% 84.8% 86.0% 86.1%

pk ∼ Dir(0.1) 84.0% 83.9% 83.7% 80.9% 78.8% 83.2% 82.9%
pk ∼ Dir(0.5) 87.2% 87.2% 87.2% 87.1% 87.1% 87.5% 87.9%

FMNIST

#C = 2 79.0% 81.8% 81.4% 78.3% 77.7% 84.4% 83.0%
#C = 3 84.7% 85.7% 84.6% 85.8% 86.0% 87.1% 86.6%

pk ∼ Dir(0.1) 85.1% 85.2% 85.0% 82.5% 82.1% 84.5% 85.0%
pk ∼ Dir(0.5) 87.5% 87.4% 87.4% 87.5% 87.5% 87.7% 87.5%

Table 1: Experimental results of our methods compared with baselines with same communication cost. The model of baseline
algorithms is the model of one cluster in FedConcat. We run three different random seeds and report the average accuracy.

Partition Best FedConcat FedConcat-IDbaseline
#C = 2 48.6% 48.9% 44.6%
#C = 3 51.5% 53.1% 51.8%

pk ∼ Dir(0.1) 43.7% 47.6% 46.7%
pk ∼ Dir(0.5) 54.4% 56.7% 56.8%

Table 2: Scalability of FedConcat and FedConcat-ID com-
pared with baselines on CIFAR-10, 200 clients.

rounds of FedAvg, we set the encoder training to 31 rounds.
For the FMNIST dataset, due to its image size differing from
CIFAR-10 and SVHN, we record the test accuracy at classi-
fier round 173 to maintain similar communication costs.

Results in Table 1 illustrate that FedConcat consistently
outperforms the other five FL algorithms in most scenar-
ios. Specifically, in the challenging CIFAR-10 dataset, both
FedConcat and FedConcat-ID offer an average improvement
of about 4%. When considering partition types, notable im-
provements are evident in the more complex #C = 2 and
#C = 3 partitions. For the Dirichlet-based label distribu-
tions of SVHN and FMNIST datasets, since the label skews
are slight, the accuracy degradation of baseline algorithms
from centralized training is small. In such scenarios, our
methods exhibit comparable accuracy with the baselines.

Scalability
In this section, we evaluate the scalability of FedConcat. We
keep the number of clusters K = 5. During each round, a
random selection of 50% of the clients is sampled to par-
ticipate in FL training. The results, as illustrated in Table 2,
confirm that both FedConcat and FedConcat-ID continue to
outperform baseline algorithms with 200 clients and partial
participation settings.

Experiments on Larger Model
In this section, we conduct experiments on larger mod-
els, more clients and more complicated tasks, i.e. training
ResNet-50 on CIFAR-100 and Tiny-ImageNet. There are
200 clients, and in each round a random selection of 20%

of the clients participate in the training. For baseline algo-
rithms, we train 500 communication rounds. For FedConcat
and FedConcat-ID, we train 480 encoder rounds and 500
classifier rounds to match the communication cost. Since
ResNet-50 has huge memory and computation overhead, we
set the number of clusters as 2 to constrain memory and
computation costs.

New problems arise when training FedConcat with
ResNet-50 on CIFAR-100 and Tiny-ImageNet. Firstly, local
cluster models tend to overfit since each local cluster wit-
nesses fewer data compared with training on all clients. Sec-
ondly, the cluster sizes become quite unbalanced since the
label distribution points become more sparse in the high di-
mensional (100-D or 200-D) space. Some points may be so
far from others that they are allocated into a very small clus-
ter. Thirdly, the training process of the final classifier layer is
more difficult to converge since there are many more hidden
neurons in ResNet-50 than simple CNN.

To address these problems, we increase the weight decay
factor to tackle overfitting. Client members of the majority
cluster are relocated to force each cluster to be balanced. At
the beginning of the post-training stage, the global classifier
is initialized with parameters of cluster classifiers to speed
up convergence. We discuss these adaptations in detail and
conduct ablation studies in Appendix D.8 of our full version
(Diao, Li, and He 2023a).

As shown in Table 3, by tackling these issues, our meth-
ods achieve higher accuracy than baselines by an average of
8% on CIFAR-100 and 2% on Tiny-ImageNet.

Effect of Clustering
If we concatenate all models from all clients without clus-
tering, when there are a large number of clients, our global
model can become very large. Large final model leads to
heavy communication and computation costs. Moreover,
concatenating all models from all clients can suffer from un-
stable convergence and low test accuracy, since each client
can have limited training samples.

An experiment on CIFAR-10 is illustrated in Figure 3,
where we show the test accuracy at each classifier round af-
ter training 100 encoder rounds. No clustering means each
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Dataset Partition FedAvg FedProx MOON FedRS FedLC FedConcat FedConcat-ID

CIFAR-100

#C = 2 8.4% 8.1% 8.0% 7.0% 3.8% 18.5% 16.4%
#C = 3 21.6% 18.7% 19.0% 19.2% 12.6% 34.4% 32.9%

pk ∼ Dir(0.1) 52.4% 51.5% 55.2% 51.8% 50.5% 61.2% 62.1%
pk ∼ Dir(0.5) 62.0% 61.2% 61.9% 61.9% 61.4% 66.3% 65.6%

Tiny-ImageNet

#C = 2 3.1% 2.7% 3.0% 3.1% 2.0% 4.3% 4.3%
#C = 3 4.9% 5.1% 6.3% 3.3% 1.7% 11.7% 9.6%

pk ∼ Dir(0.1) 40.8% 40.8% 40.6% 39.7% 39.9% 43.1% 42.6%
pk ∼ Dir(0.5) 44.0% 44.2% 44.1% 43.6% 43.9% 44.3% 43.8%

Table 3: Experimental results on CIFAR-100 and Tiny-ImageNet with ResNet-50. We tune the weight decay among
{0.00001, 0.001, 0.002, 0.005} for all algorithms. We present the average of the last 10 rounds.
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Figure 3: Training curves with clustering versus without
clustering on CIFAR-10 (40 clients).

client trains a model for server to concatenate, where each
client model is only trained with few samples and prone to
overfit. Since those models are not well-trained, concatenat-
ing their encoders can hardly extract good features. From
Figure 3, we can observe that clustering not only reduces
communication cost, but also effectively improves model
quality with more samples.

FedConcat concatenates small models into a large model.
As a baseline, we directly train prior FL algorithms on the
model with equivalent size to the concatenated model of
FedConcat. The training curves on CIFAR-10 are shown in
Figure 4, which illustates that FedConcat still keeps its ad-
vantage when compared with the concatenated model.

Comparing with Other Clustered FL
In this section, we employ other clustered FL algorithms
during our clustering stage. We conduct experiments with
three clustering-based methods including IFCA (Ghosh
et al. 2020), recently proposed FedSoft (Ruan and Joe-Wong
2022) and FeSEM (Long et al. 2023). The results for the
CIFAR-10 dataset are presented in Table 4. It can be ob-
served that both FedConcat and FedConcat-ID outperform
other clustering strategies. FeSEM incorporates an addi-
tional proximal loss term during local training, which re-
sults in an extra computational burden similar to FedProx.
Both IFCA and FedSoft entail multiple times of communi-
cation cost as all cluster models are transferred to clients in
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Figure 4: Comparing with baselines on the final global
model of FedConcat on CIFAR-10 (40 clients, #C = 2).

Partition Best FedConcat FedConcat-IDbaseline
#C = 2 54.5% 56.9% 56.5%
#C = 3 60.4% 62.0% 61.8%

pk ∼ Dir(0.1) 56.1% 57.7% 56.9%
pk ∼ Dir(0.5) 63.3% 64.2% 63.7%

Table 4: Comparing with other clustering strategies (IFCA,
FedSoft and FeSEM) on CIFAR-10.

each round. Thus, the clustering strategies of FedConcat and
FedConcat-ID prove to be both effective and efficient.

Conclusion
In this paper, we propose to alleviate the accuracy decay in-
duced by label skews in FL through concatenation. We show
that in most cases, our methods can significantly outperform
various state-of-the-art FL algorithms with smaller commu-
nication costs. FedConcat can alleviate accuracy decay be-
cause it divides the hard problem (training a model among
all clients under extreme label skews) into various easy prob-
lems (training one model within each cluster under allevi-
ated label skews). Then it collects clues of easy problems
(i.e., extracted features) to solve the hard original problem.
Our approach brings new insights to the FL community to
look for other aggregation approaches instead of averaging.
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