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Abstract
Submodular maximization algorithms have found wide ap-
plications in various fields such as data summarization, rec-
ommendation systems, and active learning. In recent years,
deletion-robust submodular maximization algorithms have
garnered attention due to their significant implications in sce-
narios where some data points may be removed due to user
preferences or privacy concerns, such as in recommendation
systems and influence maximization. In this paper, we study
the fundamental problem of submodular maximization with
knapsack constraints and propose a robust streaming algo-
rithm for it. To the best of our knowledge, our algorithm is
the first to solve this problem for non-monotone submod-
ular functions and can achieve an approximation ratio of
1/(6.82 + 2.63d) − ϵ under a near-optimal summary size
of Õ(k + r), where k denotes the maximum cardinality of
any feasible solution, d denotes the number of the knapsack
constraints and r is the robustness parameter. For monotone
submodular functions, our algorithm can achieve an approx-
imation ratio of 1/(2 + 2d) − ϵ under a near-optimal sum-
mary size of Õ(k+r), significantly improving upon the best-
known ratio of Ω

(
(1/d− ϵ)2

)
. The empirical performance of

our algorithm is extensively evaluated in several applications
including influence maximization and recommendation sys-
tems, and the experimental results demonstrate the effective-
ness of our algorithm.

Introduction
Submodular maximization algorithms, which have played a
critical role in advancing the field of artificial intelligence,
encompass a broad range of applications, including data
summarization (Balkanski, Breuer, and Singer 2018; Ama-
natidis et al. 2022; Cui et al. 2021, 2023b, 2022, 2023a),
object detection (Angelova and Zhu 2013; Zhu, Jiang, and
Shao 2014), text classification (Lei et al. 2019), and ac-
tive learning (Golovin and Krause 2010; Wei, Iyer, and
Bilmes 2015; Golovin and Krause 2011). As a result of
their widespread applicability, submodular maximization
problems have been extensively studied under various con-
straints, such as cardinality, knapsack, matroid, and indepen-
dence system constraints. Among the various NP-hard prob-
lems studied in this area, submodular maximization with
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knapsack constraints (abbreviated as the SK problem) stands
out as one of the most fundamental problems as knapsack
constraints can capture real-world constraints such as bud-
get, time, and size. As a result, the SK problem has attracted
tremendous attention since the 1980s (Wolsey 1982). In re-
cent years, with the increase in the amount of data, there
has been a growing focus on the design of low-memory
streaming algorithms for submodular maximization prob-
lems (Kazemi et al. 2019; Mitrovic et al. 2017; Badanidiyuru
et al. 2014; Mirzasoleiman, Jegelka, and Krause 2018; Haba
et al. 2020; El Halabi et al. 2020; Chekuri, Gupta, and Quan-
rud 2015), which is one of the primary focuses of our paper.

In this paper, we investigate submodular maximization al-
gorithms that are robust to deletions, which have significant
implications in scenarios where some data points may be re-
moved by users. For instance, Article 17 of the European
“General Data Protection Regulation” (Voigt and Von dem
Bussche 2017) outlines obligations for service providers to
comply with individuals “Right to be forgotten” allowing
them to request the deletion of their personal data or im-
pose restrictions on its use. Another application of these al-
gorithms is in movie recommendation systems, where the
goal is to select a subset of movies for a user that maxi-
mizes the submodular utility function. However, in the event
that a user has already viewed some of the recommended
movies, the remaining recommendations may not provide a
satisfactory user experience. In such cases, the user may de-
sire for the recommendation system to remove these movies
and promptly update the list of recommendations. Never-
theless, rerunning the algorithm on the dataset that excludes
movies removed by the user can be both expensive and time-
consuming. As such, a more effective approach to handling
user deletions would be to enhance the robustness of the al-
gorithm itself.

Motivated by the aforementioned practical needs, sev-
eral studies such as (Kazemi, Zadimoghaddam, and Karbasi
2018; Dütting et al. 2022b; Zhang, Tatti, and Gionis 2022)
have modeled the robustness to deletion as a two-stage game
against an adversary and presented robust submodular max-
imization algorithms. In their model, the robust algorithm
generates a summary of the groundset according to the ro-
bustness parameter r in the first stage. Subsequently, in the
second stage, after revealing the elements removed by the
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adversary, the algorithm generates the final solution set.1
They assumed that while the adversary may have knowledge
of the algorithm, they do not have access to its random bits
and are therefore oblivious to the contents of the summary
generated by the algorithm. This is a natural assumption in
many real-world applications and is also adopted in this pa-
per. For example, in the movie recommendation application,
whether a movie has already been watched by the user or
is deemed inappropriate is independent of its inclusion or
exclusion in the summary.

Among the existing works on robust algorithms, only
(Avdiukhin et al. 2019) has successfully proposed an algo-
rithm for the problem of deletion-robust submodular maxi-
mization with knapsack constraints (abbreviated as the RSK
problem). While they have investigated a more general ro-
bust setting where the adversary has access to the random
bits utilized by the algorithm, their algorithm is limited to
the special scenario in which the submodular function is
monotone. More importantly, it has been shown to have a
very poor approximation ratio of

(
(1− 1

e )
3/d+8

128(1+2d) − ϵ
)2

=

Ω
(
( 1d − ϵ)2

)
, particularly when compared to the best ap-

proximation ratio of 1
1+2d − ϵ achieved by (Yu, Xu, and Cui

2018) for this problem in the non-robust scenario (i.e, the
monotone SK problem). Although the approximation ratio
of (Avdiukhin et al. 2019)’s algorithm can be slightly im-
proved to

( 2(1−1/e)(1−1/(2 logB))
32(1−1/(2 logB))+3 − ϵ

)2
when there is only

a single knapsack constraint (i.e., d = 1), it is still far from
optimal. It remains an open problem whether there exists a
robust algorithm that can solve the general (non-monotone)
RSK problem in either an offline or streaming setting, and
whether it is possible to achieve a good approximation ratio
of Ω( 1d − ϵ).

Contribution
In this paper, we provide confirmative answers to all
of the open problems mentioned above by presenting a
novel streaming algorithm dubbed RSK-Streaming for the
RSK problem. Our algorithm fundamentally differs from
(Avdiukhin et al. 2019)’s in terms of algorithmic design and
analysis technique, which are detailedly explained in the
fourth section. The major contributions of our paper can be
summarized as follows:

• For the non-monotone RSK problem, our RSK-
Streaming algorithm can achieve an approximation ratio
of 1

6.82+2.63d − ϵ under a near-optimal summary size of
O(k log dB

ϵ + r log dB
ϵ2 ), where k denotes the maximum

cardinality of any feasible solution and B denotes the
budget in the problem. To the best of our knowledge,
RSK-Streaming is the first algorithm with provable per-
formance bounds for the non-monotone RSK problem,
whether in offline or streaming settings.

• For the monotone RSK problem, our RSK-Streaming
algorithm can achieve an approximation ratio of 1

2+2d −
ϵ under a near-optimal summary size of O(k log dB

ϵ +

1Formal problem definitions are provided in the third section.

r log dB
ϵ2 ), which significantly improves the approxima-

tion ratio of
(
(1 − 1

e )
3/d+8

128(1+2d) − ϵ
)2

achieved by the
state-of-the-art work (Avdiukhin et al. 2019).

• We conduct extensive experiments using several real-
world applications including influence maximization and
movie recommendation, and the experimental results
strongly demonstrate the effectiveness of our algorithm.

In order to facilitate smooth reading and adhere to page lim-
itations, we have included detailed proofs of most lemmas
and theorems in the appendix, while only providing the in-
tuition and underlying ideas of the proofs in the main text.

Related Work
In this section, we provide a review of the two algorithms
that are most closely related to our research topic.

Algorithms for Submodular Maximization With
Knapsack Constraints
The traditional SK problem has a long history of research,
with the initial proposal of an algorithm by (Wolsey 1982)
that achieved an approximation ratio of 0.357 for the special
case where d = 1 and the objective function is monotone.
Subsequent work, such as that by (Lee et al. 2010; Gupta
et al. 2010; Fadaei, Fazli, and Safari 2011; Kulik, Shachnai,
and Tamir 2013; Khuller, Moss, and Naor 1999; Badani-
diyuru and Vondrák 2014; Ene and Nguyen 2019; Amana-
tidis et al. 2020), focused on the development of offline al-
gorithms to address both monotone and non-monotone sub-
modular functions. In the general case where the submodular
function is non-monotone, the optimal approximation ratio
of 0.385 was achieved by (Buchbinder and Feldman 2019).
In recent years, there has been significant interest in the
streaming algorithm of the SK problem, with studies such as
(Han et al. 2021; Yaroslavtsev, Zhou, and Avdiukhin 2020;
Huang and Kakimura 2018; Huang, Kakimura, and Yoshida
2020; Huang and Kakimura 2021; Yu, Xu, and Cui 2018)
examining the case where the submodular function is mono-
tone and achieving an approximation ratio of 1

1+2d − ϵ. For
the case where the submodular function is non-monotone,
(Han et al. 2021) and (Cui et al. 2022) have proposed ap-
proximation algorithms for it, and the optimal approxima-
tion ratio is 1

3.6+2.1d .

Algorithms for Deletion-Robust Submodular
Maximizaton
The study of deletion-robust submodular maximization was
first introduced by (Krause et al. 2008), who considered a
setting that required the algorithm to construct a solution
without allowing it to update the output after deletion, which
is different from the one we studied. Subsequent work in-
cluding (Bogunovic et al. 2017) and (Orlin, Schulz, and
Udwani 2018) also adopted this setting. The robust set-
ting we consider in this paper is first proposed by (Mitro-
vic et al. 2017) and has been adopted by subsequent work
including (Kazemi, Zadimoghaddam, and Karbasi 2018;
Mirzasoleiman, Karbasi, and Krause 2017; Avdiukhin et al.
2019; Zhang, Tatti, and Gionis 2022; Dütting et al. 2022a),
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where the algorithms proposed by (Mitrovic et al. 2017) and
(Avdiukhin et al. 2019) are capable of handling stronger
cases in which the adversary can select removed elements
adaptively with respect to the summary produced by the
algorithm. Among the studies mentioned above, (Kazemi,
Zadimoghaddam, and Karbasi 2018) stand out as a signifi-
cant contribution to the problem of deletion-robust submod-
ular maximization with a simple cardinality constraint. Their
algorithm employs random sampling to pick elements from
a pool of candidate elements, an idea that is later adopted by
(Zhang, Tatti, and Gionis 2022; Dütting et al. 2022b,a) and
provids some inspiration for enhancing the robustness of our
algorithm. For the RSK problem we focus on in this paper,
only (Avdiukhin et al. 2019) have successfully designed a
robust algorithm, based on the partitioning approach pro-
posed by (Mitrovic et al. 2017). However, their algorithm
only works for the special case where the submodular func-
tion is monotone and yield a poor approximation ratio of(
(1− 1

e )
3/d+8

128(1+2d) − ϵ
)2

, which is far from optimal.

Problem Statement
We begin by providing some fundamental definitions:
Definition 1 (Submodular Function). A set function
f : 2N 7→ R≥0 defined on a finite ground set N with |N | =
n is considered submodular if it satisfies the following con-
dition for all sets: f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ).

In this paper, we allow f(·) to be non-monotone, i.e.,
∃X ⊆ Y ⊆ N : f(X) > f(Y ). Following existing work
such as (Dütting et al. 2022b; El Halabi et al. 2020; Mitro-
vic et al. 2017), we assume that f(·) is normalized, i.e.,
f(∅) = 0. We assume that each element u ∈ N has d associ-
ated weights c1(u), c2(u), . . . , cd(u) and define the function
cz(S) =

∑
u∈S cz(u) for any S ⊆ N . To facilitate compar-

ison with existing work, we follow (Yaroslavtsev, Zhou, and
Avdiukhin 2020; Han et al. 2021; Avdiukhin et al. 2019; Cui
et al. 2022) to assume that the weights of elements in N are
normalized such that ∀u ∈ N , ∀z ∈ [d] : cz(u) ≥ 1.

Based on the above definitions, the traditional sub-
modular maximization with knapsack constraints (i.e.,
the SK problem) is defined as: max{f(S) : S ⊆
N and ∀ z ∈ [d], cz(S) ≤ B}. In this paper, we study
the deletion-robust version of the SK problem (i.e., the
RSK problem), which involves solving the SK problem for
each possible deletion instance of R ⊆ N , defined as
follows:max{f(S) : S ⊆ N \R and ∀ z ∈ [d], cz(S) ≤ B},
where R with size of |R| ≤ r is unknown a priori and se-
lected by an adversary that is unaware of the random bits
used by the algorithm. Following (Kazemi, Zadimoghad-
dam, and Karbasi 2018; Dütting et al. 2022b; Zhang, Tatti,
and Gionis 2022), we model the procedure for finding a so-
lution that is robust to deletions as a two-stage game against
an adversary. In the first stage, the algorithm is provided with
a robustness parameter r and selects a subset ofN as a sum-
mary of the entire dataset N . Simultaneously, an adversary,
who may know the algorithm but has no access to its ran-
dom bits, selects a deletion set R. In the second stage, the
adversary reveals R and the algorithm determines a feasi-
ble solution from the summary after removing R. In this

model, the algorithm’s performance is evaluated based on
its approximation ratio and the size of its summary. We in-
vestigate the RSK problem within the context of a streaming
setting, where elements in N arrive sequentially in an arbi-
trary order. Our objective is to develop a single-pass stream-
ing algorithm that utilizes a small amount of memory, with
the memory usage being nearly linear in relation to the sum
of k and r.

For convenience, we define f(u) = f({u}) for any ele-
ment u ∈ N , and the marginal gain of u with respect to S as
f(u | S) = f(S∪{u})−f(S). We denote the set {1, . . . , i}
as [i] for any natural number i, and the maximum cardinal-
ity of any feasible solution in the problem as k. Throughout
this paper, we use O to denote an optimal solution for the
RSK problem. Without loss of generality, we assume that
∀z ∈ [d] : cz(u) ≤ B for every u ∈ N , as any element vi-
olating the assumption can be removed from the ground set
without affecting any feasible solution.

Algorithms
To the best of our knowledge, only (Avdiukhin et al. 2019)
have proposed an algorithm for the RSK problem. Their
algorithm is limited to solving the special case where the
submodular function is monotone, whereas our algorithm
does not have such limitations. Furthermore, our algorithm
fundamentally differs from theirs in terms of algorithmic
design, as mainly reflected in the following key aspects.
(i) Drawing on the partitions-and-buckets approach in (Bo-
gunovic et al. 2017; Mitrovic et al. 2017), the algorithm
proposed by (Avdiukhin et al. 2019) creates multiple par-
titions, each of which corresponds to a specific threshold of
marginal density, as well as multiple buckets that are dynam-
ically added as needed. These partitions are characterized
by exponentially decreasing thresholds, while the bucket ca-
pacity exhibits exponential growth. Each incoming element
in the stream is added to the first bucket that satisfies its
threshold and capacity, which ensures that the product of
cost and marginal density of each element in the bucket
is nearly identical, thereby enhancing the robustness of the
summary. In contrast, our algorithm employs a single thresh-
old γ∗ ∈

[
f(O)

(1+ϵ)αB , f(O)
αB

]
, and a fixed number of candidate

solutions to control the quality of elements added to the sum-
mary. Each candidate solution has a capacity of at most the
budget B and includes a “warehouse” for temporarily stor-
ing high-quality elements. As new elements arrive, the algo-
rithm greedily selects the candidate solution with the maxi-
mum marginal density and adds the element to its warehouse
if its marginal density satisfies the threshold. Once the num-
ber of elements in a warehouse exceeds a certain number, we
sample an element from the warehouse and add it to the cor-
responding candidate solution if it satisfies the budget con-
straint. The above process ensures both the quality and ro-
bustness of the summary, which will be explained in detail
later. (ii) Their algorithm necessitates reordering the initial
output summary based on the cost of elements and invoking
the algorithm again to ensure that the final summary meets
the size requirements, while our algorithm can directly gen-
erate a summary with satisfactory size. (iii) Unlike their al-
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Algorithm 1: RSK-Streaming-Summary
Input: budget B, ϵ ∈ (0, 1), deletion parameter r,

positive number α > d, and integer h;
1 e[r] ←NULL, V[r] ← the first r elements to arrive;
2 while there is an incoming element e do
3 V ′

[r] ← the r + 1 elements with the highest function
values among the arrived elements;

4 if f(e)∑
z∈[d] cz(e)

> mina∈V[r]

f(a)∑
z∈[d] cz(a)

then
5 Add e to V[r] and then pop the element u with

the smallest value of f(u)∑
z∈[d] cz(u)

;

6 else u← e;

7 if f(u)∑
z∈[d] cz(u)

>
f(e[r])∑

z∈[d] cz(e[r])
then e[r] ← u;

8 Γ←
{
(1 + ϵ)i : i ∈ Z ∧ f(e[r])

(1+ϵ)αB
∑

z∈[d] cz(e[r])
≤

(1 + ϵ)i ≤ (1+ϵ)f(e[r])∑
z∈[d] cz(e[r])

}
;

9 Remove all Sγ
t and W γ

t where γ /∈ Γ;
10 foreach t ∈ [h] and γ ∈ Γ do
11 if Neither Sγ

t nor W γ
t exist then

12 Sγ
t ← ∅; W

γ
t ← ∅

13 foreach γ ∈ Γ do
14 x← argmaxt∈[h]

f(u|Sγ
t )∑

z∈[d] cz(u)
;

15 if f(u|Sγ
x )∑

z∈[d] cz(u)
≥ γ then Add u to W γ

x ;

16 while ∃y ∈ [h] : |W γ
y | ≥ r

ϵ do
17 Randomly select and remove an element v∗

from W γ
y with a selection probability of

1/
(
f(v | Sγ

y ) ·
∑

w∈Wγ
y
f(w | Sγ

y )
−1

)
for

each v ∈W γ
y ;

18 if ∀z ∈ [d] : cz(S
γ
y ∪ {v∗}) ≤ B then

19 Sγ
y ← Sγ

y ∪ {v∗}, and reassign all
elements in W γ

y to appropriate sets
based on the rules specified in Lines
14-15;

20 W ←
⋃

t∈[h],γ∈Γ W
γ
t ∪ V[r] ∪ V ′

[r] ∪ e[r];
21 return {Sγ

t : γ ∈ Γ, t ∈ [h]},W

gorithm, which calls the offline algorithm on the summary
to obtain the final solution, our algorithm not only uses the
summary as the groundset to call the offline algorithm to
obtain a candidate solution, but also attempts to further im-
prove the approximation ratio of the algorithm by adding
elements that meet the threshold and budget requirements to
each existing candidate solution when the objective function
is monotone. In a nutshell, our algorithm is simple yet effec-
tive, which can handle the general RSK problem efficiently.

Algorithm Design
In this section, we present our two-stage algorithm for the
RSK problem, as shown by Algorithms 1-2. Overall, given

Algorithm 2: RSK-Streaming-Mining
Input: The set R of removed elements, and the summary

returned by RSK-Streaming-Summary
including {Sγ

t : γ ∈ Γ, t ∈ [h]},W
1 emax ← argmaxa∈W\R

f(a)∑
z∈[d] cz(a)

;

2 Γ′ ←
{
(1 + ϵ)i : i ∈ Z ∧ f(emax)

(1+ϵ)αB
∑

z∈[d] cz(emax)
≤

(1 + ϵ)i ≤ (1+ϵ)f(emax)∑
z∈[d] cz(emax)

}
;

3 Remove all Sγ
t where γ /∈ Γ′;

4 foreach t ∈ [h] and γ ∈ Γ′ do
5 if Sγ

t does not exist then Sγ
t ← ∅ ;

6 U∗ ← Offline
(
(
⋃

γ∈Γ′,t∈[h] S
γ
t ∪W ) \R

)
;

7 S∗ ← argmaxA∈{Sγ
t \R:γ∈Γ′,t∈[h]} f(A);

8 e∗ ← argmaxa∈W\R f(a);
9 if f(·) is monotone then

10 for γ ∈ Γ′ do
11 T γ ← Sγ

1 \R;
12 for e ∈W \R do
13 if f(e|Tγ)∑

z∈[d] cz(e)
≥ γ then

14 if ∀z ∈ [d] : cz(T
γ ∪ {e}) ≤ B then

15 T γ ← T γ ∪ {e}

16 T ∗ ← argmaxA∈{Tγ :γ∈Γ′} f(A);

17 return X∗ ← argmaxA∈{S∗, T∗, U∗, {e∗}} f(A)

that the value of f(O) is unknown, Algorithm 1 employs
the element e[r], which possesses the (r+1)-th highest den-
sity among the arrived elements, to guess the ideal threshold
γ∗ ∈

[
f(O)

(1+ϵ)αB , f(O)
αB

]
used for filtering high-quality ele-

ments (Lines 1-12). Furthermore, in order to ensure that Al-
gorithm 1 consistently utilizes a minimal amount of mem-
ory, unnecessary thresholds and their corresponding sets are
removed in a timely manner (Line 9). In addition to this,
Algorithm 1 maintains two sets, V[r] and V ′

[r], which store
the r elements with the highest density (i.e., function value
per cost) and the r + 1 elements with the highest function
value in the stream (Lines 1-5), respectively. These two sets
ultimately become part of the summary returned by the al-
gorithm. For each threshold γ ∈ Γ, we maintain h dis-
joint candidate solutions, denoted as Sγ

1 , · · · , S
γ
h , and each

of them has an associated warehouse W γ
i that stores high-

quality elements for Sγ
i . When a new element u needs to be

processed, Algorithm 1 greedily finds the candidate solution
Sγ
x ∈ {S

γ
1 , · · · , S

γ
h} that maximizes the marginal density

f(u|Sγ
x )∑

z∈[d] cz(u)
and adds the element to the warehouse W γ

x as-
sociated with the selected candidate solution if the marginal
density satisfies the threshold γ (Lines 14-15). Once a ware-
house W γ

y with sufficient high-quality elements is identified,
Algorithm 1 randomly selects an element from the ware-
house and adds the element to the candidate solution Sγ

y
without violating the knapsack constraints and then recon-
struct all warehouses, where the probability of each element
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being selected is inversely proportional to its marginal gain
(Lines 17-19). The initution behind the above approach to
managing elements can be elucidated as follows:

• Since the marginal density of all elements in the ware-
house exceeds the threshold, selecting any one of them
would yield sufficient utility. In addition, our selection
process follows the principle that elements with smaller
marginal gain are more likely to be selected, so as to en-
sure that the marginal gain of each element in the candi-
date solution is similar in expectation, which means that
the loss caused by removing an element in the candidate
solution is equal to the gain of an element retained in the
candidate solution, preventing unbounded losses. Con-
currently, by randomly selecting elements from r/ϵ el-
ements in the warehouse, we effectively reduce the prob-
ability of any element in the candidate solution being
deleted by the adversary. All the above conditions ensure
the high quality and robustness of the summary returned
by the algorithm.

• The algorithm maintains h candidate solutions, wherein
an element can only be added to the candidate solution
with the maximum marginal density in order to ensure
that these solutions are disjoint. This is done to estab-
lish a relationship between the candidate solutions and
the optimal solution when the objective function is non-
monotone, as detailed in Lemma 4.

Algorithm 1 returns V[r], V ′
[r], all candidate solutions and

warehouses as a summary at the end. This summary is re-
ceived by Algorithm 2 after the adversary reveals its re-
moved elements set R, and Algorithm 2 then starts gener-
ating the final solution from the summary after removing
R. Specifically, Algorithm 2 guesses the optimal threshold
using the latest information and removes unnecessary sets
(Lines 1-5). Then, Algorithm 2 obtains a candidate solution
by invoking an offline algorithm using the summary after
removing elements in R as the input set, where the offline
algorithm can achieve an approximation ratio of β for the
SK problem (Line 6). In cases where the objective function
is monotone, the algorithm additionally performs a simple
operation to enhance the performance of existing candidate
solutions by adding the elements in the summary that meet
the threshold and budget requirements to each candidate so-
lution (Lines 9-16). Finally, Algorithm 2 returns the set with
the highest objective function value among all candidate so-
lutions and singleton element sets as the final solution.

Theoretical Analysis
Before everything starts, it is imperative that we establish the
efficacy of our threshold guessing method in identifying the
ideal threshold γ∗ ∈

[
f(O)

(1+ϵ)αB , f(O)
αB

]
. As shown by Lemma

1, in Algorithm 1, the generation of candidate solutions cor-
responding to the ideal threshold must precede the arrival of
elements in the data stream whose marginal density satisfies
the threshold requirement. In the event that the number of
elements meeting the ideal threshold requirement is limited
(i.e., no more than r), these elements can be directly incor-
porated into the summary and subsequently processed in the

algorithm of the second stage (Algorithm 2). As shown by
Lemma 2, given that Algorithm 2 is aware of the set R com-
prising the removed elements, we are able to find the ideal
threshold and subsequently create the corresponding candi-
date solutions.
Lemma 1. Upon termination of RSK-Streaming-
Summary, a series of candidate solutions {Sγ∗

t : t ∈ [h]}
is created; otherwise, all elements with a density greater
than γ∗ belonging to the set V[r].

Proof. According to Lines 8-12 of RSK-Streaming-
Summary, the algorithm creates a set Sγ

t with a γ value
that satisfies the inequality

f(e[r])

(1 + ϵ)αB
∑

z∈[d] cz(e[r])
≤ γ ≤

(1 + ϵ)f(e[r])∑
z∈[d] cz(e[r])

. (1)

Therefore, we attempt to prove this lemma by demonstrat-
ing that γ∗ satisfies this inequality when RSK-Streaming-
Summary terminates.

Let e∗ = argmaxu∈N\R
f(u)∑

z∈[d] cz(u)
. Then we can get

f(O) ≥ f(e∗) ≥ f(e∗)∑
z∈[d] cz(e

∗) ≥
f(e[r])∑

z∈[d] cz(e[r])
due to

the fact that e[r] has the (r + 1)-th largest density in N ,
which proves γ∗ satisfies the left-hand side of Eqn. (1). Sub-
sequently, we discuss the right-hand side of Eqn. (1), which
necessitates dividing our analysis into two cases:

• f(e[r])∑
z∈[d] cz(e[r])

≥ f(O)
(1+ϵ)αB . In this case, we denote v∗ as

the first element not in V[r] but with a density greater than
f(O)

(1+ϵ)αB . Then we have f(O)
αB ≤

(1+ϵ)f(v∗)∑
z∈[d] cz(v

∗) , which im-
plies γ∗ must satisfy the right-hand side of Eqn. (1), and
hence the candidate solutions {Sγ∗

t : t ∈ [h]} will be
created when v∗ arrives according to Lines 8-12 of Algo-
rithm 1.

• f(e[r])∑
z∈[d] cz(e[r])

< f(O)
(1+ϵ)αB . In this case, according to the

definition of e[r], all elements with density greater than
γ∗ must be stored in V[r].

Combining the above cases, the lemma follows.

Lemma 2. After executing Lines 4-5 of RSK-Streaming-
Mining, a series of candidate solutions {Sγ∗

t : t ∈ [h]}
must have been created.

Proof. According to Line 1 of RSK-Streaming-Mining,
f(emax) = maxu∈N\R

f(u)∑
z∈[d] cz(u)

, so we must have
f(emax)

maxz∈[d] c(emax)
≥ f(O)

αB , else we can get

f(O) ≤
∑
u∈O

f(u) =
∑
u∈O

( f(u)∑
z∈[d] c(u)

·
∑
z∈[d]

c(u)
)

<
∑
u∈O

(f(O)

αB
·
∑
z∈[d]

c(u)
)
≤ d · f(O)

α
,

which means d > α, a contradiction. Combining the facts
that f(O) ≥ f(emax) ≥ f(emax)∑

z∈[d] cz(emax)
, we complete the

proof.
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Based on the ideal threshold γ∗ and the sets associated
with it, we proceed with our analysis. In accordance with the
knapsack constraints, the analysis can be categorized into
two distinct cases, based on whether or not an element with
a marginal density of at least γ∗ is discarded by Algorithm 1
due to a budget violation (Line 18). Our first focus is on the
case described in Lemma 3, wherein a candidate solution
with a sufficiently large cost has been identified and each el-
ement in the solution possesses a sufficiently large density
(i.e., the ratio of its marginal gain to cost is no less than γ∗).
Consequently, this candidate solution can be utilized as a re-
liable upper bound of the optimal solution O due to the fact
that γ∗ ≥ f(O)

(1+ϵ)αB , which can help us to obtain an approxi-
mation ratio for the algorithms in this case.

Lemma 3. If the judgment in Line 18 of RSK-Streaming-
Summary has failed for a candidate solution Sγ∗

q (q ∈ [h])
and an element e ∈ N\R, the solution X∗ returned by RSK-
Streaming-Mining satisfies f(Sγ∗

q ) + f(X∗)≥ f(O)
(1+ϵ)α .

Then we analyse the approximation ratio for the case de-
scribed by Lemma 4, by establishing an upper bound on the
utility loss caused by elements present in the optimal solu-
tion but absent from the candidate solutions maintained by
our algorithm. We first consider the elements that belong to
the optimal solution but are not present in the candidate so-
lutions Sγ∗

1 , · · · , Sγ∗

h and their corresponding warehouses
W γ∗

1 , · · · ,W γ∗

h . The exclusion of these elements is not due
to the knapsack constraints in this case, which implies that
these elements must have a marginal density lower than γ∗,
and thus the utility loss caused by these elements can be
bounded by γ∗. Furthermore, high-quality elements are dis-
tributed among different candidate solutions rather than be-
ing concentrated in a single solution, resulting in some loss
of utility, and unused high-quality elements in the warehouse
also contribute to utility loss. The above two types of utility
loss can be bounded by the offline algorithm called by Algo-
rithm 2 (Line 6). Based on the above analysis, we can get an
upper bound on the function value of the optimal solution in
this case, as shown by Lemma 4.

Lemma 4. If the situation described by Lemma 3 never hap-
pens, the solution X∗ returned by RSK-Streaming-Mining
satisfies β·h−1

∑
t∈[h] f(S

γ∗

t )+f(X∗)≥β(1− 1
h−

d
α )f(O).

With Lemmas 3-4, we are only a few steps away from
obtaining the approximation ratio of the algorithm, that is,
bounding the function value of Sγ∗

t (t ∈ [h]) with the so-
lution X∗ returned by our algorithm, where Sγ∗

t is the can-
didate solution that has not had elements removed by the
adversary. Note that the candidate solution after the removal
of elements selected by the adversary (i.e., Sγ∗

t \R) remains
comparable to the original solution Sγ∗

t , which can be ex-
plained as follows. Any element in Sγ∗

t is selected at random
from r/ϵ elements, resulting in a low probability that an el-
ement will be removed by the adversary. Furthermore, our
selection process adheres to the principle that elements with
smaller marginal gain are more likely to be selected, which

ensures that the marginal gain of each element in the can-
didate solution is similar in expectation. Consequently, the
loss incurred by removing an element from the candidate
solution can be bounded by the gain of an element retained
within the candidate solution. Therefore, we can establish
an upper bound for f(Sγ∗

t ) using f(Sγ∗

t \ R), as shown by
Lemma 5.
Lemma 5. For any t ∈ [h], we have E[f(Sγ∗

t \R)] ≥ (1−
ϵ)E[f(Sγ∗

t )].
By synthesizing the results of Lemmas 3-5, we derive the

approximation ratio for our algorithm, as demonstrated in
Theorem 1. Additionally, the summary size of our approach
is presented in Theorem 2.
Theorem 1. By setting α = 11(1/β + d)/10, h =
11, Algorithms 1-2 achieve an approximation ratio of

1
1.1(1+2/β+(2+β)d) − ϵ for the non-monotone RSK problem,
where β is the approximation ratio of any offline algorithm
for the non-monotone SK problem.
Theorem 2. The size of the summary returned by RSK-
Streaming-Summary is O(k log dB

ϵ + r log dB
ϵ2 ).

By utilizing the algorithm (Buchbinder and Feldman
2019) that achieves a 0.385-approximation for the non-
monotone SK problem as the offline sub-algorithm for RSK-
Streaming, we are able to derive the following corollary.
Corollary 1. There exists an algorithm that can achieve an
approximation ratio of 1

6.82+2.63d − ϵ for the non-monotone
RSK problem.

Improved Approximation Ratio for the Monotone
RSK Problem
By leveraging the monotonicity of the objective function in
the monotone RSK problem, we can obtain stronger ver-
sions of Lemma 3 and Lemma 4, as shown by Lemma 6 and
Lemma 7. These results lead to an improved approximation
ratio for our algorithm, as shown by Theorem 3.
Lemma 6. If the judgment in Line 18 of RSK-Streaming-
Summary or Line 14 of RSK-Streaming-Mining has
failed, the candidate solutions created by the two algorithms
satisfy f(Sγ∗

1 ∪ T γ∗
) + f(X∗) ≥ f(O)

(1+ϵ)α .

Lemma 7. If the situation described by Lemma 6 never hap-
pens, the solution X∗ returned by RSK-Streaming-Mining
satisfies f(Sγ∗

1 ∪ T γ∗
) + f(X∗) ≥ (1− d

α )f(O).
Theorem 3. By setting α = 1+d and h = 1, Algorithms 1-2
achieve an approximation ratio of 1

2+2d−ϵ for the monotone
RSK problem.

Experiments
In this section, we compare our streaming algorithm
RSK-Streaming with state-of-the-art streaming algorithms
for solving the RSK-Streaming problem, on the real-world
application. Specifically, we implement three algorithms:
(1) Our RSK-Streaming algorithm (Algorithm 1-2),
abbreviated as “RSKS”; (2) AlgMult (Avdiukhin et al.
2019), which to our knowledge is the only existing robust
algorithm capable of solving the (monotone) RSK problem
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Figure 1: Experiment results on the influence maximization application.

with a provable approximation ratio and is abbreviated as
“AM”; and (3) KnapsackStreaming (Cui et al. 2022),
which is the state-of-the-art algorithm for solving the SK
problem and is abbreviated as “KS”. For the purposes of
comparison, we assume that KS is omniscient and is thus
aware of the removed element in advance, which allows
KS to effectively solve the RSK problem and serve as a
strong comparison for our algorithm. In our experiments,
we utilize the objective function value (i.e., utility) as
the primary metric, and also evaluate the summary size
of our algorithm against that of another robust algorithm
(i.e., AlgMult). Following the approach of previous work
on robust submodular optimization (Dütting et al. 2022b;
Kazemi, Zadimoghaddam, and Karbasi 2018; Zhang, Tatti,
and Gionis 2022), the state-of-the-art practical algorithm
for the SK problem (i.e., the SMMK (Han et al. 2021)
algorithm) is utilized to generate the set R of removed
elements and serves as the sub-algorithm called by any
algorithm that requires an offline sub-algorithm, and we set
ϵ = 0.5 to avoid large summary. Each randomized algorithm
is executed independently five times and the average result
is reported, and all experiments are conducted on a Linux
server equipped with an Intel Xeon Gold 6126 @ 2.60GHz
CPU and 256GB memory. The implemented algorithms are
evaluated in two real-world applications, including robust
influence maximization and interactive movie recommen-
dation. The experimental settings and results pertaining
to the former are presented in the following, while those
corresponding to the latter are relegated to appendix due to
constraints on page length.

Robust Influence Maximization
The application is also consider in several work on ro-
bust submodular maximization (Dütting et al. 2022b; Zhang,
Tatti, and Gionis 2022; Avdiukhin et al. 2019). Given a net-
work G = (N , E), our goal is to identify a subset of seed
nodes S ⊆ N that can influence a large number of users

within a given budget B. This objective can be formally ex-
pressed:

max{f(S) = | ∪u∈S N(u)| : c(S) ≤ B},
where N(u) = {v : (u, v) ∈ E} denotes the neighbors
of u. It has been indicated in previous research (Dütting
et al. 2022b; Zhang, Tatti, and Gionis 2022; Avdiukhin et al.
2019) that f(·) is a monotone submodular fucntion. Follow-
ing (Kazemi et al. 2021; Harshaw et al. 2019), each node
u ∈ N is associated with a non-negative cost c({u}) =

1 +
√
d(u), where d(u) represents the out-degree of u. For

our experiments, we utilize two network datasets: (1) epin-
ions (Leskovec and Krevl 2014) with 131,828 nodes and
841,372 edges; and (2) wiki (Rossi and Ahmed 2015) with
138,592 nodes and 740,397 edges.

Experimental Results
Figure 1 (a)-(b) and Figure 1 (d)-(e) show the results when
the number of removed elements (i.e., |R|) is 5 and budget
varies. It can be observed from Figure 1 (a) and Figure 1 (d)
that our RSKS algorithm achieves significantly better util-
ity than AM, with performance gains of up to 350% (and
299% on average). Notably, AM is the only existing robust
algorithm for the RSK problem. Furthermore, our RSKS al-
gorithm can achieve comparable utility to the omniscient al-
gorithm SMMK, which knows the removed elements in ad-
vance, further demonstrating the effectiveness of our algo-
rithm on utility. Meanwhile, as shown in Figure 1 (b) and
Figure 1 (e), the summary generated by RSKS stores fewer
elements than that generated by AM in more than two orders
of magnitude, which demonstrates the superiority of our al-
gorithm in terms of efficiency and memory consumption. In
Figure 1 (c) and Figure 1 (f), we scale the number of re-
moved elements (i.e., |R|) to compare the utility of the im-
plemented algorithms, which shows that the utility achieved
by our RSKS algorithm decreases little with the increase
of |R| (up to a maximum of 6%), demonstrating the strong
robustness of our algorithm.
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