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Abstract
Learning time-evolving objects such as multivariate time
series and dynamic networks requires the development of
novel knowledge representation mechanisms and neural net-
work architectures, which allow for capturing implicit time-
dependent information contained in the data. Such informa-
tion is typically not directly observed but plays a key role in
the learning task performance. In turn, lack of time dimen-
sion in knowledge encoding mechanisms for time-dependent
data leads to frequent model updates, poor learning perfor-
mance, and, as a result, subpar decision-making. Here we
propose a new approach to a time-aware knowledge repre-
sentation mechanism that notably focuses on implicit time-
dependent topological information along multiple geometric
dimensions. In particular, we propose a new approach, named
Temporal MultiPersistence (TMP), which produces multidi-
mensional topological fingerprints of the data by using the
existing single parameter topological summaries. The main
idea behind TMP is to merge the two newest directions in
topological representation learning, that is, multi-persistence
which simultaneously describes data shape evolution along
multiple key parameters, and zigzag persistence to enable
us to extract the most salient data shape information over
time. We derive theoretical guarantees of TMP vectorizations
and show its utility, in application to forecasting on bench-
mark traffic flow, Ethereum blockchain, and electrocardio-
gram datasets, demonstrating the competitive performance,
especially, in scenarios of limited data records. In addition,
our TMP method improves the computational efficiency of
the state-of-the-art multipersistence summaries up to 59.5
times.

1 Introduction
Over the last decade, the field of topological data analysis
(TDA) has demonstrated its effectiveness in revealing con-
cealed patterns within diverse types of data that conventional
methods struggle to access. Notably, in cases where conven-
tional approaches frequently falter, tools such as persistent
homology (PH) within TDA have showcased remarkable ca-
pabilities in identifying both localized and overarching pat-
terns. These tools have the potential to generate a distinctive
topological signature, a trait that holds great promise for a
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range of ML applications. This inherent capacity of PH be-
comes particularly appealing for capturing implicit temporal
traits of evolving data, which might hold the crucial insights
underlying the performance of learning tasks.

In turn, the concept of multiparameter persistence (MP)
introduces a groundbreaking dimension to machine learn-
ing by enhancing the capabilities of persistent homology. Its
objective is to analyze data across multiple dimensions con-
currently, in a more nuanced manner. However, due to the
complex algebraic challenges intrinsic to its framework, MP
has yet to be universally defined in all contexts (Botnan and
Lesnick 2022; Carrière and Blumberg 2020).

In response, we present a novel approach designed to
effectively harness MP homology for the dual purposes
of time-aware learning and the representation of time-
dependent data. Specifically, the temporal parameter within
time-dependent data furnishes the crucial dimension nec-
essary for the application of the slicing concept within the
MP framework. Our method yields a distinctive topological
MP signature for the provided time-dependent data, man-
ifested as multidimensional vectors (matrices or tensors).
These vectors are highly compatible with ML applications.
Notably, our findings possess broad applicability and can
be tailored to various forms of PH vectorization, rendering
them suitable for diverse categories of time-dependent data.

Our key contributions can be summarized as follows:

• We bring a new perspective to use TDA for time-
dependent data by using multipersistence approach.

• We introduce TMP vectorizations framework which pro-
vides a multidimensional topological fingerprint of the
data. TMP framework expands many known single per-
sistence vectorizations to multidimensions by utilizing
time dimension effectively in PH machinery.

• The versatility of our TMP framework allows its appli-
cation to diverse types of time-dependent data. Further-
more, we show that TMP enjoys many important stability
guarantees as most single persistence summaries.

• Rooted in computational linear algebra, TMP vectoriza-
tions generate multidimensional arrays (i.e., matrices or
tensors) which serve as compatible inputs for various ML
models. Notably, our proposed TMP approach boasts a
speed advantage, performing up to 59.5 times faster than
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the cutting-edge MP methods.
• Through successful integration of the latest TDA tech-

niques with deep learning tools, our TMP-Nets model
consistently and cohesively outperforms the majority of
state-of-the-art deep learning models.

2 Related Work
Time Series Forecasting
Recurrent Neural Networks (RNNs) are the most success-
ful deep learning techniques to model datasets with time-
dependent variables (Lipton, Berkowitz, and Elkan 2015).
Long-Short-Term Memory networks (LSTMs) addressed
the prior RNN limitations in learning long-term dependen-
cies by solving known issues with exploding and vanishing
gradients (Yu et al. 2019), serving as basis for other im-
proved RNN, such as Gate Recurrent Units (GRUs) (Dey
and Salem 2017), Bidirectional LSTMs (BI LSTM) (Wang,
Yang, and Meinel 2018), and seq2seq LSTMs (Sutskever,
Vinyals, and Le 2014). Despite the widespread adoption
of RNNs in multiple applications (Xiang, Yan, and Demir
2020; Schmidhuber 2017; Shin and Kim 2020; Shewalkar,
Nyavanandi, and Ludwig 2019; Segovia-Dominguez et al.
2021; Bin et al. 2018), RNNs are limited by the structure of
the input data and can not naturally handle data-structures
from manifolds and graphs, i.e. non-Euclidean spaces.

Graph Convolutional Networks
New methods on graph convolution-based methods over-
come prior limitations of traditional GCN approaches,
e.g. learning underlying local and global connectivity pat-
terns (Veličković et al. 2018; Defferrard, Bresson, and
Vandergheynst 2016; Kipf and Welling 2017). GCN han-
dles graph-structure data via aggregation of node informa-
tion from the neighborhoods using graph filters. Lately,
there is an increasing interest in expanding GCN capabil-
ities to the time series forecasting domain. In this con-
text, modern approaches have reached outstanding results
in COVID-19 forecasting, money laundering, transporta-
tion forecasting, and scene recognition (Pareja et al. 2020;
Segovia Dominguez et al. 2021; Yu, Yin, and Zhu 2018;
Yan, Xiong, and Lin 2018; Guo et al. 2019; Weber et al.
2019; Yao et al. 2018). However, a major drawback of these
approaches is the lack of versatility as they assume a fixed
graph-structure and rely on the existing correlation among
spatial and temporal features.

Multiparameter Persistence
Multipersistence (MP) is a highly promising approach to
significantly improve the success of single parameter persis-
tence (SP) in applied TDA, but the theory is not complete yet
(Botnan and Lesnick 2022). Except for some special cases,
the MP theory tends to suffer from the problem of the nonex-
istence of barcode decomposition because of the partially
ordered structure of the index set {(αi, βj)}. The existing
approaches remedy this issue via the slicing technique by
studying one-dimensional fibers of the multiparameter do-
main. However, this approach tends to lose most of the infor-
mation the MP approach produces. Another idea along these

lines is to use several such directions (vineyards), and pro-
duce a vectorization summarizing these SP vectorizations
(Carrière and Blumberg 2020). However, again choosing
these directions suitably and computing restricted SP vec-
torizations are computationally costly which restricts these
approaches in many real-life applications. There are several
promising recent studies in this direction (Botnan, Opper-
mann, and Oudot 2022; Vipond 2020), but these techniques
often do not provide a topological summary that can read-
ily serve as input to ML models. In this paper, we develop
a highly efficient way to use the MP approach for time-
dependent data and provide a multidimensional topological
summary with TMP Vectorizations. We discuss the current
fundamental challenges in the MP theory and the contribu-
tions of our TMP vectorizations in Appendix D.

3 Background
We start by providing the basic background for our ma-
chinery. While our techniques are applicable to any type of
time-dependent data, here we mainly focus on the dynamic
networks since our primary motivation comes from time-
aware learning of time-evolving graphs as well as time se-
ries and spatio-temporal processes, also represented as graph
structures. (For discussion on other types of data see Ap-
pendix D.)
Notation Table: All the notations used in the paper are given
in Table 12 in the appendix.

Time-Dependent Data: Throughout the paper, by time-
dependent data, we mean the data which implicitly or ex-
plicitly has time information embedded in itself. Such data
include but are not limited to multivariate time series, spatio-
temporal processes, and dynamic networks. Since our paper
is primarily motivated by time-aware graph neural networks
and their broader applications to forecasting, we focus on
dynamic networks. Let {G1,G2, . . . ,GT } be a sequence of
weighted graphs for time steps t = {1, . . . , T}. In particu-
lar, Gt = {Vt, Et,Wt} with node set Vt, and edge set Et. Let
|Vt| = Nt be the cardinality of the node set. Wt represents
the edge weights for Et as a nonnegative symmetric Nt×Nt-
matrix with entries {ωt

rs}1≤r,s≤Nt
, i.e. the adjacency matrix

of Gt. In other words, ωt
rs > 0 for any etrs ∈ Et and ωt

rs = 0,
otherwise. In the case of unweighted networks, let ωt

rs = 1
for any etrs ∈ Et and ωt

rs = 0, otherwise.

Background on Persistent Homology
Persistent homology (PH) is a mathematical machinery to
capture the hidden shape patterns in the data by using alge-
braic topology tools. PH extracts this information by keep-
ing track of the evolution of the topological features (compo-
nents, loops, cavities) created in the data while looking at it
using different resolutions. Here, we give basic background
for PH in the graph setting. For further details, see (Dey and
Wang 2022; Edelsbrunner and Harer 2010).

For a given graph G, consider a nested sequence of sub-
graphs G1 ⊆ . . . ⊆ GN = G. For each Gi, define an abstract
simplicial complex Ĝi, 1 ≤ i ≤ N , yielding a filtration of
complexes Ĝ1 ⊆ . . . ⊆ ĜN . Here, clique complexes are
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among the most common ones, i.e., clique complex Ĝ is ob-
tained by assigning (filling with) a k-simplex to each com-
plete (k+1)-complete subgraph in G, e.g., a 3-clique, a com-
plete 3-subgraph, in G will be filled with a 2-simplex (trian-
gle). Then, in this sequence of simplicial complexes, one can
systematically keep track of the evolution of the topologi-
cal patterns mentioned above. A k-dimensional topological
feature (or k-hole) may represent connected components (0-
hole), loops (1-hole) and cavities (2-hole). For each k-hole
σ, PH records its first appearance in the filtration sequence,
say Ĝbσ , and first disappearance in later complexes, Ĝdσ with
a unique pair (bσ, dσ), where 1 ≤ bσ < dσ ≤ N We call
bσ the birth time of σ and dσ the death time of σ. We call
dσ − bσ the life span of σ. PH records all these birth and
death times of the topological features in persistence dia-
grams. Let 0 ≤ k ≤ D where D is the highest dimension in
the simplicial complex ĜN . Then kth persistence diagram
PDk(G) = {(bσ, dσ) | σ ∈ Hk(Ĝi) for bσ ≤ i < dσ}.
Here, Hk(Ĝi) represents the kth homology group of Ĝi

which keeps the information of the k-holes in the simplicial
complex Ĝi. With the intuition that the topological features
with a long life span (persistent features) describe the hid-
den shape patterns in the data, these persistence diagrams
provide a unique topological fingerprint of G.

As one can easily notice, the most important step in the
PH machinery is the construction of the nested sequence of
subgraphs G1 ⊆ . . . ⊆ GN = G. For a given unweighted
graph G = (V, E), the most common technique is to use a
filtering function f : V ! R with a choice of thresholds
I = {αi}N1 where α1 = minv∈V f(v) < α2 < . . . <
αN = maxv∈V f(v). For αi ∈ I , let Vi = {vr ∈ V |
f(vr) ≤ αi}. Let Gi be the induced subgraph of G by Vi,
i.e. Gi = (Vi, Ei) where Ei = {ers ∈ E | vr, vs ∈ Vi}.
This process yields a nested sequence of subgraphs G1 ⊂
G2 ⊂ . . . ⊂ GN = G, called the sublevel filtration induced
by the filtering function f . Choice of f is crucial here, and
in most cases, f is either an important function from the
domain of the data, e.g. amount of transactions or volume
transfer, or a function defined from intrinsic properties of the
graph, e.g. degree, betweenness. Similarly, for a weighted
graph, one can use sublevel filtration on the weights of the
edges and obtain a suitable filtration reflecting the domain
information stored in the edge weights. For further details
on different filtration types of networks, see (Aktas, Akbas,
and El Fatmaoui 2019; Hofer et al. 2020).

Multidimensional Persistence
In the previous section, we discussed the single-parameter
persistence theory. The reason for the term ”single” is that
we filter the data in only one direction G1 ⊂ · · · ⊂ GN = G.
Here, the choice of direction is the key to extracting the hid-
den patterns from the observed data. For some tasks and data
types, it is sufficient to consider only one dimension (or fil-
tering function f : V ! R) (e.g., atomic numbers for protein
networks) in order to extract the intrinsic data properties.
However, often the observed data may have more than one
direction to be analyzed (for example, in the case of money
laundering detection on bitcoin, we may need to use both

transaction amounts and numbers of transactions between
any two traders). With this intuition, multiparameter persis-
tence (MP) theory is suggested as a natural generalization of
single persistence (SP).

In simpler terms, if one uses only one filtering function,
sublevel sets induce a single parameter filtration Ĝ1 ⊂ · · · ⊂
ĜN = Ĝ. Instead, if one uses two or more functions, then
it would enable us to study finer substructures and patterns
in the data. In particular, let f : V ! R and g : V ! R
be two filtering functions with very valuable complementary
information of the network. Then, MP idea is presumed to
produce a unique topological fingerprint combining the in-
formation from both functions. These pair of functions f, g
induces a multivariate filtering function F : V 7! R2 with
F (v) = (f(v), g(v)). Again, we can define a set of nonde-
creasing thresholds {αi}m1 and {βj}n1 for f and g respec-
tively. Then, Vij = {vr ∈ V | f(vr) ≤ αi, g(vr) ≤ βj},
i.e. Vij = F−1((−∞, αi] × (−∞, βj ]). Then, let Gij be
the induced subgraph of G by Vij , i.e. the smallest sub-
graph of G containing Vij . Then, instead of a single fil-
tration of complexes, we get a bifiltration of complexes
{Ĝij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. See Figure 2 (Appendix)
for an explicit example.

As illustrated in Figure 2, we can imagine {Ĝij} as a
rectangular grid of size m × n such that for each 1 ≤
i0 ≤ m, {Ĝi0j}nj=1 gives a nested (horizontal) sequence
of simplicial complexes. Similarly, for each 1 ≤ j0 ≤ n,
{Ĝij0}mi=1 gives a nested (vertical) sequence of simplicial
complexes. By computing the homology groups of these
complexes, {Hk(Gij)}, we obtain the induced bigraded per-
sistence module (a rectangular grid of size m × n). Again,
the idea is to keep track of the k-dimensional topological
features via the homology groups {Hk(Ĝij)} in this grid.
As detailed in Appendix D, because of the technical issues
related to commutative algebra coming from the partially or-
dered structure of the multipersistence module, this MP ap-
proach has not been completed like SP theory yet, and there
is a need to facilitate this promising idea effectively in real-
life applications.

In this paper, for time-dependent data, we overcome this
problem by using the naturally inherited special direction in
the data: Time. By using this canonical direction in the mul-
tipersistence module, we bypass the partial ordering prob-
lem and generalize the ideas from single parameter persis-
tence to produce a unique topological fingerprint of the data
via MP. Our approach provides a general framework to uti-
lize various vectorization forms defined for single PH and
gives a multidimensional topological summary of the data.
Utilizing Time Direction - Zigzag Persistence: While our
intuition is to use time direction in MP for forecasting pur-
poses, the time parameter is not very suitable to use in PH
construction in its original form. This is because PH con-
struction needs nested subgraphs to keep track of the exist-
ing topological features, while time-dependent data do not
come nested, i.e. Gt1 ̸⊆ Gt2 in general for t1 ≤ t2. How-
ever, a generalized version of PH construction helps us to
overcome this problem. We want to keep track of topolog-
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ical features which exist in different time instances. Zigzag
homology (Carlsson and Silva 2010) bypasses the require-
ment of the nested sequence by using the ”zigzag scheme”.
We provide the details of zigzag persistent homology in Ap-
pendix C.

4 TMP Vectorizations
We now introduce a general framework to define vector-
izations for multipersistence homology on time-dependent
data. First, we recall the single persistence vectorizations
which we will expand as multidimensional vectorizations
with our TMP framework.

Single Persistence Vectorizations
While PH extracts hidden shape patterns from data as per-
sistence diagrams (PD), PDs being a collection of points
{(bσ, dσ)} in R2 by itself are not very practical for sta-
tistical and machine learning purposes. Instead, the com-
mon techniques are by accurately representing PDs as ker-
nels (Kriege, Johansson, and Morris 2020) or vectoriza-
tions (Ali et al. 2023). Single Persistence Vectorizations
transform obtained PH information (PDs) into a function
or a feature vector form which are much more suitable for
ML tools. Common single persistence (SP) vectorization
methods are Persistence Images (Adams et al. 2017), Persis-
tence Landscapes (Bubenik 2015), Silhouettes (Chazal et al.
2014), and various Persistence Curves (Chung and Lawson
2022). These vectorizations define a single variable or mul-
tivariable functions out of PDs, which can be used as fixed
size 1D or 2D vectors in applications, i.e 1 ×m vectors or
m × n vectors. For example, a Betti curve for a PD with
m thresholds can be written as 1 × m size vectors. Simi-
larly, persistence images is an example of 2D vectors with
the chosen resolution (grid) size. See the examples below
and in Appendix D for further details.

TMP Vectorizations
Finally, we define our Temporal MultiPersistence (TMP)
framework for time-dependent data. In particular, by using
the existing single-parameter persistence vectorizations, we
produce multidimensional vectorization by effectively using
the time direction in the multipersistence module. The idea
is to use zigzag homology in the time direction and consider
d-dimensional filtering for the other directions. This process
produces (d + 1)-dimensional vectorizations of the dataset.
While the most common choice would be d = 1 for com-
putational purposes, we restrict ourselves to d = 2 to give a
general idea. The construction can easily be generalized to
higher dimensions. Below and in Appendix D, we provide
explicit examples of TMP Vectorizations. While we mainly
focus on network data in this part, we give how to generalize
TMP vectorizations to other types of data (e.g., point clouds,
images) in Appendix D.

Again, let G̃ = {G1,G2, . . . ,GT } be a sequence of
weighted (or unweighted) graphs for time steps t = 1, . . . , T
with Gt = {Vt, Et,Wt} as defined in Section 3. By us-
ing a filtering function Ft : Vt ! Rd or weights, define
a bifiltration for each t0, i.e. {Gij

t0} for 1 ≤ i ≤ m and

1 ≤ j ≤ n. For each fixed i0, j0, consider the sequence
{Gi0j0

1 ,Gi0j0
2 , . . . ,Gi0j0

T }. This sequence of subgraphs in-
duces a zigzag sequence of clique complexes as described
in Appendix C:

Ĝi0j0
1 ↪! Ĝi0j0

1.5  ↩ Ĝi0j0
2 ↪! Ĝi0j0

2.5  ↩ Ĝ3 ↪! · · · ↩ Ĝi0j0
T .

Now, let ZPDk(G̃i0j0) be the induced zigzag persistence
diagram. Let φ represent an SP vectorization as described
above, e.g. Persistence Landscape, Silhouette, Persistence
Image, Persistence Curves. This means if PD(G) is the per-
sistence diagram for some filtration induced by G, then we
call φ(G) is the corresponding vectorization for PD(G) (see
Figure 1 in Appendix F7). In most cases, φ(G) is represented
as functions on the threshold domain (Persistence curves,
Landscapes, Silhouettes, Persistence Surfaces). However,
the discrete structure of the threshold domain enables us to
interpret the function φ(G) as a 1D-vector φ⃗(G) (Persis-
tence curves, Landscapes, Silhouettes) or 2D-vector φ⃗(G)
(Persistence Images). See examples given below and in the
Appendix D for more details.

Now, let φ⃗(G̃ij) be the corresponding vector for the
zigzag persistence diagram ZPDk(G̃ij). Then, for any 1 ≤
i ≤ m and 1 ≤ j ≤ n, we have a (1D or 2D) vector
φ⃗(G̃ij). Now, define the induced TMP Vectorization Mφ as
the corresponding tensor Mij

φ = φ⃗(G̃ij) for 1 ≤ i ≤ m and
1 ≤ j ≤ n.

In particular, if φ⃗ is a 1D-vector of size 1 × k, then Mφ

would be a 3D-vector (rank-3 tensor) with size m× n× k.
if φ⃗ is a 2D-vector of size k×r, then Mφ would be a rank-4
tensor with size m× n× k × r. In the examples below, we
provide explicit constructions for Mφ for the most common
SP vectorizations φ.

Examples of TMP Vectorizations
While we describe TMP Vectorizations for d = 2, in most
applications, d = 1 would be preferable for computational
purposes. Then if the preferred single persistence (SP) vec-
torization φ produces 1D-vector (say size 1 × r), then in-
duced TMP Vectorization would be a 2D-vector Mφ (a ma-
trix) of size m× r where m is the number of thresholds for
the filtering function used, e.g. f : Vt ! R. These m×r ma-
trices provide unique topological fingerprints for each time-
dependent dataset {Gt}Tt=1. These multidimensional finger-
prints are produced by using persistent homology with two-
dimensional filtering where the first dimension is the natural
direction time t, and the second dimension comes from the
filtering function f .

Here, we discuss explicit constructions of two examples
of TMP vectorizations. As we mentioned above, the frame-
work is very general, and it can be applied to various vec-
torization methods. In Appendix D, we provide details of
further examples of TMP Vectorizations for time-dependent
data, i.e., TMP Silhouettes, and TMP Betti Summaries.

TMP Landscapes Persistence Landscapes λ are one
of the most common SP vectorization methods intro-
duced in (Bubenik 2015). For a given persistence diagram
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PD(G) = {(bi, di)}, λ produces a function λ(G) by us-
ing generating functions Λi for each (bi, di) ∈ PD(G), i.e.
Λi : [bi, di] ! R is a piecewise linear function obtained
by two line segments starting from (bi, 0) and (di, 0) con-
necting to the same point ( bi+di

2 , bi−di

2 ). Then, the Persis-
tence Landscape function λ(G) : [ϵ1, ϵq] ! R is defined as
λ(G)(t) = maxi Λi(t) for t ∈ [ϵ1, ϵq], where {ϵk}q1 repre-
sents the thresholds for the filtration used.

Considering the piecewise linear structure of the func-
tion, λ(G) is completely determined by its values on 2q −
1 points, i.e. bi±di

2 ∈ {ϵ1, ϵ1.5, ϵ2, ϵ2.5, . . . , ϵq} where
ϵk.5 = (ϵk + ϵk+1)/2. Hence, a vector of size 1 ×
(2q − 1) whose entries the values of this function would
suffice to capture all the information needed, i.e. λ⃗ =
[λ(ϵ1) λ(ϵ1.5) λ(ϵ2) λ(ϵ2.5) λ(ϵ3) . . . λ(ϵq)].

Now, for the time-dependent data G̃ = {Gt}Tt=1, to con-
struct our induced TMP Vectorization Mλ, TMP Land-
scapes, we use λ for time direction, t = 1, . . . , T . For zigzag
persistence, we have 2T −1 thresholds steps. Hence, by tak-
ing q = 2T − 1, we would have 4T − 3 length vector λ⃗(G̃).

For the other multipersistence direction, by using a filter-
ing function f : Vt ! R with the threshold set I = {αj}m1 ,
we obtain TMP Landscape Mλ as follows: Mj

λ = λ⃗(G̃j)

where Mj
λ represents jth-row of the 2D-vector Mλ. Here,

G̃j = {Gj
t }Tt=1 is induced by the sublevel filtration for

f : Vt ! R as described in the paper, i.e. Gj
t is the induced

subgraph by Vj
t = {vr ∈ Vt | f(vr) ≤ αj}.

Hence, for a time-dependent data G̃ = {Gt}Tt=1, TMP
Landscape Mλ(G̃) is a 2D-vector of size m × (4T − 3)
where T is the number of time steps.

TMP Persistence Images Next SP vectorization in our
list is persistence images (Adams et al. 2017). Different than
most SP vectorizations, persistence images produce 2D-
vectors. The idea is to capture the location of the points in
the persistence diagrams with a multivariable function by us-
ing the 2D Gaussian functions centered at these points. For
PD(G) = {(bi, di)}, let ϕi represent a 2D-Gaussian cen-
tered at the point (bi, di) ∈ R2. Then, one defines a multi-
variable function, Persistence Surface, µ̃ =

∑
i wiϕi where

wi is the weight, mostly a function of the life span di − bi.
To represent this multivariable function as a 2D-vector, one
defines a k × l grid (resolution size) on the domain of µ̃,
i.e. threshold domain of PD(G). Then, one obtains the Per-
sistence Image, a 2D-vector µ⃗ = [µrs] of size k × l, where
µrs =

∫
∆rs

µ̃(x, y) dxdy and ∆rs is the corresponding pixel
(rectangle) in the k × l grid.

Following a similar route, for our TMP vectorization,
we use time as one direction, and the filtering function in
the other direction, i.e. f : Vt ! R with threshold set
I = {αj}m1 . Then, for time-dependent data G̃ = {Gt}Tt=1, in
the time direction, we use zigzag PDs and their persistence
images. Hence, for each 1 ≤ j ≤ m, we define TMP Per-
sistence Image as Mj

µ(G̃) = µ⃗(G̃j) where 2D-vector Mj
µ

is jth-floor of the 3D-vector Mµ. Then, TMP Persistence
Image Mj

µ(G̃) is a 3D-vector of size m× k × l.

More details for TMP Persistence Surfaces and TMP Sil-
houettes are provided in Appendix D.

Stability of TMP Vectorizations
We now prove that when the source single parameter vector-
ization φ is stable, then so is its induced TMP vectorization
Mφ. We discuss the details of the stability notion in per-
sistence theory and examples of stable SP vectorizations in
Appendix C.

Let G̃ = {Gt}Tt=1 and H̃ = {Ht}Tt=1 be two time se-
quences of networks. Let φ be a stable SP vectorization with
the stability equation

d(φ(G̃), φ(H̃)) ≤ Cφ · Wpφ(PD(G̃), PD(H̃))

for some 1 ≤ pφ ≤ ∞. Here, Wp represents Wasserstein-p
distance as defined in Appendix C.

Now, consider the bifiltrations {Ĝij
t } and {Ĥij

t }
for each 1 ≤ t ≤ T . We define the induced
matching distance between the multiple persistence dia-
grams (See Remark 2) as D({ZPD(G̃)}, {ZPD(H̃)}) =

maxi,j Wpφ(ZPD(G̃ij), ZPD(H̃ij))

Now, define the distance between TMP Vectorizations as
D(Mφ(G̃),Mφ(H̃)) = maxi,j d(φ(G̃ij), φ(H̃ij)).

Theorem 1. Let φ be a stable vectorization for single pa-
rameter PDs. Then, the induced TMP Vectorization Mφ is
also stable, i.e. With the notation above, there exists Ĉφ > 0

such that for any pair of time-aware network sequences G̃
and H̃, we have the following inequality.

D(Mφ(G̃),Mφ(H̃)) ≤ Ĉφ ·D({ZPD(G̃)}, {ZPD(H̃)})

The proof of the theorem is given in Appendix E.

5 TMP-Nets
To fully take advantage of the extracted signatures by TMP
vectorizations, we propose a GNN-based module to track
and learn significant temporal and topological patterns. Our
Time Aware Multiparameter Persistence Nets (TMP-Nets)
capture spatio-temporal relationships via trainable node em-
bedding dictionaries in a GDL-based framework.

Graph Convolution on Adaptive Adjacency Matrix
To model the hidden dependencies among nodes in the
spatio-temporal graph, we define the spatial graph convo-
lution operation based on the adaptive adjacency matrix and
given node feature matrix. Inspired by (Wu et al. 2019), to
investigate the beyond pairwise relations among nodes, we
use the adaptive adjacency matrix based on trainable node
embedding dictionaries, i.e., Z(ℓ)

t,Spatial = LZ
(ℓ−1)
t,SpatialW

(ℓ−1),
where L = Softmax(ReLU(EθE

⊤
θ )) (here Eθ ∈ RN×dc

and dc ≥ 1), Z(ℓ−1)
Spatial and Z

(ℓ)
Spatial are the input and output of

(ℓ − 1)-th layer, and Z
(0)
Spatial = X ∈ RN×F (here F repre-

sents the number of features for each node), and W (ℓ−1) is
the trainable weights.
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Topological Signatures Representation Learning
In our experiments, we use CNN based model to learn the
TMP topological features. Given the TMP topological fea-
tures of resolution p, i.e., TMPt ∈ Rp×p, we employ CNN-
based model and global max pooling to obtain the image-
level local topological feature Zt,TMP as

Zt,TMP = fGMP(fθ(TMPt)),

where fGMP is the global max pooling, fθ is a CNN based
neural network with parameter set θi, and Zt,TMP ∈ Rdc is
the output for TMP representation.

Lastly, we combine the two embeddings to obtain the final
embedding Zt:

Zt = Concat(Zt,Spatial, Zt,TMP).

To capture both spatial and temporal correlations in time-
series, we feed the final embedding Zt into Gated Recurrent
Units (GRU) for future time points forecasting.

6 Experiments
Datasets: We consider three types of data: two widely
used benchmark datasets on California (CA) traffic (Chen
et al. 2001) and electrocardiography (ECG5000) (Chen
et al. 2015a), and the newly emerged data on Ethereum
blockchain tokens (Shamsi et al. 2022). (The results on the
ECG5000 are presented in Appendix A). More details de-
scriptions of datasets can be found in Appendix B.

Experimental Results
We compare our TMP-Nets with 6 state-of-the-art baselines.
We use three standard performance metrics Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and Mean
absolute percentage error (MAPE). We provide additional
experimental results in Appendix A. In Appendix B, we pro-
vide further details on the experimental setup and empirical
evaluation. Our source code is available at the link 1.
Results on Blockchain Datasets: Table 1 shows performance
on Bytom, Decentraland, and Golem. Table 1 suggests the
following phenomena: (i) TMP-Nets achieves the best per-
formance on Bytom and Decentraland, and the relative gains
of TMP-Nets over the best baseline (i.e., Z-GCNETs) are
7.89% and 3.66% on Bytom and Decentraland respectively;
(ii) compared with Z-GCNETs, the size of TMP topological
features used in this work is much smaller than the zigzag
persistence image utilized in Z-GCNETs.

An interesting question is why TMP-Nets performs dif-
ferently on Golem vs. Bytom and Decentraland. Success
on each network token depends on the diversity of connec-
tions among nodes. In cryptocurrency networks, we expect
nodes/addresses to be connected with other nodes with sim-
ilar transaction connectivity (e.g. interaction among whales)
as well as with nodes with low connectivity (e.g. termi-
nal nodes). However, the assortativity measure of Golem
(-0.47) is considerably lower than Bytom (-0.42) and De-
centraland (-0.35), leading to disassortativity patterns (i.e.,
repetitive isolated clusters) in the Golem network, which, in
turn, downgrade the success rate of forecasting.

Results on Traffic Datasets: For traffic flow data PeMSD4
and PeMSD8, we evaluate Z-GCNETs’ performance on
varying lengths. This allows us to further explore the learn-
ing capabilities of our Z-GCNETs as a function of sample
size. In particular, in many real-world scenarios, there ex-
ists only a limited number of temporal records to be used
in the training stage, and the learning problem with lower
sample sizes becomes substantially more challenging. Ta-
bles 2 and 3 show that under the scenario of limited data
records for both PeMSD4 and PeMSD8 (i.e., T = 1, 000
and T ′ = 2, 000), our TMP-Nets always outperforms three
representative baselines in MAE and RMSE. For example,
TMP-Nets significantly outperform SOTA baselines, where
we achieve relative gains of 1.79% and 4.36% in RMSE on
PeMSD4T =1,000 and PeMSD8T =1,000, respectively. Over-
all, the results demonstrate that our proposed TMP-Nets can
accurately capture the hidden complex spatial and temporal
correlations in the correlated time series datasets and achieve
promising forecasting performances under the scenarios of
limited data records. Moreover, we conduct experiments on
the whole PeMSD4 and PeMSD8 datasets. As Table 6 (Ap-
pendix) indicates, our TMP-Nets still achieve competitive
performances on both datasets.

Finally, we applied our approach in a different domain
with a benchmark electrocardiogram dataset, ECG5000.
Again, our model gives highly competitive results with the
SOTA methods (Appendix A).

Ablation Studies: To better evaluate the importance of
different components of TMP-Nets, we perform ablation
studies on two traffic datasets, i.e., PeMSD4 and PeMSD8
by using only (i) Z(ℓ)

t,Spatial or (ii) Zt,TMP as input. Table 4 re-

port the forecasting performance of (i) Z(ℓ)
t,Spatial, (ii) Zt,TMP,

and (iii) TMP-Nets (our proposed model). We find that
our TMP-Nets outperforms both Z

(ℓ)
t,Spatial and Zt,TMP on

two datasets, yielding highly statistically significant gains.
Hence, we can conclude that (i) TMP vectorizations help to
better capture global and local hidden topological informa-
tion in the time dimension, and (ii) spatial graph convolution
operation accurately learns the inter-dependencies (i.e., spa-
tial correlations) among spatio-temporal graphs. We provide
further ablation studies comparing the effect of slicing direc-
tion and the MP vectorization methods in the Appendix A.

Computational Complexity: One of the key issues why
MP has not propagated widely into practice yet is its high
computational costs. Our method improves on the state-of-
the-art MP (ranging from 23.8 to 59.5 times faster than Mul-
tiparameter Persistence Image (MP-I) (Carrière and Blum-
berg 2020), and from 1.2 to 8.6 times faster than Multi-
parameter Persistence Kernel (MP-L) (Corbet et al. 2019))
and, armed with a computationally fast vectorization method
(e.g., Betti summary (Lesnick and Wright 2022)), TMP
yields competitive computational costs for a lower number
of filtering functions (See Appendix A). Nevertheless, scal-
ing for really large scale-problems is still a challenge. In the

1https://www.dropbox.com/sh/h28f1cf98t9xmzj/AACBavvHc
ctCB1FVQNyf-XRa?dl=0
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Model Bytom Decentraland Golem
DCRNN (Li et al. 2018) 35.36±1.18 27.69±1.77 23.15±1.91
STGCN (Yu, Yin, and Zhu 2018) 37.33±1.06 28.22±1.69 23.68±2.31
GraphWaveNet (Wu et al. 2019) 39.18±0.96 37.67±1.76 28.89±2.34
AGCRN (Bai et al. 2020) 34.46±1.37 26.75±1.51 22.83±1.91
Z-GCNETs (Chen, Segovia, and Gel 2021) 31.04±0.78 23.81±2.43 22.32±1.42
StemGNN (Cao et al. 2020) 34.91±1.04 28.37±1.96 22.50±2.01

TMP-Nets 28.77±3.30 22.97±1.80 29.01±1.05

Table 1: Experimental results on Bytom, Decentraland, and Golem on MAPE and standard deviation.

Model PeMSD4 PeMSD8
MAE RMSE MAPE (%) MAE RMSE MAPE (%)

AGCRN 110.36±0.20 150.37±0.15 208.36±0.20 87.12±0.25 109.20±0.33 277.44±0.26
Z-GCNETs 112.65±0.12 153.47±0.17 206.09±0.33 69.82±0.16 95.83±0.37 102.74±0.53
StemGNN 112.83±0.07 150.22±0.30 209.52±0.51 65.16±0.36 89.60±0.60 108.71±0.51

TMP-Nets 108.38±0.10 147.57±0.23 208.66±0.27 59.82±0.82 85.86±0.64 109.88±0.65

Table 2: Forecasting performance on (first 1,000 networks) of PeMSD4 and PeMSD8 benchmark datasets.

Model PeMSD4 PeMSD8
MAE RMSE MAPE (%) MAE RMSE MAPE (%)

AGCRN 90.36±0.10 122.61±0.13 176.90±0.35 55.20±0.19 83.01±0.53 167.39±0.25
Z-GCNETs 89.57±0.11 117.94±0.15 180.11±0.26 47.11±0.20 80.25±0.24 98.15±0.33
StemGNN 93.27±0.16 131.49±0.21 189.18±0.30 53.86±0.39 82.00±0.52 97.78±0.30
TMP-Nets 85.15±0.12 115.00±0.16 170.97±0.22 50.20±0.37 80.17±0.26 100.31±0.58

Table 3: Forecasting performance on (first 2,000 networks) PeMSD4 and PeMSD8 benchmark datasets.

Model PeMSD4 PeMSD8
TMP-Nets 147.57±0.23 85.86±0.64
Zt,TMP 165.67±0.30 90.23±0.15
Z

(ℓ)
t,Spatial 153.75±0.22 88.38±1.05

Table 4: Ablation Study on PeMSD4 and PESMD8 (RMSE
results for first 1000 networks).

future we will explore TMP constructed only on the land-
mark points, that is, TMP will be constructed not on all but
on the most important landmark nodes, which would lead to
substantial sparsification of the graph representation.

Comparison with Other Topological GNN Models
for Dynamic Networks: The two existing time-aware
topological GNNs for dynamic networks are TAMP-
S2GCNets (Chen et al. 2021) and Z-GCNETs (Chen,
Segovia, and Gel 2021). The pivotal distinction between
our model and these counterparts lies in the fact that our
model serves as a comprehensive extension of both, appli-
cable across diverse data types encompassing point clouds
and images (see Section D). Z-GCNETs employs single per-
sistence approach, rendering it unsuitable for datasets that
encompass two or more significant domain functions. In

contrast, TAMP-S2GCNets employs multipersistence; how-
ever, its Euler-Characteristic surface vectorization fails to
encapsulate lifespan information present in persistence dia-
grams. Notably, in scenarios involving sparse data, barcodes
with longer lifespans signify main data characteristics, while
short barcodes are considered as topological noise. The limi-
tation of Euler-Characteristic Surfaces, being simply a linear
combination of bigraded Betti numbers, lies in its inability to
capture this distinction. In stark contrast, our framework en-
compasses all forms of vectorizations, permitting practition-
ers to choose their preferred vectorization technique while
adapting to dynamic networks or time-dependent data com-
prehensively. For instance, compared to TAMP-S2GCNets
model, our TMP-Nets achieves a better performance on
the Bytom dataset, i.e., TMP-Nets (MAPE: 28.77±3.30)
vs. TAMP-S2GCNets (MAPE: 29.26±1.06). Furthermore,
from the computational time perspective, the average com-
putation time of TMP and Dynamic Euler-Poincaré Surface
(which is used in TAMP-S2GCNets model) are 1.85 seconds
and 38.99 seconds respectively, i.e., our TMP is more effi-
cient.

7 Discussion
We have proposed a new highly computationally effi-
cient summary for multidimensional persistence for time-
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dependent objects, Temporal MultiPersistence (TMP). By
successfully combining the latest TDA methods with deep
learning tools, our TMP approach outperforms many popu-
lar state-of-the-art deep learning models in a consistent and
unified manner. Further, we have shown that TMP enjoys
important theoretical stability guarantees. As such, TMP
makes an important step toward bringing the theoretical con-
cepts of multipersistence from pure mathematics to the ma-
chine learning community and to the practical problems of
time-aware learning of time-conditioned objects, such as dy-
namic graphs, time series, and spatio-temporal processes.

Still, scaling for ultra high-dimensional processes, espe-
cially in modern data streaming scenarios, may be infeasible
for TMP. In the future, we will investigate algorithms such
as those based on landmarks or pruning, with the goal to
advance the computational efficiency of TMP for streaming
applications.
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