
Make RepVGG Greater Again: A Quantization-Aware Approach

Xiangxiang Chu1, Liang Li1, Bo Zhang1

1Meituan
{chuxiangxiang,liliang58,zhangbo97}@meituan.com

Abstract

The tradeoff between performance and inference speed is
critical for practical applications. Architecture reparameter-
ization obtains better tradeoffs and it is becoming an in-
creasingly popular ingredient in modern convolutional neu-
ral networks. Nonetheless, its quantization performance is
usually too poor to deploy (more than 20% top-1 accuracy
drop on ImageNet) when INT8 inference is desired. In this
paper, we dive into the underlying mechanism of this fail-
ure, where the original design inevitably enlarges quantiza-
tion error. We propose a simple, robust, and effective rem-
edy to have a quantization-friendly structure that also enjoys
reparameterization benefits. Our method greatly bridges the
gap between INT8 and FP32 accuracy for RepVGG. With-
out bells and whistles, the top-1 accuracy drop on ImageNet
is reduced within 2% by standard post-training quantization.
Moreover, our method also achieves similar FP32 perfor-
mance as RepVGG. Extensive experiments on detection and
semantic segmentation tasks verify its generalization.

Introduction
Albeit the great success of deep neural networks in vision
(He et al. 2016, 2017; Chen et al. 2017; Redmon et al. 2016;
Dosovitskiy et al. 2020), language (Vaswani et al. 2017; De-
vlin et al. 2019) and speech (Graves, Mohamed, and Hinton
2013), model compression has become more than necessary,
especially considering the paramount growth of power con-
sumption in data centers, and the voluminous distribution
of resource-constrained edge devices worldwide. Network
quantization (Gupta et al. 2015; Gysel et al. 2018) is one
the most proficient approaches because of the lower mem-
ory cost and inherent integer computing advantage.

Still, quantization awareness in neural architectural de-
sign has not been the priority and has thus been largely ne-
glected. However, it may become detrimental where quan-
tization is a mandatory operation for final deployment. For
example, many well-known architectures have quantization
collapse issues like MobileNet (Howard et al. 2017; Sandler
et al. 2018; Howard et al. 2019) and EfficientNet (Tan and Le
2019), which calls for remedy designs or advanced quanti-
zation schemes like (Sheng et al. 2018; Yun and Wong 2021)
and (Bhalgat et al. 2020; Habi et al. 2021) respectively.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3×3 1×1

+

+

3×3 3×3 3×3

3×3

3×3 1×1

+

+

3×3 3×3 3×3

3×3

3×3

(a) RepVGG Block (b) QARepVGG Block

3×3 Conv
BN

Figure 1: Reparameterization of a QARepVGG block com-
pared with RepVGG (Ding et al. 2021). Both can be identi-
cally fused into a single Conv 3 × 3. QARepVGG is PTQ-
friendly to have 70.4% quantized accuracy while RepVGG
drops to 52.2%.

Lately, one of the most influential directions in neural ar-
chitecture design has been reparameterization (Zagoruyko
and Komodakis 2017; Ding et al. 2019, 2021). Among them,
RepVGG (Ding et al. 2021) refashions the standard Conv-
BN-ReLU into its identical multi-branch counterpart during
training, which brings powerful performance improvement
while adding no extra cost at inference. For its simplicity
and inference advantage, it is favored by many recent vi-
sion tasks (Ding et al. 2022; Xu et al. 2022; Li et al. 2022;
Wang, Bochkovskiy, and Liao 2022; Vasu et al. 2022; Hu
et al. 2022). However, reparameterization-based models face
a well-known quantization difficulty which is an intrinsic de-
fect that stalls industry application. It turns out to be non-
trivial to make this structure comfortably quantized. A stan-
dard post-training quantization scheme tremendously de-
grades the accuracy of RepVGG-A0 from 72.4% to 52.2%.
Meantime, it is not straightforward to apply quantization-
aware training (Ding et al. 2023).

Here, we particularly focus on the quantization diffi-
culty of RepVGG (Ding et al. 2021). To resolve this
problem, we explore the fundamental quantization princi-
ples that guide us through in-depth analysis of the typical

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11624

reparameterization-based architecture. That is, for a network
to have better quantization performance, the distribution of
weights as well as the processed data of an arbitrary dis-
tribution shall be quantization friendly. Both are crucial to
ensure better quantization performance. More importantly,
these principles lead us to a brand new design which we call
QARepVGG (short for Quantization-Aware RepVGG) that
doesn’t suffer from substantial quantization collapse, whose
building block is shown in Fig. 1 and its quantized perfor-
mance has been largely improved.

Our contributions are threefold,

• Unveiling the root cause of performance collapse in the
quantization of the reparameterization-based architecture
like RepVGG.

• Contriving a quantization-friendly replacement (i.e.
QARepVGG) of RepVGG which holds fundamental dif-
ferences in terms of weight and activation distribution,
meanwhile preserving the very advantage of outstanding
speed and performance trade-off.

• Our proposed method generalizes well at different model
scales and on various vision tasks, achieving outstanding
post-quantization performance that is ready to deploy.
Besides, our method has comparable FP32 accuracy as
RepVGG and exactly the same fast inference speed un-
der the deploy setting. Therefore, it is a very competitive
alternative to RepVGG.

Expectedly, our approach will greatly boost the quantized
performance with no extra cost at inference, bridging the
gap of the last kilometer during the deployment of repara-
menterized networks. We will release the code to facilitate
reproduction and future research.

Related Work
Reparameterization Architecture Design
RepVGG (Ding et al. 2021) leverages an over-parameterized
network in the form of multiple branches at the training
stage and identically fuses branches into one during infer-
ence, which is known as reparameterization. This design is
becoming wildly used as a basic component in many scenar-
ios, such as edge device application (Vasu et al. 2022; Zhou
et al. 2023; Wu, Lee, and Ma 2022; Huang et al. 2022b) ,
high performance convnet (Ding et al. 2022; Huang et al.
2022a), covering both low-level and high-level vision tasks.
Recent popular object detection methods like YOLOv6 (Li
et al. 2022) and YOLOv7 (Wang, Bochkovskiy, and Liao
2022) are both built based on such basic component. OREPA
(Hu et al. 2022) is a structural improvement on RepVGG,
which aims to reduce the huge training overhead by squeez-
ing the complex training-time block into a single convolu-
tion. However, almost all these researches make use of the
high FP32 performance of reparameterization and fast infer-
ence under the deploy setting.

Network Quantization
Quantization is an effective model compression method that
maps the network weights and input data into lower preci-
sions (typically 8-bit) for fast calculations, which greatly

reduces the model size and computation cost. Without
compromising much performance, quantization is mostly
adopted to boost speed before deployment, serving as a de
facto standard in industrial production. Post-Training Quan-
tization (PTQ) is the most common scheme as it only needs
a few batches of images to calibrate the quantization pa-
rameters and it comes with no extra training. Quantization-
Aware Training (QAT) methods have also been proposed to
improve the quantized accuracy, such as integer-arithmetic-
only quantization (Jacob et al. 2018), data-free quantiza-
tion (Nagel et al. 2019), hardware-aware quantization (Wang
et al. 2019), mixed precision quantization (Wu et al. 2018),
zero-shot quantization (Cai et al. 2020). As QAT typically
involves intrusion into the training code and requires extra
cost, it is only used when the training code is at hand and
PTQ can’t produce a satisfactory result. To best showcase
the proposed quantization-aware architecture, we mainly
evaluate the quantized accuracy using PTQ. Meanwhile, we
include experiments to demonstrate it is also beneficial for
QAT.

Quantization for Reparameterization Network
It is known that reparameterization-based architectures have
quantization difficulty due to the increased dynamic numer-
ical range due to its intrinsic multi-branch design (Ding
et al. 2023). The accuracy degradation of reparameteriza-
tion models via PTQ is unacceptable. The most related work
to ours is RepOpt-VGG, which makes an attempt to ad-
dress this quantization issue by crafting a two-stage opti-
mization pipeline. However, it requires very careful hyper-
parameter tuning to work and more computations. In con-
trast, our method is neat, robust and computation cheap.

Make Reparameterization Quantization
Friendly

This section is organized as follows. First, we disclose that
the popular reparameterization design of RepVGG models
severely suffers from quantization. Then we make detailed
analysis of the root causes for the failure and reveal that two
factors incurs this issue: the loss design enlarges the vari-
ance of activation and the structural design of RepVGG is
prone to producing uncontrolled outlier weights. Lastly, we
greatly alleviate the quantization issue by revisiting loss and
network design.

Quantization Failure of RepVGG
We first evaluate the performance of several RepVGG mod-
els with its officially released code. As shown in Table 1,
RepVGG-A0 serevely suffers from large accuracy drop
(from 20% to 77% top-1 accuracy) on ImageNet validation
data-set after standard PTQ.

A quantization operation for a tensor X is generally rep-
resented as Q(X) = Clip(Round(X/4x)), where Round
rounds float values to integers using ceiling rounding and
Clip truncates those exceed the ranges of the quantized do-
main.4x is a scale factor used to map the tensor into a given
range, defined as4x = xmax−xmin

2b−1 . Where xmax and xmin

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11625

are a pair of boundary values selected to better represent val-
ues distribution of X . As shown in (Dehner et al. 2016) and
(Sheng et al. 2018), the variance of the quantization error is
calculated as σ2 =

42
x

12 . Thus the problem becomes how to
reduce the range between xmax and xmin. In practice, they
are selected in various ways. Sometimes the maximum and
minimum values are used directly, such as weight quanti-
zation, and sometimes they are selected by optimizing the
MSE or entropy of the quantization error, which is often
used to quantify the activation value. The quality of the se-
lection depends on many factors, such as the variance of the
tensor, whether there are some outliers, etc.

As for a neural network, there are two main components,
weight and activation, that require quantization and may lead
to accuracy degradation. Activation also serves as the input
of the next layer, so the errors are accumulated and incre-
mented layer by layer. Therefore, good quantization perfor-
mance for neural networks requires mainly two fundamental
conditions:

• C1: weight distribution is quantization friendly with
feasible range,

• C2: activation distribution (i.e. how the model re-
sponds to input features) is also friendly for quantization.

Empirically, we define a distribution of weights or activa-
tions as quantization friendly if it has a small variance and
few outliers. Violating either one of above conditions will
lead to inferior quantization performance. We use RepVGG-
A0 as an example to study why the quantization of the
reparameterization-based structure is difficult. We first re-
produce the performance of RepVGG with its officially re-
leased code, shown in Table 1. Based on this, we can fur-
ther strictly control the experiment settings. We quantize
RepVGG-A0 with a standard setting of PTQ and evaluate
the INT8 accuracy, which is dropped from 72.2% to 50.3%.
Note that we use the deployed model after fusing multi-
branches, because the unfused one would incur extra quan-
tization errors. This trick is widely used in popular quanti-
zation frameworks.

Variants FP32 Acc INT8 Acc
(%) (%)

RepVGG-A0 (w/ custom L2)? 72.4 52.2 (20.2↓)
RepVGG-A0 (w/ custom L2)† 72.2 50.3 (21.9↓)

Table 1: Quantizied top-1 accuracy on ImageNet using
RepVGG-A0. ?: from the official repo. †: reproduced.

We illustrate the weight distribution of our reproduced
model RepVGG-A0 in Fig. 2. Observing that the weights
are well distributed around zero and no particular outlier ex-
ists, it satisfies C1. This leads us to verify C2 if it is the
activation that greatly deteriorates the quantization. Unfor-
tunately, the activation is input-dependent and coupled with
the learned weights. We hereby don’t impose any assump-
tions on the distribution of weight or activation and analyze
the deviation of each branch.

Regularized loss enlarges the activation variance. Be-
fore we proceed, we formulate the computation operations
in a typical RepVGG block. We keep the same naming con-
vention as (Ding et al. 2021) to be better understood. Specif-
ically, we use W(k) ∈ RC2×C1×k×k to denote the kernel of a
k×k convolution, where C1 and C2 are the number of input
and output channels respectively. Note that k ∈ {1, 3} for
RepVGG. As for the batch normalization (BN) layer after
k × k convolution, we use µ(k) ∈ RC2 ,σ(k) ∈ RC2 ,γ(k) ∈
RC2 ,β(k) ∈ RC2 as the mean, standard deviation, scaling
factor and the bias. For the BN in the identity branch, we use
µ(0),σ(0),γ(0),β(0). Let M(1) ∈ RN×C1×H1×W1 , M(2) ∈
RN×C2×H2×W2 be the input and output respectively, and ‘∗’
be the convolution operator. Let Y(0),Y(1) and Y(3) be the
output of the Identity, 1×1 and 3×3 branch. Without loss
of generality, we suppose C1 = C2, H1 = H2,W1 = W2.
Then we can write the output M(2) as,

M(2) = BN(M(1) ∗W(3),µ(3),σ(3),γ(3),β(3))

+ BN(M(1) ∗W(1),µ(1),σ(1),γ(1),β(1))

+ BN(M(1),µ(0),σ(0),γ(0),β(0)) .

(1)

The BN operation for the 3×3 branch can be written as,

Y(3) = γ(3) �
M(1) ∗W(3) − µ(3)√
ε+ σ(3) � σ(3)

+ β(3), (2)

where � is element-wise multiplication and ε a small value
(10−5 by default) for numerical stability. This means BN
plays a role of changing the statistic (mean and variance) of
its input. Note that the change of µ doesn’t affect the quanti-
zation error. However, the changed variance directly affects
the quantization accuracy. From the probability perspective,
given a random variable X, and a scalar λ, the variance of
λX , i.e. D(λX) equals to λ2D(X). Let X(3) = M(1)W(3),
then we have

D(Y(3)) =
γ(3) � γ(3)

ε+ σ(3) � σ(3)
�D(X(3)). (3)

The value of
γ(3)�γ(3)

ε+σ(3)�σ(3)
controls shrinking or expanding

the variance of X(3), which in turn leads to better or worse
quantization performance respectively. For 1×1 and Iden-
tity, we can draw similar conclusions.

Based on the above analysis, we dive into the detail of
RepVGG. There is a critical but easily neglected component,
which is a special design for the weight decay called custom
L2. It is stated that this component improves the accuracy
and facilitates quantization (Ding et al. 2021). This particu-
lar design regularizes the multi-branch weights as if it regu-
larizes its equivalently fused kernel. It is likely to make the
fused weights enjoy a quantization-friendly distribution. We
illustrate the weight distribution of our reproduced model
RepVGG-A0 in Fig. 2 and observe that the weights are well
distributed around zero and no particular outlier exists. This
loss l2 loss eq kernel is essentially,

L2custom
=

|Weq|22
| γ(3)√

ε+σ(3)�σ(3)
|22 + |

γ(1)√
ε+σ(1)�σ(1)

|22
. (4)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11626

1 2 3 4 5 6 7 8 9 101112131415161718192021
Layer

−2

0

2

4

w

1 2 3 4 5 6 7 8 9 101112131415161718192021
Layer

0.025
0.050
0.075

σ(
w
)

Figure 2: Violin plot and standard deviation of RepVGG-A0
convolutional weights per layer.The designed customed L2

helps learned weights quantization friendly.

Notably, the optimizer are encouraged to enlarge the de-
nominator | γ(3)√

ε+σ(3)�σ(3)
|22+ |

γ(1)√
ε+σ(1)�σ(1)

|22 to minimize

this loss, which magnifies the variance of activation and
brings quantization difficulty. This indicates that custom L2

helps to make learned weights quantization-friendly at the
cost of activation quantization-unfriendly. However, we will
show that the model have troubles in quantizing learned
weights without such regularized loss in the next section and
this issue is inevitable because of the structural design.

To address the variance enlarging issue, a simple and
straight forward approach is removing the denominator from
Eq 4 and we have

L′2custom
= |Weq|22 (5)

We report the result in Table 2. Without the denominator
item, the FP32 accuracy is 71.5%, which is 0.7% lower than
the baseline. However, it’s surprising to see that the quanti-
zation performance is greatly improved to 61.2%. However,
this approach still requires inconvenient equivalent conver-
sion.

Another promising approach is applying normal L2 di-
rectly. Regarding, previous multi-branch networks like In-
ception series no longer require special treatment for weight
decay, this motivates us to apply normal L2 loss. The re-
sult is show in Table 2. Except for simplicity, L2 achieves
slightly better result than Eq 5. Therefore, we choose this
approach as our default implementation (M1).

Variants FP32 Acc INT8 Acc
(%) (%)

RepVGG-A0 (w/ custom L2)† 72.2 50.3 (21.9↓)
RepVGG-A0 (Eq 5) 71.5 61.2 (10.3↓)
RepVGG-A0 (w/ normal L2) 71.7 61.6 (10.1↓)
QARepVGG-A0 72.2 70.4 (1.8↓)

Table 2: Removing the denominator of custom L2 improves
the quantized top-1 accuracy on ImageNet. †: reproduced.

Structural design of RepVGG is prone to producing un-
controlled outlier weights While the FP32 accuracy is
0.5% lower than the baseline, its INT8 accuracy is 11.3%
higher than the baseline. However, this design doesn’t meet
the application requirements either. Given that there are no
explicit regularizers to enlarge the activation variance, it is
straightforward to check the distribution of weights. Firstly
we can give the fused weight as,

W = Ŵ(3) + Ŵ(1) + Ŵ(0)

=
γ(3)√
ε+ σ2

(3)

�W(3) +
γ(1)√
ε+ σ2

(1)

� Padding(W(1))

+
γ(0)√
ε+ σ2

(0)

� Padding(W(0))

(6)

where Padding() is applied to match shape of the 3×3
kernel. In this architecture, W(3) and W(1) are trainable pa-
rameters, whileW(0) is a fixed unit matrix that is not subject
to decay during training. The scalars

γ(3)√
ε+σ2

(3)

and
γ(1)√
ε+σ2

(1)

depend on the outputs of the convolution layers of 3×3 and
1×1 branches, respectively. However, γ(0)√

ε+σ(0)2
directly de-

pends on the output of the last layer. It is worth noting
that the Identity branch is special because activations pass
through a ReLU layer before entering a BatchNorm layer.
This operation can be dangerous since if a single channel
is completely unactivated (i.e., contains only zeros), which
generate a very small σ and a singular values of 1√

ε+σ2
(0)

.

This issue is common in networks that use ReLU widely. If
this case occurs, the singular values will dominate the dis-
tribution of the fused kernels and significantly affect their
quantization preference.

The fused weights distribution in both Layer 5 and 6 have
large standard variances (2.4 and 5.1 respectively), which
are about two orders of magnitude larger than other lay-
ers. Specifically, the maximal values of fusedw eights from
Layer 5 and 6 are 692.1107 and 1477.3740. This explains
why the quantization performance is not good, violating C1
causes unrepairable error. We further illustrate the γ√

ε+σ2

of three branches in Fig. 3. The maximal values of γ√
ε+σ2

from the identity branch on Layer 5 and 6 are 692.1107 and
1477.3732. It’s interesting to see that the weights from the
3×3 and 1× branches from Layer 4 also have some large
values but their fused weights no longer contain such val-
ues.

We repeat the experiments thrice, and this phenomenon
recurs. Note that the maximal values randomly occurs in
different layers for different experiments. And simply skip
those layers could not solve the quantization problems. Par-
tial quantization results of RepVGG-A0 (w/ custom L2) in
Table 2 is only 51.3%, after setting Layer 5 and 6 float. Ac-
cording to our analysis, the quantization error for RepVGG
is cumulated by all layers, so partial solution won’t mitigate
the collapse. This motivates us to address this issue by de-
signing quantization-friendly reparameterization structures.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11627

0 5 10 15 20
Layer

0

500

1000

1500
w

RepVGG-A0 3x3 (Deploy)

0 5 10 15 20
Layer

γ/
√
σ2

+
ε

RepVGG-A0 3x3 (Train)

0 5 10 15 20
Layer

0

500

1000

1500

γ/
√
σ2

+
ε

RepVGG-A0 1x1 (Train)

0 5 10 15 20
Layer

γ/
√
σ2

+
ε

RepVGG-A0 Identity (Train)

Figure 3: Violin plot of convolutional weights in each layer
of RepVGG-A0 trained without custom L2 (S1). The weight
of layer 5 and 6 under the deploy setting have large vari-
ances, incurring large quantization errors (C1 violation).

Quantization-friendly Reparameterization
Based on the normal L2 loss, we solve the above issue by
changing the reparameterization structure. Specifically, we
remove BN from the identity and 1×1 branch plus append-
ing an extra BN after the addition of three branches. We
name the network based on this basic reparameterization
structure QARepVGG. The result is shown in the bottom of
Table 2. As for A0 model, QARepVGG-A0 achieves 72.2%
top-1 FP32 accuracy and 70.4% INT8 accuracy, which im-
proves RepVGG by a large margin (+20.1%). Next, we elab-
orate the birth of this design and what role each component
plays.

Removing BN from Identity branch (M2) eliminates
outlier uncontrolled weights to meet C1. We name this
setting S2 and show the result in the third row of Table 3.
The error analysis on weight quantization indicates this de-
sign indeed meets the requirements of C1 and outlier uncon-
trolled weight no longer exists. This model delivers a lower
FP32 accuracy 70.7% and INT8 accuracy 62.5%, which is
still infeasible.

The error analysis on weight quantization indicates this
design indeed meets the requirements of C1. This model
delivers a lower FP32 accuracy 70.7% and INT8 accuracy
62.5%, which is still infeasible. This motivates us to verify
if it violates C2.

Violating the same mean across several branches
shrinks variance of summation to meet C2. If the 3 × 3
and 1×1 branch have the same mean, their summation
is prone to enlarging the variance. This phenomenon oc-
curs frequently under the design of RepVGG. Specifically,
ReLU (Nair and Hinton 2010) is the activation function in
RepVGG. On one hand, it’s harmful if most inputs are be-
low zero (dead ReLU) (Maas et al. 2013). On the other hand,
it’s also not favored if all inputs are above zero because
of losing non-linearity. Empirically, many modern high-
performance CNN models with BN often have zero means
before ReLU. If we take this assumption, we would let
E(M(2)) = E(Y(1) + Y(3) + Y(0)) = 0. If the 3× 3 and

1×1 branch have the same mean, we reach β(3) = β(1) =

−E(Y(0))

2 . Note E(Y(0)) ≥ 0, adding three branches of-
ten enlarges the variance (Fig. 4). Next, we prove that the
original design of RepVGG inevitably falls into this issue
β(3) = β(1) as in Lemma 0.1.

Settings FP32 Acc (%) INT8 Acc(%)

S0 RepVGG-A0 72.2 50.3
S1 +M1 71.7 61.6
S2 +M1+M2 70.7 62.5
S3 +M1+M2+M3 70.1 69.5
S4 +M1+M2+M3+M4 72.2 70.4

- +M2 70.2 62.5
- +M3 70.4 69.5
- +M4 72.1 57.0

Table 3: Quantization-friendly design for reparameterization
and component analysis.

We write the expectation of the statistics in three branches
as,

E(Y(3)) = β(3),E(Y(1)) = β(1). (7)

Lemma 0.1. Training a neural network using setting S2
across n iterations using loss function l(W,γ,β) , for any
given layer, βn

(3) = βn
(1).

The proof is given in the supplementary PDF.

−10 0 10
0

25

50

75

100

125
3x3

μ: -0.1332
σ: 2.6719

−10 0 10
0

20

40

60

80

1x1
μ: -2.3496
σ: 2.0137

−10 0 10
0

100

200

300

400

500

Identity
μ: 0.4136
σ: 0.8042

−10 0 10
0

50

100

150
Sum

μ: -2.0684
σ: 3.4453

Figure 4: Enlarged variance in the activation distribution of
RepVGG-A0 (S2). We pick a random image from the Ima-
geNet validation set and draw the output (channel 0) of each
branch at layer 4 (it is also easily seen in other layers).

To better control the variance, several simple approaches
have potentials, which are shown in Table 4. We choose this
design: removing the BN in 1×1 branch (M3) because it has
the best performance. We name this setting S3 and show the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11628

result in Table 3. This design achieves 70.1% top-1 FP32
and 69.5% INT 8 accuracy on ImageNet, which greatly im-
proves the quantization performance. However, its FP32 ac-
curacy is still low.

Variants FP32 Acc INT8 Acc
(%) (%)

1×1 wo BN 70.1 69.5
3×3 wo BN ? 0.1 -
3×3 wo BN, 1×1 wo BN ? 0.1 -
1×1 with BN (affline=False) 70.1 65.5

Table 4: Comparison using several designs using A0 model
without BN in the identity branch. ?: stopped training be-
cause of NAN.

Extra BN Addresses the Covariate Shift Issue

S4 (Post BN on S3) Since the addition of three branches
introduces the covariate shift issue (Ioffe and Szegedy
2015), we append an extra batch normalization after the ad-
dition of three branches (M4) to stabilize the training pro-
cess and name this setting S4 (Fig. 1 right). The post BN
doesn’t affect the equivalent kernel fusion for deployment.
This further boosts the FP32 accuracy of our A0 model from
70.1% to 72.2% on ImageNet. Moreover, its INT8 accuracy
is enhanced to 70.4%.

To summarize, combining the above four modifications
together (from M1 to M4) forms our QARepVGG, whose
FP32 accuracy is comparable to RepVGG and INT8 perfor-
mance outperforms RepVGG by a large margin.

Experiment
We mainly focus our experiments on ImageNet dataset
(Deng et al. 2009). And we verify the generalization of our
method based on a recent popular detector YOLOv6 (Li
et al. 2022), which extensively adopts the reparameteriza-
tion design and semantic segmentation. As for PTQ, we use
the PyTorch-Quantization toolkit (NVIDIA 2018), which is
widely used in deployment on NVIDIA GPUs. Weights, in-
puts to convolution layers and full connection layers are all
quantized into 8-bit, including the first and last layer. Fol-
lowing the default setting of Pytorch-Quantization toolkit,
the quantization scheme is set to symmetric uniform. We use
the same settings and the calibration dataset for all the quan-
tization results, except those officially reported ones.

ImageNet Classification. To make fair comparisons, we
strictly control the training settings as (Ding et al. 2021). The
results are shown in Table 5. Our models achieve compara-
ble FP32 accuracy as RepVGG. Notably, RepVGG severely
suffers from quantization, where its INT8 accuracy largely
lags behind its FP32 counterpart. For example, the top-1 ac-
curacy of RepVGG-B0 is dropped to 40.2% from 75.1%.
In contrast, our method exhibits strong INT8 performance,
where the accuracy drops are within 2%.

We observe that RepVGG with group convolutions
behaves much worse. The accuracy of RepVGG-B2g4

Model FP32 INT8 FPS Params FLOPs
(%) (%) (M) (B)

RepVGG-A0‡ 72.4 52.2 3256 8.30 1.4
RepVGG-A0† 72.2 50.3 3256 8.30 1.4
QARepVGG-A0 72.2 70.4 3256 8.30 1.4
RepVGG-B0‡ 75.1 40.2 1817 14.33 3.1
QARepVGG-B0 74.8 72.9 1817 14.33 3.1
RepVGG-B1g4‡ 77.6 0.55 868 36.12 7.3
QARepVGG-B1g4 77.4 76.5 868 36.12 7.3
RepVGG-B1g2‡ 77.8 14.5 792 41.36 8.8
QARepVGG-B1g2 77.7 77.0 792 41.36 8.8
RepVGG-B1‡ 78.4 3.4 685 51.82 11.8
QARepVGG-B1 78.0 76.4 685 51.82 11.8
RepVGG-B2g4‡ 78.5 13.7 581 55.77 11.3
QARepVGG-B2g4 78.4 77.7 581 55.77 11.3
RepVGG-B2‡ 78.8 51.3 460 80.31 18.4
QARepVGG-B2 79.0 77.7 460 80.31 18.4

Table 5: Classification results on ImageNet validation
dataset. All models are trained under the same settings and
are evaluated in deploy mode. †: reproduced. ‡: RepVGG
official.

is dropped from 78.5% to 13.7% after PTQ (64.8%↓).
Whereas, our QARepVGG-B2g4 only loses 0.7% accuracy,
indicating its robustness to other scales and variants.

Comparison with RepOpt-VGG. RepOpt-VGG uses
gradient reparameterization and it contains two stages:
searching the scales and training with the scales obtained.
Quantization accuracy can be very sensitive depending on
the search quality of scales (Ding et al. 2023).

As only a few pre-trained models are released, we retrain
RepOpt-VGG-A0/B0 models following (Ding et al. 2023).
Namely, we run a hyper-parameter searching for 240 epochs
on CIFAR-100 and train for a complete 120 epochs on Im-
ageNet. We can reproduce the result of RepOpt-VGG-B1
with the officially released scales. However, it was hard to
find out good scales for A0/B0 to have comparable perfor-
mance. As shown in Table 6, RepOpt-VGG-A0 achieves
70.3% on ImageNet, which is 2.1% lower than RepVGG.
Although being much better than RepVGG, their PTQ accu-
racies are still too low. In contrast, our method outperforms
RepOpt with clear margins. Besides, we don’t have sensitive
hyper-parameters or extra training costs.

Comparison using QAT. We apply QAT from the
NVIDIA quantization toolkit on RepVGG, which is de facto
standard in practice. The result is shown in Table 7. While
QAT significantly boosts the quantization performance of
RepVGG, it still struggles to deliver ideal performances be-
cause QAT accuracy usually matches FP32. When equipped
with QAT, QARepVGG still outperforms RepVGG+QAT
by a clear margin. As for QAT comparisons, 1%↑ is recog-
nized as significant improvement. All models are trained for
10 epochs (the first three ones for warm-up) with an initial
learning rate of 0.01.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11629

Model FP32 acc INT8 acc Epochs
(%) (%)

RepOpt-VGG-A0 70.3 64.8 (5.5↓) 240‡+120
QARepVGG-A0 72.2 70.4 (1.8↓) 120
RepOpt-VGG-B0 73.8 62.6 (11.2↓) 240‡+120
QARepVGG-B0 74.8 72.9 (1.9↓) 120
RepOpt-VGG-B1? 78.5 75.9 (2.6↓) 240‡+120
RepOpt-VGG-B1† 78.3 75.9 (2.4↓) 240‡+120
QARepVGG-B1 78.0 76.4 (1.6 ↓) 120

Table 6: Comparison with RepOpt-VGG on ImageNet
dataset. ?: official repo. †: reproduced. ‡: 240 epochs on
CIFAR-100.

Model FP32 (%) PTQ (%) QAT (%)
RepVGG-A0 72.2 50.3 66.3
QARepVGG-A0 72.2 70.4 71.9 (5.6↑)
RepVGG-B1g2 77.8 14.5 76.4
QARepVGG-B1g2 77.7 77.0 77.4 (1.0↑)
RepVGG-B2 78.8 51.3 77.4
QARepVGG-B2 79.0 77.7 78.7 (1.3↑)

Table 7: PTQ and QAT results on ImageNet validation set.

Ablation study on component analysis. We study the
contribution to quantization performance from four modi-
fications and show the results in Table 3. Note that when
BN is entirely removed, the model fails to converge. Our de-
sign, putting these four components together, is deduced by
meeting both C1 and C2 requirements. Single component
analysis helps to evaluate which role it plays more quantita-
tively. It’s interesting that the M3 setting is very near to the
VGG-BN-A0 setting (the second row of Table ??), which
has lower FP32 and relative higher INT8 accuracy. However,
our fully equipped QARepVGG achieves the best FP32 and
INT8 accuracy simultaneously.

Object Detection. To further verify the generalization of
QARepVGG, we test it on object detectors like YOLOv6
(Li et al. 2022). It extensively makes use of RepVGG blocks
and severely suffers from the quantization issue. Although
YOLOv6 alleviates this issue by resorting to RepOpt-VGG,
the approach is unstable and requires very careful hyperpa-
rameter tuning.

We take ‘tiny’ and ‘small’ model variants as comparison
benchmarks. We train and evaluate QARepVGG-fashioned
YOLOv6 on the COCO 2017 dataset (Lin et al. 2014) and
exactly follow its official settings (Li et al. 2022). The results
are shown in Table 8. RepVGG and QARepVGG versions
are trained for 300 epochs on 8 Tesla-V100 GPUs. RepOpt
requires extra 300 epochs to search for scales.

Noticeably, YOLOv6s-RepVGG suffers a huge quantiza-
tion degradation for about 7.4% mAP via PTQ. YOLOv6t-
RepVGG is slightly better, but the reduction of 3% mAP
is again unacceptable in practical deployment. Contrarily,
YOLOv6s/t-QARepVGG have similar FP32 accuracies to
their RepVGG counterpart, while INT8 accuracy drops are
restricted within 1.3% mAP. YOLOv6-RepOpt-VGG could

Model FP32 mAP INT8 mAP Epochs
(%) (%)

YOLOv6t-RepVGG 40.8 37.8 (3.0↓) 300
YOLOv6t-RepOpt 40.7 39.1 (1.6↓) 300+300
YOLOv6t-QARepVGG 40.7 39.5 (1.2↓) 300
YOLOv6s-RepVGG? 42.4 35.0 (7.4↓) 300
YOLOv6s-RepOpt? 42.4 40.9 (1.5↓) 300+300
YOLOv6s-QARepVGG 42.3 41.0 (1.3↓) 300

Table 8: Detection results on COCO. ?: official repo.

Model mIoU mIoU
FP32(%) INT8(%)

FCN(RepVGG-B1g4) 72.5 67.1
FCN(QARepVGG-B1g4) 72.6 71.4
DeepLabV3+(RepVGG-B1g4) 78.4 73.1
DeepLabV3+(QARepVGG-B1g4) 78.4 77.2

Table 9: Semantic segmentation results on cityscapes. All
models are trained using crop size of 512×1024.

give better PTQ accuracy than YOLOv6-RepVGG as well.
However, it requires a doubled cost. We also find that the
final accuracy of RepOpt-VGG is quite sensitive to the
searched hyper-parameters which cannot be robustly ob-
tained.

Semantic Segmentation. We further evaluate our method
on the semantic segmentation task. Specifically, we use two
representative frameworks FCN and DeepLabV3+ (Chen
et al. 2018) The detailed setting is shown in the supplemen-
tary. The results are shown in Table 9. Under the FCN frame-
work, the mIoU is reduced from 72.5% (fp32) to 67.1%
(int8) using RepVGG-B1g4. In contrast, mIoU is reduced
from 72.6% (fp32) to 71.4% (int8) on top of QARepVGG-
B1g4. Under the DeepLabv3+ framework, RepVGG-B1g4
severely suffers from the quantization with 5.3% mIoU drop.
Whereas, QARepVGG-B1g4 only drops 1.2%.

Conclusion
Through theoretical and quantitative analysis, we dis-
sect the well-known quantization failure of the notable
reparameterization-based structure RepVGG. Its structural
defect inevitably magnifies the quantization error and cu-
mulatively produces inferior results. We refashion its design
to have QARepVGG, which generates the weight and acti-
vation distributions that are advantageous for quantization.
While keeping the good FP32 performance of RepVGG,
QARepVGG greatly eases the quantization process for fi-
nal deployment. We emphasize that quantization awareness
in architectural design shall be drawn more attention.

Acknowledgements
This work was supported by National Key R&D Program of
China (No. 2022ZD0118700).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11630

References
Bhalgat, Y.; Lee, J.; Nagel, M.; Blankevoort, T.; and Kwak,
N. 2020. Lsq+: Improving low-bit quantization through
learnable offsets and better initialization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 696–697.
Cai, Y.; Yao, Z.; Dong, Z.; Gholami, A.; Mahoney, M. W.;
and Keutzer, K. 2020. Zeroq: A novel zero shot quantization
framework. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 13169–13178.
Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and
Yuille, A. L. 2017. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE transactions on pattern analysis and
machine intelligence, 40(4): 834–848.
Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; and
Adam, H. 2018. Encoder-Decoder with Atrous Separable
Convolution for Semantic Image Segmentation. In ECCV.
Dehner, G.; Dehner, I.; Rabenstein, R.; Schäfer, M.; and
Strobl, C. 2016. Analysis of the quantization error in dig-
ital multipliers with small wordlength. In 2016 24th Eu-
ropean Signal Processing Conference (EUSIPCO), 1848–
1852. IEEE.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), 4171–4186.
Ding, X.; Chen, H.; Zhang, X.; Huang, K.; Han, J.; and
Ding, G. 2023. Re-parameterizing Your Optimizers rather
than Architectures. In The Eleventh International Confer-
ence on Learning Representations.
Ding, X.; Guo, Y.; Ding, G.; and Han, J. 2019. Ac-
net: Strengthening the kernel skeletons for powerful cnn
via asymmetric convolution blocks. In Proceedings of the
IEEE/CVF international conference on computer vision,
1911–1920.
Ding, X.; Zhang, X.; Han, J.; and Ding, G. 2022. Scaling
up your kernels to 31x31: Revisiting large kernel design in
cnns. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 11963–11975.
Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; and
Sun, J. 2021. Repvgg: Making vgg-style convnets great
again. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 13733–
13742. https://github.com/DingXiaoH/RepVGG.git, hash-
tag: 5c2e359a144726b9d14cba1e455bf540eaa54afc.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020. An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale. In In-
ternational Conference on Learning Representations.

Graves, A.; Mohamed, A.-r.; and Hinton, G. 2013. Speech
recognition with deep recurrent neural networks. In 2013
IEEE international conference on acoustics, speech and sig-
nal processing, 6645–6649. Ieee.
Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; and Narayanan,
P. 2015. Deep learning with limited numerical precision. In
International conference on machine learning, 1737–1746.
PMLR.
Gysel, P.; Pimentel, J.; Motamedi, M.; and Ghiasi, S. 2018.
Ristretto: A framework for empirical study of resource-
efficient inference in convolutional neural networks. IEEE
transactions on neural networks and learning systems,
29(11): 5784–5789.
Habi, H. V.; Peretz, R.; Cohen, E.; Dikstein, L.; Dror, O.;
Diamant, I.; Jennings, R. H.; and Netzer, A. 2021. HPTQ:
Hardware-Friendly Post Training Quantization. arXiv
preprint arXiv:2109.09113.
He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask
r-cnn. In Proceedings of the IEEE international conference
on computer vision, 2961–2969.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.;
Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al.
2019. Searching for mobilenetv3. In Proceedings of the
IEEE/CVF international conference on computer vision,
1314–1324.
Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861.
Hu, M.; Feng, J.; Hua, J.; Lai, B.; Huang, J.; Gong,
X.; and Hua, X.-S. 2022. Online Convolutional Re-
parameterization. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 568–577.
Huang, T.; You, S.; Zhang, B.; Du, Y.; Wang, F.; Qian,
C.; and Xu, C. 2022a. DyRep: Bootstrapping Training
with Dynamic Re-parameterization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 588–597.
Huang, Z.; Zhang, T.; Heng, W.; Shi, B.; and Zhou, S.
2022b. Real-Time Intermediate Flow Estimation for Video
Frame Interpolation. In Proceedings of the European Con-
ference on Computer Vision (ECCV).
Ioffe, S.; and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. In International conference on machine learning, 448–
456. PMLR.
Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard,
A.; Adam, H.; and Kalenichenko, D. 2018. Quantization and
training of neural networks for efficient integer-arithmetic-
only inference. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2704–2713.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11631

Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke,
Z.; Li, Q.; Cheng, M.; Nie, W.; Li, Y.; Zhang, B.; Liang,
Y.; Zhou, L.; Xu, X.; Chu, X.; Wei, X.; and Wei, X. 2022.
YOLOv6: a single-stage object detection framework for
industrial applications. arXiv preprint arXiv:2209.02976.
https://github.com/meituan/YOLOv6.git, hashtag:
05da1477671017ac2edbb709e09c75854a7b4eb1.
Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft
coco: Common objects in context. In European conference
on computer vision, 740–755. Springer.
Maas, A. L.; Hannun, A. Y.; Ng, A. Y.; et al. 2013. Rectifier
nonlinearities improve neural network acoustic models. In
ICML, volume 30, 3. Atlanta, Georgia, USA.
Nagel, M.; Baalen, M. v.; Blankevoort, T.; and Welling, M.
2019. Data-free quantization through weight equalization
and bias correction. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 1325–1334.
Nair, V.; and Hinton, G. E. 2010. Rectified linear units im-
prove restricted boltzmann machines. In ICML.
NVIDIA. 2018. TensorRT PyTorch Quantization Toolkit.
https://docs.nvidia.com/deeplearning/tensorrt/pytorch-
quantization-toolkit/docs/index.html. Accessed: 2023-09-
01.
Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A. 2016.
You only look once: Unified, real-time object detection. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 779–788.
Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 4510–4520.
Sheng, T.; Feng, C.; Zhuo, S.; Zhang, X.; Shen, L.; and
Aleksic, M. 2018. A quantization-friendly separable con-
volution for mobilenets. In 2018 1st Workshop on Energy
Efficient Machine Learning and Cognitive Computing for
Embedded Applications (EMC2), 14–18. IEEE.
Tan, M.; and Le, Q. 2019. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, 6105–6114. PMLR.
Vasu, P. K. A.; Gabriel, J.; Zhu, J.; Tuzel, O.; and Ranjan,
A. 2022. An Improved One millisecond Mobile Backbone.
arXiv preprint arXiv:2206.04040.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Wang, C.-Y.; Bochkovskiy, A.; and Liao, H.-Y. M. 2022.
YOLOv7: Trainable bag-of-freebies sets new state-of-
the-art for real-time object detectors. arXiv preprint
arXiv:2207.02696.
Wang, K.; Liu, Z.; Lin, Y.; Lin, J.; and Han, S. 2019. Haq:
Hardware-aware automated quantization with mixed preci-
sion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 8612–8620.

Wu, B.; Wang, Y.; Zhang, P.; Tian, Y.; Vajda, P.; and Keutzer,
K. 2018. Mixed precision quantization of convnets via
differentiable neural architecture search. arXiv preprint
arXiv:1812.00090.
Wu, K.; Lee, C.-K.; and Ma, K. 2022. MemSR: Train-
ing Memory-efficient Lightweight Model for Image Super-
Resolution. In Chaudhuri, K.; Jegelka, S.; Song, L.; Szepes-
vari, C.; Niu, G.; and Sabato, S., eds., Proceedings of the
39th International Conference on Machine Learning, vol-
ume 162 of Proceedings of Machine Learning Research,
24076–24092. PMLR.
Xu, S.; Wang, X.; Lv, W.; Chang, Q.; Cui, C.; Deng, K.;
Wang, G.; Dang, Q.; Wei, S.; Du, Y.; et al. 2022. PP-
YOLOE: An evolved version of YOLO. arXiv preprint
arXiv:2203.16250.
Yun, S.; and Wong, A. 2021. Do All MobileNets Quantize
Poorly? Gaining Insights into the Effect of Quantization on
Depthwise Separable Convolutional Networks Through the
Eyes of Multi-scale Distributional Dynamics. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2447–2456.
Zagoruyko, S.; and Komodakis, N. 2017. Diracnets: Train-
ing very deep neural networks without skip-connections.
arXiv preprint arXiv:1706.00388.
Zhou, S.; Tian, Z.; Chu, X.; Zhang, X.; Zhang, B.; Lu, X.;
Feng, C.; Jie, Z.; Chiang, P. Y.; and Ma, L. 2023. FastPil-
lars: A Deployment-friendly Pillar-based 3D Detector. arXiv
preprint arXiv:2302.02367.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11632

