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Abstract

Recent machine learning algorithms have been developed us-
ing well-curated datasets, which often require substantial cost
and resources. On the other hand, the direct use of raw data
often leads to overfitting towards frequently occurring class
information. To address class imbalances cost-efficiently, we
propose an active data filtering process during self-supervised
pre-training in our novel framework, Duplicate Elimination
(DUEL). This framework integrates an active memory in-
spired by human working memory and introduces distinctive-
ness information, which measures the diversity of the data
in the memory, to optimize both the feature extractor and
the memory. The DUEL policy, which replaces the most du-
plicated data with new samples, aims to enhance the dis-
tinctiveness information in the memory and thereby mitigate
class imbalances. We validate the effectiveness of the DUEL
framework in class-imbalanced environments, demonstrating
its robustness and providing reliable results in downstream
tasks. We also analyze the role of the DUEL policy in the
training process through various metrics and visualizations.

Introduction
Recent machine learning algorithms are heavily influenced
by the quantity and quality of data. However, when agents
collect data in real-world environments, the class distribu-
tion of the unprocessed data is long-tailed, indicating that
data from certain classes are acquired much more frequently
than others (Liu et al. 2019). When trained on such raw
data without any processing, deep learning models tend to
overfit to these frequent classes. Therefore, adaptive data
refinement during the training process is essential to miti-
gate class imbalances cost-efficiently. Traditional methods
have been developed based on resampling (Buda, Maki, and
Mazurowski 2018; Pouyanfar et al. 2018) and reweight-
ing (Cao et al. 2019; Cui et al. 2019; Tan et al. 2020) tech-
niques. However, these methods require class information
for each data point, which increases the cost of preprocess-
ing and labeling. Even semi-supervised approaches (Wei
et al. 2021; Kim et al. 2020) still require a fine-tuned sup-
port set that can reflect the target data distribution. To ad-
dress these issues, recent research (Yang and Xu 2020; Liu
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et al. 2021) has proposed self-supervised pretraining tech-
niques that can be trained with minimally processed data and
demonstrate improved performance in class-imbalanced en-
vironments.

Self-supervised learning (Chen et al. 2020a; He et al.
2020; Zbontar et al. 2021), which is the modernized form
of metric learning (Khosla et al. 2020; Sohn 2016), has the
advantage of acquiring positive samples via augmentation
which reflects the inductive bias in the data. Similarly, by
using data in either a mini-batch or a memory as negative
samples, SSL methods do not require class information to
collect such negatives. However, in a class-imbalanced envi-
ronment, we have observed that the relationships within and
between classes are unevenly reflected when training an SSL
model. This imbalance leads to performance degradation in
both mini-batch and memory-based methods. Based on this
empirical evidence, we claim that an active memory that can
alleviate the imbalances between latent classes is necessary
for self-supervised class-imbalanced learning.

In this context, we mimic a well-known human cognitive
process to achieve an active memory. Human working mem-
ory (Baddeley and Logie 1999; Baddeley 2012) is a promi-
nent cognitive concept that explains how humans deal with
extreme class-imbalances via an active data filtering process.
Figure 1.A shows the mechanism of human working mem-
ory. The Central Executive System (CES), which is a super-
visory subsystem of working memory, inhibits dominant in-
formation (Miyake et al. 2000; Wongupparaj, Kumari, and
Morris 2015) from perceived data and remembers it while
maximizing the amount of information (Baddeley and Lo-
gie 1999). These cognitive phenomena support our hypoth-
esis that eliminating the most duplicated data will increase
the distinctiveness information within memory.

To compute the amount of the information, we define dis-
tinctiveness information, which measures how different a
data point is from other data points. We also introduce Heb-
bian Metric Learning (HML) which directly optimizes dis-
tinctiveness information while reducing information among
co-fired similar data inspired by the characteristics of Heb-
bian learning (Hebb 2005; Löwel and Singer 1992). We
show that to generalize HML in class-imbalanced environ-
ments, an active memory is essential. In this case, a policy
for managing the memory should maximize the distinctive-
ness information in the memory.
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Figure 1: Visualizations of the concepts of working memory and our proposed DUEL framework. (A) Real-world agent per-
ceives data from the environment and maps the representation to solve the task. Working memory finds semantically duplicated
signals and reduces them to maximizes the total amount of information. (B) Inspired by this cognitive process, we design
the Duplicate Elimination (DUEL) framework. With mutual duplication probability, the representations form a graph structure
(center) and are filtered out (right) to gradually maximize the distinctiveness information.

As an implementation of our method, we propose the
Duplicate Elimination (DUEL) framework, a novel SSL
framework tailored for class-imbalanced environments. Fig-
ure 1.B provides a conceptual visualization of the proposed
DUEL framework. The framework consists of two compo-
nents: an active memory and a feature extractor. The feature
extractor is trained with both the current data and the addi-
tional data from the active memory, while the active memory
eliminates the most redundant data with the extracted rep-
resentations. By iteratively updating both components, the
DUEL framework can extract robust representations even in
highly class-imbalanced environments.

This study provides the following contributions:

• Memory-integrated Hebbian Metric Learning. We de-
fine HML which optimizes the information-based met-
ric between the data from a Hebbian perspective. We
show that an active memory that maximizes distinctive-
ness information is essential to extend HML to class-
imbalanced environments.

• Memory Management Policy. Inspired by working
memory, we design a memory management policy that
eliminates the most duplicated element in the memory.

• DUEL Framework. We propose the DUEL framework
for self-supervised class-imbalanced learning. To simu-
late class-imbalanced environments, we assume that one
dominant class occurs more frequently than others. In
class-imbalanced environments, performance degrada-
tion has been observed with conventional self-supervised
learning methods. On the other hand, even with the dra-
matically class-imbalanced data, the DUEL framework
maintains stable performance in downstream tasks. We
also validate the DUEL framework with more realistic
environments with long-tailed class distributions and ob-
serve consistent results.

Revisiting Metric Learning from a
Hebbian-based Perspective

In this section, we discuss Hebbian Metric Learning (HML),
which allows us to represent the optimization problem of
both the feature extractor and the memory from the same
perspective. HML consists of Hebbian information and dis-
tinctiveness information terms, which aim to make repre-
sentations of data with the same latent class similar while
maximizing the diversity of information.

Problem Definition
The data distribution D is a joint distribution of the observa-
tion x ∈ X and its corresponding latent class c ∈ C (Saunshi
et al. 2019; Ash et al. 2021; Awasthi, Dikkala, and Kamath
2022). Data with each latent class c has a distinct data distri-
bution Dc, and latent classes constitute the class distribution
c ∼ ρ. In this case, the joint distribution p(x, c) can be ex-
pressed as follows:

p(x, c) := ρ(c) · Dc(x).

Our objective is to fit an estimated distribution q(x, c; f)
with a feature extractor f : X → Z to the true distri-
bution p(x, c) by minizing the Kullback-Leibler divergence
DKL(p(x, c)||q(x, c; f)). However, since latent class is not
directly accessible, indirect methods such as metric learning
is needed to compute q(x, c; f).

Hebbian Metric Learning
To represent p(x, c) and q(x, c; f) without directly using la-
tent class, we define the probability that two data samples
share the same latent class as mutual duplication probability.
In this case, q(ci = cj |xi, xj ; f) can be computed through a
similarity metric of the representations of two data samples
in the latent space.
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Definition 1 (Mutual duplication probability). Let (xi, ci),
(xj , cj) ∼ D. The mutual duplication probability q(ci =
cj |xi, xj ; f) with feature extractor f is defined as follows:

q(ci = cj |xi, xj ; f) := sim∗(f(xi), f(xj)). (1)

sim∗ denotes an arbitrary metric function which satisfies
the property as the probability: the range should be bounded
to [0, 1]. With mutual duplication probability, the duplication
density functions P and Q are derived via Bayes’ theorem.

P (xi, xj) := p(xi, xj |ci = cj)

=
p(ci = cj |xi, xj)p(xi)p(xj)

Exk∼D [p(ci = ck|xi, xk)]

Q(xi, xj ; f) := q(xi, xj |ci = cj ; f)

=
q(ci = cj |xi, xj ; f)p(xi)p(xj)

Exk∼D [q(ci = ck|xi, xk; f)]

P and Q represent normalized joint distributions of two
data samples sharing the same class. Through the use of
message passing (Pearl 1988), we can represent the two
joint distributions, p(x, c) and q(x, c; f), using their density
functions P and Q. In Proposition 1, we show that mini-
mizing DKL(p(x, c)||q(x, c; f)) is equivalent to minimizing
DKL(P ||Q) and it becomes Hebbian Metric Learning.
Proposition 1 (Hebbian Metric Learning). Minimiz-
ing DKL(p(x, c)||q(x, c; f)) is equivalent to minimizing
LHML(f ;D), which can be derived as:

argmin
f

DKL(p||q) = argmin
f

DKL(P ||Q)

= argmin
f

(Ih(f ;D)− Id(f ;D))︸ ︷︷ ︸
LHML(f ;D)

where Ih(f ;D) and Id(f ;D) are denoted as Hebbian infor-
mation and Distinctiveness information respectively.

Ih(f ;D) := Exi∼D [Ih(xi; f,D)] (2)
Id(f ;D) := Exi∼D [Id(xi; f,D)] (3)

Ih(xi; f,D) := Exj∼D+
i
[− log q(ci = cj |xi, xj ; f)]

Id(xi; f,D) := − log
(
Exj∼D [q(ci = cj |xi, xj ; f)]

)
D+

i represents the distribution of data that belong to the
same latent class of xi. For each data xi, Hebbian informa-
tion Ih(xi; f,D) is defined as mean information of mutual
duplication probability with positive samples from D+

i . In
Hebbian learning (Hebb 2005; Löwel and Singer 1992), the
learning process strengthens the connections between simi-
lar data, which means that the Hebbian information between
the two data should be minimized.

On the other hand, for each data xi, distinctiveness infor-
mation Id(xi; f,D) is estimated information of the propor-
tion of class ci from the distribution D. The expected value
of distinctiveness information Id(xi; f,D) becomes a mea-
surement indicating how diversely the latent class informa-
tion is distributed within the data distribution. For agents, it
is essential to acquire as much information as possible from

Maximize
Distinctiveness
Information

Minimize
Hebbian
information

Figure 2: Conceptual Visualization of Hebbian Metric
Learning. HML minimizes the Hebbian information while
maximizing the distinctiveness information.

the observations in the given environment to form diverse
representations. This property, known as the distinctiveness
effect (Parker, Wilding, and Akerman 1998; Waddill and
McDaniel 1998), becomes crucial in extracting the richest
representation from the data.

The optimization for LHML can be interpreted as finding
f∗ that minimizes Hebbian information among similar data,
while preventing collapsed representation by maximizing Id
as a regularization term. Figure 2 visualizes the concept of
Hebbian Metric Learning.

Memory-integrated HML
for Class-imbalanced Environment

Conventional metric learning frameworks (Khosla et al.
2020; Sohn 2016; Caron et al. 2020; Chen et al. 2020a,b;
He et al. 2020) often assume that D is an oracle with evenly
distributed class information: ∀c ∈ C, ρc = 1/|C|. How-
ever, when the accessible data is unrefined, data with some
dominant classes may occur more frequently than others, re-
sulting in class-imbalances which can hinder the formation
of robust representations in SSL. To deal with these imbal-
ances, maintaining a memory which stores the data selec-
tively can be a breakthrough. Thus we extend Hebbian Met-
ric Learning with a memory for the empirical distributionD′

with class distribution ρ by introducing a memoryM.
Proposition 2 (HML Bound). Let D and D′ be the oracle
and the empirical data distribution, respectively. Then the
upper bound of ideal HML loss is formulated as below:

LHML(f ;D) ≤
λ·Ih(f ;D′)− Id(f ;D′,M) + |Id(f ;D′,M)− Id(f ;D)|︸ ︷︷ ︸

LM-HML(f,M;D′)

(4)

where Id(f ;D′,M) := Exi∼D′ [Id(xi; f,M)] denotes the
empirical distinctiveness information in the memoryM and
λ = 1/(|C| · ρmin).
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The proof is provided in Appendix A. We denote the up-
per bound in Equation 4 as LM-HML(f,M;D′), and adopt
it as an objective function to minimize. In Theorem 1, we
show that the optimal feature extractor f∗ that minimizes
LM-HML with optimal memoryM∗ is also optimal for LHML
with oracle data distribution.
Theorem 1 (Optimality of M-HML). Assume that an op-
timal memory M∗ ≃ D exists. With the memory M∗, the
ideal loss LHML and empirical loss LM-HML shares the opti-
mal feature extractor f∗:

LM-HML(f
∗,M∗;D′) = LHML(f

∗;D) = − log |C|

where mutual duplication probability with f∗ satisfies the
following property:

q(ci = cj |xi, xj ; f
∗) =

{
1 ci = cj
0 ci ̸= cj .

Proof Sketch. We show that the bound of difference be-
tween two losses becomes zero with optimal feature extrac-
tor f∗ and memory M∗. The bound contains two terms:
|λ · Ih(f ;D′)− Ih(f ;D)| and |Id(f ;D′,M)− Id(f ;D)|.

We find f which satisfies |λ · Ih(f ;D′)− Ih(f ;D)| = 0
by setting q(ci = cj |xi, xj ; f) = 1 for ci = cj . We show
that |Id(f∗;D′,M∗)−Id(f∗;D)| = 0 with optimal feature
extrator f∗. Then |LM-HML(f

∗,M;D′)−LHML(f
∗;D)| = 0

is satisfied and LHML(f
∗;D) = − log |C|.

By utilizing Theorem 1 and Proposition 1, the optimal
feature extractor f∗ which minimizes DKL(p||q) is also op-
timal for LM-HML(f

∗,M∗;D′) with the memoryM∗. In the
next section, we describe a procedural methodology to ef-
fectively optimize LM-HML by adopting an active memory
based on distinctiveness information Id.

Duplicate Elimination on Active Memory
with Hebbian Metric Learning

Memory Management Policy
In the previous section, we propose the objective function
LM-HML for both the memory and feature extractor. Since
memory is a finite set which stores limited number of the
incoming data, optimizing M is a discrete process of de-
ciding which data to store. Therefore, we split the objective
function LM-HML into objective function of memory while
fixing the feature extractor, and objective function of feature
extractor while fixing the memory. In this case, we set the
memoryM to hold K representative data points:M∈ XK .

f∗ := argmin
f

(λ · Ih(f ;D′)− Id(f ;D′,M)) (5)

M∗ := argmin
M∈XK

|Id(f ;D′,M)− Id(f ;D)|

=argmax
M∈XK

Id(f ;D′,M) (6)

To remove Id(f ;D) term with oracle distribution D in
Equation 6, we assume that Id(f ;D) ≥ Id(f ;D′,M) and
simplify Equation 6 as argmaxM∈XK Id(f ;D′,M), which
implies maximizing the distinctiveness information in the

Algorithm 1: DUEL Framework with the policy πDUEL

Model : feature extractor fθ, memoryM
Input : empirical data distribution D′, batch size B, mem-
ory size K, learning rate η
Output : trained feature extractor fθ∗

1: θ ← θ0
2: M←M0

3: while θ is not converged do
4: {(xb, x

+
b )}Bb=1 ← Sample(D′)

5: Compute LInfoNCE({(xb, x
+
b )}Bb=1,M; fθ)

6: θ ← θ − η∇θLInfoNCE
7: for b ∈ {1, · · · , B} do
8: M←M∪ {xb}
9: J ← argmin

j∈{1..(K+1)}
Id(xj ; fθ,M) ▷ πDUEL

10: M←M\ {xJ}
11: end for
12: end while

memory. To optimize the memory, we introduce an active
memory Mπ that is procedurally updated by a memory
management policy π. Since finding an optimal policy π∗

is NP-hard, we design its approximated policy inspired by
the human cognitive process.

Duplicate Elimination Policy on Active Memory
Working memory is an active memory connected to human
sensory-motor neurons, allowing humans to selectively con-
centrate on necessary information from the environment to
achieve their goals. In order to mimic the behavior of CES,
which is inhibiting the dominant information (Miyake et al.
2000; Wongupparaj, Kumari, and Morris 2015), we design a
memory management policy πDUEL based on distinctiveness
information.

Definition 2 (Duplicate Elimination). Let the new data xnew
be provided to active memoryMπ . The DUEL policy πDUEL
is a policy which chooses the J-th element xJ ∈ Mπ with
the minimum value of Id(xj ; f,Mπ).

J = argmin
j∈{1..K}

Id(xj ; f,Mπ) (7)

πDUEL in Definition 2 replaces the element with the least
distinctiveness information, which is the most duplicated el-
ement in the memory. The replacement is carried out grad-
ually, one element at a time. We show that the process of
πDUEL is safe in the sense that it increases total amount of
information as in Appendix A. Figure 3 illustrates the be-
havior of πDUEL. πDUEL finds the densest area (green) of the
latent space and ejects the most duplicated element (dotted
outline). The plural region (blue) is not influenced by this
replacement and leaving this region intact will increase dis-
tinctiveness information in the memory.

Since reducing memory usage and time comsumption of
πDUEL is crucial to implement our model, we optimize the
policy πDUEL to minimize the time consumption with an af-
fordable amount of additional resources. Details of the im-
plementation and analyses on the resource usage are in Ap-
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Figure 3: Visualization of general DUEL framework. Our method stores various data for the negative samples by Duplicate
Elimination. The DUEL policy selects the most duplicated sample in memory (green) and replaces it with current data (purple).

pendix D. With πDUEL, we now propose the Duplicate Elim-
ination (DUEL) framework.

DUEL Framework
The DUEL framework is an self-supervised learning frame-
work which optimizes LM-HML in Equation 4. The procedure
of our framework is shown in Figure 3. To sample posi-
tive samples fromD+

i , we use augmentation methods (Chen
et al. 2020a) rather than maintaining multiple bins of each
class (Sohn 2016). Our framework can be effectively applied
to class-imbalanced environment without any class informa-
tion, due to the inductive bias introduced by augmentation.

Algorithm 1 summarizes the training procedure of DUEL
framework. We utilize the InfoNCE loss LInfoNCE instead
of LM-HML to train the feature extractor because LInfoNCE is
equivalent to LM-HML under certain conditions: (1) q(ci =
cj |xi, xj ; f) = exp((f(xi)

⊤f(xj) − 1)/τ) and (2) λ = 1.
More details and mathematical support regarding the rela-
tionship between our DUEL framework and conventional
SSL models are provided in the Appendix B.

After each training step of the feature extractor, the dupli-
cation elimination step begins. In the duplication elimination
step, selected data according to the policy πDUEL is replaced
with the current data. These two steps repeat iteratively un-
til the termination condition is satisfied. We also provide the
general form of memory-integrated Hebbian Metric Learn-
ing algorithm in Appendix C.

Experiments
The goal of our framework is to learn a robust representa-
tion given unrefined and instantaneous data sampled from a
class-imbalanced distribution. Thus, we validate our frame-
work in class-imbalanced environments.

Experiment setting In our experiments, we use the
ResNet-50 (He et al. 2016) as a backbone of the feature
extractor. We choose MoCoV2 (Chen et al. 2020b), Sim-
CLR (Chen et al. 2020a), and Barlow Twins (Zbontar et al.
2021) as baselines. We implement our DUEL frameworks

based on MoCoV2 and SimCLR by adding the DUEL pro-
cess, denoted as D-MoCo and D-SimCLR respectively. Hy-
perparameters for all models are unified for fair comparison.
After the training, we evaluate each model with downstream
tasks such as linear probing with class-balanced datasets to
prove each model can extract generalized representations.
More details for hyperparameters and the experiments are
provided in the Appendix E.

Class-imbalanced environment We design a two-step
data generator with predefined datasets to describe a class-
imbalanced environment. A dataset D is partitioned into Dc

with each class c ∈ C. In every experiment, we assume that
one class, denoted as cmax, occurs much more frequently
than others. The occurrence probability of the most frequent
class is denoted as ρmax. The probabilities of the remaining
classes are identically set as ρmin = 1

|C|−1 (1− ρmax). Then
the data is sampled from the environment in two steps:

1. Class Sampling: c ∼ ρ, ρc =

{
ρmax c = cmax

ρmin c ̸= cmax

2. Data Sampling: x ∼ Uniform(Dc).

We utilize CIFAR-10 (Krizhevsky, Hinton et al. 2009) and
STL-10 (Coates, Ng, and Lee 2011) for experiments. We
also use ImageNet-LT (Liu et al. 2019), which has a long-
tailed class distribution, to validate our framework in a more
realistic environment. See Appendix E for more details.

Class-imbalanced learning with SSL frameworks To
validate our approaches, we first conduct experiments with
conventional SSL models in class-imbalanced environ-
ments. Table 1 shows that SSL models suffer from the per-
formance degradation, especially when the class distribution
is highly imbalanced. However, our frameworks can prevent
the performance loss compared to their origin models. The
visualization of the performance improvement during the
training process in Figure 4 implies that the DUEL process
gradually improves the robustness of representations. More
experiments and results are described in Appendix F.
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Method
STL-10 CIFAR-10

Class Probability ρmax(ρmin) Class Probability ρmax(ρmin)

0.1 (0.1) 0.25 (0.083) 0.5 (0.056) 0.75 (0.028) 0.1 (0.1) 0.25 (0.083) 0.5 (0.056) 0.75 (0.028)

MoCoV2 79.59±6.57 79.32±1.02 77.28±2.68 75.34±1.11 80.99±1.85 82.50±1.12 76.54±1.97 70.12±1.40

SimCLR 70.80±1.21 69.59±0.50 67.20±1.10 68.75±2.08 82.28±1.26 78.90±1.60 76.67±1.96 72.81±1.39

Barlow Twins 77.48±3.10 78.21±2.82 72.47±0.56 71.98±2.12 51.72±0.30 51.59±1.44 54.89±0.93 53.54±0.99

BYOL 68.42±0.80 64.04±1.41 58.78±3.49 61.82±2.77 67.87±3.26 69.32±3.52 67.50±1.63 60.40±2.40

D-MoCo (ours) 79.20±3.56 76.03±2.06 78.65±2.23 77.23±0.48 82.58±3.48 81.40±2.24 80.53±3.04 77.99±1.71

D-SimCLR (ours) 75.89±2.90 72.68±3.53 78.23±4.38 74.13±1.04 82.82±1.10 82.37±1.53 79.56±2.61 75.17±3.49

Table 1: Linear probing accuracies with various settings. (3 times, %)

(a) D-MoCo (Compared to MoCoV2)

(b) D-SimCLR (Compared to SimCLR)

Figure 4: Visualization of the performance enhancement in
the linear probing task. In both D-MoCo and D-SimCLR,
accuracies are gradually improved during the training steps.
Especially in D-MoCo, the DUEL process can prevent the
dramatical performance degradation with high ρmax.

Analysis of the robustness of representation Addition-
ally, we measure and compare how well the representations
extracted from the DUEL framework and the baseline’s fea-
ture extractor cluster are formed. We use intra-class vari-
ance and inter-class similarity as measurements for this pur-
pose. The intra-class variance and inter-class similarity are
described in Equation 8 and 9, respectively.

v̄intra :=
1

|C|
∑
c∈C

Exc∼Dc

[
(r̄⊤c f(xc)− 1)2

]
(8)

s̄inter :=
1

|C| · (|C| − 1)

∑
c∈C

∑
c′ ̸=c

(r̄⊤c r̄c′) (9)

Metric Method
Class Probability ρmax(ρmin)

0.1 (0.1) 0.5 (0.056) 0.75 (0.028)

Class
Entropy (↑)

MoCo 2.2991 1.8394 1.0523

D-MoCo 2.2988 2.1654 1.8306

Intra-class
Variance (↓)

MoCo 0.7879 0.7853 0.7689

D-MoCo 0.7750 0.7633 0.7699

Inter-class
Similarity (↓)

MoCo −0.1005 −0.0534 0.0723

D-MoCo −0.1033 −0.0846 −0.0513

Table 2: Quantitative analysis of the behavior of MoCo and
D-MoCo with various metrics. (CIFAR-10)

r̄c is a centroid of each class on a hypersphere: r̄c =
Exc∼Dc

[f(xc)] /||Exc∼Dc
[f(xc)] ||2. Intra-class variance

indicates how densely the representations of the same class
are gathered, while inter-class similarity indicates how far
apart the centroids of each class are. From the perspective
of a classification task, both low intra-class variance and
low inter-class similarity signify the robustness of represen-
tations. Table 2 presents the quantitative results for MoCo
and D-MoCo. In both cases, the intra-class variance is pre-
served in every environment. However, the inter-class sim-
ilarity of MoCo dramatically increases in extreme situation
with ρmax = 0.75. It implies that our framework extracts
more distinguishable representation than MoCo when the
data is class-imbalanced.

The role of the DUEL policy We analyze the properties
of the data stored in the memory to show that the DUEL
policy can effectively mitigate the class imbalances. In Ta-
ble 2, we observe that the entropy of the class distribution
within the memory of D-MoCo is consistently higher than
that of MoCo. This indicates that the DUEL process can
maintain the diversity of the class information even in ex-
tremely class-imbalanced environments. We also visualize
the policy of the DUEL framework with t-SNE (Van der
Maaten and Hinton 2008) in Figure 5. Even in the presence
of the frequent class (pink) (Figure 5b), the proposed frame-
work filters out the duplicates and stores diverse data in the
memory (Figure 5c).

Related Work
Class-imbalanced learning Class-imbalanced learning is
a methodology for effective learning when class informa-
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(a) t-SNE (D-MoCo). (b) Batch-wise observation with D′. (c) Updated memory with πDUEL.

Figure 5: t-SNE visualization of the active data filtering process with DUEL policy. (a) The representations extracted by the
trained model along with their corresponding class. (b) The agent faces a dominant class (pink) that occurs more frequently than
others. (c) The DUEL policy πDUEL replaces duplicated data with newer data and maximizes the distinctiveness information.

tion is unevenly distributed in the data. To address this chal-
lenge, various techniques such as data resampling to smooth
out class distributions (Buda, Maki, and Mazurowski 2018;
Pouyanfar et al. 2018) and specialized loss functions (Cao
et al. 2019; Cui et al. 2019; Tan et al. 2020) have been
employed. However, these approaches have limitations, as
they require class information for each data point and may
struggle to perform stably in extremely class-imbalanced
environments. Recent research in class-imbalanced learn-
ing (Yang and Xu 2020; Liu et al. 2021) has shown that the
self-supervised pretraining technique is more robust in class-
imbalanced environments, even without explicit class infor-
mation. To improve adaptation to extreme class-imbalanced
environments, we have proposed an SSL framework with an
additional active memory.

Self-supervised learning Self-supervised learning has
been proposed in different paradigms depending on the loss
function and model architecture. For example, InfoNCE-
based SSL models (Chen et al. 2020a,b; Oord, Li, and
Vinyals 2018), for instance, can be considered as an exten-
sion of traditional metric learning that does not use class in-
formation. In the case of BYOL (Grill et al. 2020), train-
ing process is based on knowledge distillation on the stu-
dent model with a teacher model that is updated with mo-
mentum. Recently, several methods have been introduced,
including Barlow Twins (Zbontar et al. 2021), which per-
form metric learning by matching distributions on the la-
tent space (Bardes, Ponce, and LeCun 2021; Liu et al. 2022;
Chen and He 2021). To validate the DUEL framework, we
compared representative models from each paradigm, pri-
marily based on InfoNCE.

Dealing with negative samples In contrastive SSL, nu-
merous studies have highlighted the significant impact of
properly configuring negative samples on the model per-
formance. Since self-supervised learning fundamentally ex-
tracts negative samples in an i.i.d. manner, the influence of
the number of negative samples on training has been in-
vestigated (Arora et al. 2019; Ash et al. 2021; Awasthi,
Dikkala, and Kamath 2022). Subsequently, techniques such
as generating virtual data using interpolation between sam-

ples (Kalantidis et al. 2020) and applying penalties to el-
ements within negative samples that share the same class
information for debiasing have been employed (Chuang
et al. 2020). In addition, methods using mutual dependencies
among elements within the same batch to adjust the degree
of learning for each triplet have also been proposed (Tian
2022). Our filtering algorithm has improved performance
by encouraging the maximization of distinctiveness infor-
mation among negative samples, especially for data distri-
butions containing class imbalances.

Conclusion
With respect to self-supervised class-imbalanced learning,
we mainly claim that an active memory is essential to ro-
bustly generalize to instantaneous and class-imbalanced data
without class information. We first introduce the Hebbian
Metric Learning which optimizes both distinctiveness and
Hebbian information. As an implementation of memory-
integrated HML, we propose the Duplicate Elimination
framework inspired by the working memory. We validate the
DUEL framework with class-imbalanced environments and
analyze the behavior of the framework. Our novel frame-
work gradually maximizes the distinctiveness information in
the memory, which leads to the preservation of the robust-
ness despite dramatic class imbalance.

Limitations As we discuss, finding the optimal memory
management policy π∗ is difficult to achieve in practice. Al-
though the DUEL policy provides sufficient robustness, one
can argue that our policy does not perform optimally in some
situations. We claim that further investigations on HML and
distinctiveness information will be pivotal in comprehend-
ing the behavior of SSL and determining the best policy.
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