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Abstract

Variational Inference (VI) has gained popularity as a flexi-
ble approximate inference scheme for computing posterior
distributions in Bayesian models. Original VI methods use
Kullback-Leibler (KL) divergence to construct variational ob-
jectives. However, KL divergence has zero-forcing behavior
and is completely agnostic to the metric of the underlying
data distribution, resulting in bad approximations. To alle-
viate this issue, we propose a new variational objective by
using Optimal Transport (OT) distance, which is a metric-
aware divergence, to measure the difference between approx-
imate posteriors and priors. The superior performance of OT
distance enables us to learn more accurate approximations.
We further enhance the objective by gradually including the
OT term using a hyperparameter λ for over-parameterized
models. We develop a Variational inference method with OT
(VOT) which presents a gradient-based black-box framework
for solving Bayesian models, even when the density function
of approximate distribution is not available. We provide the
consistency analysis of approximate posteriors and demon-
strate the practical effectiveness on Bayesian neural networks
and variational autoencoders.

Introduction
Variational Inference (VI) (Jordan et al. 1999; Blei, Ku-
cukelbir, and McAuliffe 2017; Nazaret and Blei 2022) is a
powerful tool in modern probabilistic machine learning for
approximating intractable posterior distributions. The idea
behind VI is to posit a family of distributions over the latent
variables and then find the closest member as the approxi-
mation of the true posterior by minimizing a divergence ob-
jective function. VI has many elegant and favorable prop-
erties such as the fact that it tends to be fast and easy to
scale to large data (Blei, Kucukelbir, and McAuliffe 2017).
Therefore, VI is widely used to approximate posterior distri-
butions for Bayesian deep learning (Shi, Titsias, and Mnih
2020; Rudner et al. 2021; Pei et al. 2022, 2020), deep gen-
erative models (Okada and Taniguchi 2019), among many
others.

A dominating factor for successful VI relies on the choice
of a proper divergence metric (Wang, Liu, and Liu 2018).
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Figure 1: (a) An example of distribution q not exactly match
distribution p. (b) Three ordinal discrete distributions: Left:
(0.6,0.2,0.2). Center: (0.2,0.6,0.2). Right: (0.2,0.2,0.6). “→”
denotes a transfer with distances computed by the stan-
dard KL divergence, OT distance and α-divergences (α =
0.5, 1.5, 2.0).

A different divergence results in the approximation hav-
ing different properties. The most commonly used diver-
gence is the Kullback-Leibler (KL) divergence in standard
VI (Ranganath, Gerrish, and Blei 2014; Blei, Kucukelbir,
and McAuliffe 2017), which measures the dissimilarity be-
tween the approximate distribution q and the true posterior
p, i.e., KL(q ∥ p). However, KL divergence has some lim-
itations. For example, it is not a proper metric, due to its
non-symmetry and violation of the triangle inequality. No-
tably, it exhibits zero-forcing behavior, that is, p(x) = 0
must imply q(x) = 0, leading to a severe underestimation of
the posterior variance and an inability to capture the multi-
modality within the posterior distribution (Blei, Kucukelbir,
and McAuliffe 2017). This becomes particularly problem-
atic if p(x) = 0 and q(x) > 0, since KL(q ∥ p) is infinite.

To overcome the zero-forcing behavior, some efforts turn
to more general families of divergences such as the α-
divergence due to its zero-avoiding behavior when α > 0
(Hernandez-Lobato et al. 2016; Dieng et al. 2017; Li and
Turner 2016). By choosing different α, one can get some di-
vergences as special cases, including reverse KL divergence,
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χ2-divergence, and others. However, α-divergences suffer
from the issue of being infinite when the approximation q
does not exactly match the true posterior p as depicted in
Figure 1(a). This makes it problematic to use α-divergences,
despite the zero-avoiding behavior they promise. Unfortu-
nately, many practical problems of interest involve scenarios
where q is very different from p, see Example 3.1 in (Wang,
Liu, and Liu 2018). Furthermore, α-divergences, including
the standard KL divergence, do not accurately measure the
difference between two distributions in terms of the actual
distance between the data samples. Figure 1(b) shows an
example with three simple distributions: Left: (0.6,0.2,0.2),
Center: (0.2,0.6,0.2) and Right: (0.2,0.2,0.6). The distances
between Left to Center and Center to Right should be the
same, and the distance between Left to Right should be
about twice as much. But with α-divergences, including the
standard KL divergence, all three distances are the same.
Therefore, it is desirable to find a powerful tool to measure
the dissimilarity between distributions in VI.

Optimal Transport (OT) distance (Villani 2008) has re-
cently displayed promising performance in the comparison
of probability distributions (Genevay et al. 2016; Seguy
et al. 2018; Chi et al. 2023), such as in Wasserstein GAN
(WGAN) (Arjovsky, Chintala, and Bottou 2017). Compared
to existing divergences, OT distance has several advanta-
geous properties (Peyré, Cuturi et al. 2019). It serves as a
valid metric that is symmetric and satisfies triangular in-
equality. Notably, it exhibits the unique ability to capture
the geometric structure of distributions, making it appli-
cable even to distributions with non-overlapping supports
(as shown in Figure 1(a)). Furthermore, it provides an ac-
tual distance measurement, as demonstrated in Figure 1(b).
These favorable properties motivate us to employ OT dis-
tance in VI to achieve more accurate approximations.

Our contributions. In this work, we try to extend the gen-
eralized VI framework to OT distances. To achieve this, we
design a novel variational objective by using OT distances to
measure the distance between approximate posterior and pri-
ors. The superior performance of OT distances enables us to
learn more accurate approximations. For over-parameterized
models, we further enhance the variational objective by us-
ing a single hyperparameter λ to balance the contributions
of model fitting and OT terms. We develop a Variational in-
ference method with Optimal Transport (VOT), which pro-
vides a stable gradient-based black-box algorithm for solv-
ing Bayesian inference problems, even when the density
function of approximate distribution is not available. On the
theoretical side, we prove the consistency of the approxi-
mate posterior. Finally, we demonstrate both qualitatively
and quantitatively that our method can achieve state-of-the-
art inference performance compared to various baselines on
Bayesian neural network and variational autoencoders.

Related Work
Some recent works try to extend the standard VI frame-
work to other statistical divergences to mitigate limitations
of standard KL divergence. Many of these divergences are

special cases of f -divergence (Csiszár, Shields et al. 2004):

Df (p||q)
∆
=

∫
f

(
p(x)

q(x)

)
q(x)dx,

where f(·) is a convex function. The most commonly
used class of f -divergence is α-divergence, i.e., f(t) =
tα/α(α− 1) for α ∈ R\{0, 1}, due to its zero-avoiding
behavior. By choosing different α, one can get some well-
known divergences as special cases, including the stan-
dard KL divergence (α → 0), the reverse KL divergence
KL(p ∥ q) (α → 1) and the χ2-divergence (α = 2).
The reverse KL divergence is used in expectation propaga-
tion (Minka 2001a; Li, Hernández-Lobato, and Turner 2015;
Minka 2001b), and χ2-divergence is mainly studied in im-
portance sampling (Dieng et al. 2017; Kuleshov and Ermon
2017). Additionally, the general α-divergence is discussed
in VI (Li and Turner 2016). When α > 0, the approxima-
tion q tends to cover more modes of p. In general, larger
α enforces stronger zero-avoiding behavior. However, it is
important to note that using large α values may lead to
high or infinite variance (Wang and van Hoof 2020). This
is due to the involvement of the α-th power of the ratio
p(x)/q(x), which is likely to have a fat-tailed distribution.
In fact, when q is very different from p, the α-divergence
becomes infinite, rendering it ineffective as a divergence
metric. To address this issue, f -divergence as a more inclu-
sive statistical divergence is employed for VI. To achieve
tail-adaptiveness, (Wang, Liu, and Liu 2018) proposes an
adaptive f -divergence variational inference where different
f functions are adjusted based on the tail distribution of the
density ratio p(x)/q(x). However, obtaining such adaptive
function f that satisfies the requirement of convexity is a
challenging task. Besides, (Wan, Li, and Hovakimyan 2020)
proposes the f -VI framework which generalizes variational
inference to all f -divergences unifying a number of existing
VI methods, including KL-VI, χ-VI, α-VI.

Recently, OT distances have shown several advantages
over the traditional KL divergence in various applications.
Inspired by this, there is a growing interest in exploring
the use of OT distances in VI. To the best of our knowl-
edge, rarely few works focus on this challenging topic.
For example, (Ambrogioni et al. 2018) proposes a pseudo-
OT distance which includes f -divergence as a special case,
and uses it in a special variational inference, i.e., joint-
contrastive VI, where the variational distribution q(x, z) is
defined as a joint form about latent variables z and ob-
served variables x. This method constructs the objective by
using the pseudo OT distance between two joint distribu-
tions and solves it through Sinkhorn algorithm. However, the
Sinkhorn algorithm becomes unstable when the regulariza-
tion parameter approaches 0 (Cuturi 2013). In contrast, our
method focuses on the generalized VI and uses a general OT
distance to measure the distance between variational distri-
bution and priors.

Background
In this section, we briefly review the essential background
of variational inference and optimal transport.
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Variational Inference
In a Bayesian model, we consider a set of n i.i.d sam-
ples X = {xi}ni=1 observed from a conditional distribu-
tion p(X|z) parameterized with a latent variable z which
is drawn from a prior p0(z). The goal of VI is to obtain the
posterior distribution p(z|X) given observed data,

p(z|X) =
p(X|z)p0(z)

p(X)
(1)

In general, this posterior is intractable since the evidence
p(X) =

∫
p(z,X)dz is difficult to compute. Therefore, VI

introduces a family of tractable distributions Q and finds
the member qθ(z) ∈ Q that is closest to the true poste-
rior p(z|X), where θ is the variational parameter. The vari-
ational distribution qθ(z) is constructed by solving an opti-
mization problem that minimizes two terms that do not in-
teract (Knoblauch, Jewson, and Damoulas 2022):

1) The loss
n∑
i=1

− log p(xi|z) to be expected under qθ(z).

2) The deviation of the posterior from the prior p0(z) as
measured by a divergence metric D.

Thus, a versatile and modular representation of the general-
ized VI objective is:

min
qθ∈Q

{
Eqθ(z)[

n∑
i=1

− log p(xi|z)] +D(qθ, p0)

}
(2)

The first term acts as a model fitting term and the second
one is a regularizer penalizing the solution where qθ(z) is
far away from p0(z). The divergence D is also known as the
uncertainty quantifier. When D = KL divergence, Eq.2 is
the objective of standard VI.

Optimal Transport
Let Z be an arbitrary space equipped with a ground cost
c(z1, z2) : Z × Z → R, for two probability distributions
q(z1) and p(z2), the OT distance seeks an optimal joint dis-
tribution of q(z1) and p(z2) that minimizes the total trans-
port cost (Villani 2008). It is formulated as

Dot(q, p)
∆
= minπ∈Π(q,p) Eπ(z1,z2)[c(z1, z2)],

where Π(q, p) is the set of all joint distributions with pre-
scribed marginals q(z1) and p(z2). OT distances capture the
geometry of distributions via c(z1, z2), which is the cost to
move a unit of mass from z1 to z2.

The OT problem admits an equivalent dual form (Villani
2008),

Dot(q, p) = max
ψ⊕ϕ≤c

Eq(z1)[ψ(z1)] + Ep(z2)[ϕ(z2)] (3)

where ψ and ϕ are dual variables, which can be represented
by vectors or neural networks. The constraint ψ ⊕ ϕ ≤ c
means ψ(z1) + ϕ(z2) ≤ c(z1, z2) for all (z1, z2).

Our Method
The goal of this paper is to introduce the use of OT dis-
tances in generalized VI to obtain more accurate and robust
approximations. We begin by presenting a new generalized
variational objective and then develop a black-box method
VOT based on automatic differentiation through stochastic
optimization. Our method does not require tractable density
functions of variational distributions, thereby enabling the
use of neural networks as variational distributions, since we
only have access to independent samples.

Variational Objective
Inspired by OT distance, denoted by Dot, we use it in the
generalized variational objective Eq.2 to measure the dis-
tance between the prior p0(z) and the variational distribution
qθ(z). As a result, we obtain the following objective 1:

L ∆
=

min
qθ∈Q

{
Eqθ(z1)[

∑n

i=1
− log p(xi|z1)]︸ ︷︷ ︸

model fitting

+λDot(qθ, p0)︸ ︷︷ ︸
regularizer

}
(4)

where λ is a regularization parameter to effectively bal-
ance the contributions of the model fitting and regularizer
terms. When λ = 1, it corresponds to the original VI frame-
work. However, in practice, we have observed that using
other values of λmay provide better performance, especially
for over-parameterized models. This is because, without λ,
the regularizer term dominates the overall objective in these
models. For instance, a mean-field posterior approximation
turns the regularizer term into a sum of as many regularizer
terms as the number of model parameters, which can domi-
nate the overall objective when the number of model param-
eters is large. Consequently, the optimization tends to prior-
itize keeping the approximation close to the prior, neglect-
ing the important model fitting term. To address this issue,
we propose enhancing the original VI framework by grad-
ually including the regularizer term using a hyperparameter
λ = 0.1(1 + exp(−a(iter− b)))−1, where a and b are con-
stants, and iter denotes the iterth iteration.

Having specified priors, even when the constructions of
p0 and qθ do not satisfy that qθ is dominated by p0, the OT
distance still satisfies Dot(qθ, p0) ≥ 0 and Dot(qθ, p0) =
0 ⇒ qθ = p0 while other divergences are infinite in this
situation. Therefore, the proposed objective can provide a
desirable approximation. Additionally, the approximate pos-
terior computed by our objective, i.e., q∗θ = argL is consis-
tent, meaning that it concentrates around the true value. We
discuss the theoretical guarantee for consistency in the fol-
lowing theorem (proof in the Appendix).

Theorem 1 (Consistency). Let pt(x) be the true probabil-
ity distribution of random variable x and suppose that ob-
servations x1:n are i.i.d samples from x. Assume the cost
c in OT is a lower semi-continuous function on Z × Z .
If the model fitting term is correctly specified and the
prior p0 is not infinitely bad for the population of x, i.e.,

1To avoid ambiguity, we denote z1 ∼ qθ(z1), z2 ∼ p0(z2).
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Ep0 [Ept [
n∑
i=1

− log p(xi|z1)]] < ∞, then the approximate

posterior q∗θ computed by Eq.4 is consistent and concen-
trates at the true parameters.

Optimization Framework
We solve the proposed objective Eq.4 by using an alternating
optimization algorithm. For each iteration, we first fix the
variational parameter θ to explore the way to compute the
OT distance between the variational distribution qθ and the
prior p0, i.e., Dot(qθ, p0), which is essential to our solution.
Then, we learn the variational parameter θ based on updated
OT distance through stochastic optimization.

Fixing θ, computing Dot(qθ, p0). When fixing the vari-
ational parameter θ, we proceed to compute OT distance
Dot(qθ, p0) relying on the dual formulation, as given in
Eq.3. However, directly optimizing the dual formulation has
cubic time complexity. To alleviate this issue, we relax the
dual problem and get a fast computation by adding an en-
tropy regularization with parameter ε (Cuturi 2013),

Fε(ψ(z1), ϕ(z2)) = ε exp(
1

ε
(ψ(z1) + ϕ(z2)− c(z1, z2)))

Thus, the regularized dual version of Dot(qθ, p0) is

Dε
ot(qθ, p0)

∆
=

max
ψ,ϕ

Eqθ(z1)p0(z2)[ψ(z1) + ϕ(z2)− F (ψ(z1), ϕ(z2)] (5)

There are two dual variables ψ, ϕ that need to be optimized.
The optimal ψ∗, ϕ∗ satisfy ϕ∗ = (ψ∗)c, where (ψ∗)c is the
c-transform of ψ∗ (Villani 2008). For ψ, we define its en-
tropically c-transform,

ψcε(z2)
∆
= −ε log

(∫
Z
exp(

ψ(z1)− c(z1, z2)
ε

)qθ(z1)dz1

)
We then rewrite Dε

ot(qθ, p0) as a semi-dual formulation

Dε
ot(qθ, p0) = max

ψ
Eqθ(z1)[ψ(z1)] + Ep0(z2)[ψ

c
ε(z2)]− ε

(6)
A key advantage of the semi-dual formulation is that one
of the dual variables is eliminated and is computed in close
form. When using empirical samples, Eq.6 is a finite dimen-
sional concave maximization problem.

Our aim is now to solve semi-dual OT problem, i.e., Eq.6
by using averaged stochastic gradient methods based on em-
pirical samples. Given an empirical distribution described
by qSθ (z1) =

∑S
s=1 q

′
sδzs1 , the variable ψ is a S-dimensional

vector (ψs)s=1,...S . The gradient ofDε
ot(qθ, p0) with respect

to ψ reads ∇ψDε
ot(qθ, p0) = q′ − Ep0(z2)[π(z2)], where

π(z2)i = exp(
ψi−c(zi1,z2)

ε )

(∑S
s=1 exp(

ψs−c(zs1 ,z2)
ε )

)−1

.

Then we can directly form a noisy gradient using the Monte
Carlo samples drawn from p0(z2). We summarize the pro-
cedure of computing dual variable ψ in Algorithm 1.

Algorithm 1: Computation of OT distance

1: Input: qθ(z1), p0(z2), c(z1, z2), ε (the regularization
parameter), L (the number of iterations), S (batch size)

2: ψ̂ ← 0J , ψ ← ψ̂
3: for l = 1, 2, ..., L do
4: sample a batch (z12 , ..., z

S
2 ) from p0(z2)

5: ψ̂ ← ψ̂ + c√
l
∇ψDε

ot(qθ, p0)

6: ψ ← 1
l ψ̂ + l−1

l ψ
7: end for
8: Output: ψ

Fixing ψ, computing θ. Assuming that the variable ψ in
OT distance is fixed, we now derive a black-box Monte
Carlo estimate of the gradient of objective Eq.4 with respect
to parameters θ that can be used together with stochastic op-
timization methods. For simplicity, here we use the regular-
ized dual formulation of OT distance, i.e., Eq.5 which can
be recovered from the semi-dual problem as ϕ = ψcε. Thus,
the gradient of L with respect to θ can be represented as an
expectation form by using the score function method:

∇θL = ∇θ
[
Eqθ(z1)[

n∑
i=1

− log p(xi|z1)] +

λEqθ(z1)p0(z2)[ψ(z1) + ϕ(z2)− F (ψ(z1), ϕ(z2)]
]

= Eqθ(z1)
[
∇θ log qθ(z1)

( n∑
i=1

− log p(xi|z1) +

λEp0(z2)[ψ(z1)− F (ψ(z1), ϕ(z2)]
)]
, (7)

where ∇θ log qθ(z1) is called the score function (Cox and
Hinkley 1979), and∇θ[qθ(z1)] = ∇θ[log qθ(z1)]qθ(z1).

However, since the resulting estimator Eq.7 often suffers
from high variance resulting in worse performance, the score
function gradient is usually employed along with variance
reduction methods such as reparameterization trick.

Variance reduction by reparameterization. An alterna-
tive to the score function gradient is the reparameterization
gradient, which works well in reducing the sampling vari-
ance (Kingma and Welling 2013). The reparameterization
trick assumes the existence of a noise variable ϵ ∼ q̂(ϵ)
and a mapping function gθ(·) such that z1 = gθ(ϵ). In-
stead of sampling {zs1}Ss=1 from qθ(z1), the reparameteri-
zation estimators rely on the samples {ϵs}Ss=1 drawn from
q̂(ϵ). One prevalent example is the Gaussian reparameteriza-
tion: z1 ∼ qθ(z1) = N (µ,Σ) can be reparameterized with
a standard Gaussian variable ϵ ∼ N (0, I) and a mapping
function z1 = gθ(ϵ) = µ+Σ1/2ϵ.

Following this reparameterization, the gradient with re-
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Algorithm 2: Optimization of VOT

1: Input: X = {xi}ni=1 (the real data), S (batch size), ρt
(learning rate)

2: Setting: (1) Choose the cost function c(·); (2) set the
parameter λ; (3) construct a distribution q̂(ϵ) for repa-
rameterization; (4) and initialize θ randomly

3: repeat
4: // fix θ, and optimize over OT distances.
5: compute the dual variable ψ using Algorithm 1.
6: // fix ψ, and optimize over θ.
7: for s = 1 to S
8: draw ϵ(s) ∼ q̂(ϵ)
9: draw z

(s)
2 ∼ p0(z2)

10: end for
11: form the noisy gradient using Eq.9
12: update θ using the Adam method
13: until Convergence
14: Output: The variational distribution qθ

spect to θ, i.e., Eq.7 can be re-written as:

∇θL = Eq̂(ϵ)
[
∇θ

( n∑
i=1

− log p(xi|gθ(ϵ)) +

λEp0(z2)[ψ(gθ(ϵ)) − F (ψ(gθ(ϵ)), ϕ(z2))]
)]

(8)

The unbiased Monte Carlo estimator for Eq.8 is:

∇θL ≈
1

S

S∑
s=1

∇θ
( n∑
i=1

− log p(xi|gθ(ϵs)) +

λψ(gθ(ϵ
s))− F (ψ(gθ(ϵs)), ϕ(zs2))

)
ϵs ∼ q̂(ϵ), zs2 ∼ p0(z2) (9)

In practice, those gradients in Eq.9 can be calculated via au-
tomatic differentiation tools (Team 2015).

Then, at each iteration t, the parameter of interest θ can
be updated as follows:

θt ← θt−1 − ρt∇θL, (10)

where ρt is the learning rate.

Full algorithm. In summary, we outline the full optimiza-
tion process of VOT in Algorithm 2.

Convergence analysis. In the optimization process, we
use the entropy-regularized OT in variational objective.
Though it is the approximation solution of the primal OT
problem, it can converge exponentially fast to a solution of
the non-regularized OT problem when ε → 0 and S → ∞
(Cominetti and San Martı́n 1994). Besides, the optimization
over variational parameter θ is not convex on the space of
probability distributions. However, the optimization process
over θ strictly follows the spirit of stochastic optimization,
where the expectation of the noisy gradient Eq.9 is equiv-
alent to the true gradient Eq.8. Therefore, it guarantees to

Dataset Instance Attributes
Concrete Compressive Strength (concrete) 1030 8
Real Estate Valuation (estate) 414 6
Yacht Hydrodynamics (yacht) 308 6
QSAR Fish Toxicity (fish) 908 6
QSAR Aquatic Toxicity (aquatic) 546 8
Airfoil Self-Noise (airfoil) 1503 5
Combined Cycle Power Plant (ccpp) 9568 4

Table 1: Characterisics of the UCI data sets

converge to a local optimum if the learning rate ρt satisfies
the Robbins-Monro condition:

∞∑
t=1

ρt =∞,
∞∑
t=1

ρ2t <∞.

Experiments
In this section, we present qualitative and quantitative results
that showcase the effectiveness of our method VOT on both
synthetic and real data.

Experimental Setup
Though the ground cost c in OT distances is data-dependent,
there are few studies to guide how to choose it for different
data (Peyré, Cuturi et al. 2019). In practice, the Euclidean
distance is commonly used. Therefore, we adopt the Eu-
clidean distance as the ground cost in VOT, i.e., c(z1, z2) =
∥z1 − z2∥22, which is sufficient to examine whether VOT can
accurately approximate posterior distributions.

We compare VOT against the following well-known vari-
ational inference methods with different α-divergences (α ∈
{0.5,→ 1 (KL divergence), 1.5, 2 (χ2 − divergence)}),
which are implemented using publicly available code 2.
In all methods, Adam optimizer is employed to adjust
the learning rate with parameters β1=0.9, β2=0.999 and
α=0.001 (Kingma and Ba 2015). The sample number S is
set to 128 and the training epoch is set to 500. The entropy
regularization parameter ε is set to 0.1. The constants a and
b in λ are set to 2 ∗ 10−3 and 2 ∗ 104, respectively. More
details can be found in Appendix.

Synthetic Example
We first verify the theoretical result that VOT mitigates the
issue of underestimating posterior variance through a syn-
thetic example. We consider a simple Bayesian linear re-
gression model with two highly correlated predictors: σ2 ∼
IG(a0, b0), ω|σ2 ∼ N (µ0, σ

2V0), yi|ω, σ2 ∼ N (Xiω, σ
2).

IG(·, ·) denotes an inverse gamma distribution, and N (·, ·)
denotes a normal distribution. Additional details are avail-
able in Appendix. Our goal is to estimate posterior distribu-
tion of ω = (ω1, ω2). The approximation results of ω1 un-
der different divergences are shown in Figure 2. We can see
that our method VOT with λ = 1 achieves marginal vari-
ances that more closely correspond to the exact posterior
than other methods. This result demonstrates: 1. Keeping

2https://github.com/YingzhenLi/VRbound
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Dataset α=0.5 α → 1 (KL divergence) α=1.5 α=2 (χ2-divergence) VOT (Ours)
concrete 5.3740±0.23 5.8052±0.14 5.5913±0.23 5.5670±0.08 4.7659±0.05

estate 6.0342±0.35 5.8615±0.10 5.8390±0.07 6.1237±0.16 5.8276±0.13
yacht 1.0951±0.32 0.7842±0.04 0.8847±0.04 0.8406±0.04 0.6212±0.06
fish 1.004±0.03 1.3285±0.07 1.3620±0.01 1.3627±0.01 0.9668±0.01

aquatic 0.9887±0.04 1.1779±0.03 1.0872±0.05 1.1189±0.04 0.8706±0.01
airfoil 2.0978±0.13 1.8322±0.05 1.9504±0.07 2.0588±0.07 1.7033±0.04
ccpp 4.2586±0.08 4.2071±0.02 4.2479±0.03 4.2372±0.03 4.0579±0.02

Table 2: Average Test RMSE. Results in the format ”mean ± std”. Lower is better.

Dataset α=0.5 α → 1 (KL divergence) α=1.5 α=2 (χ2-divergence) VOT (Ours)
concrete 3.1112±0.03 3.1705±0.02 3.1497±0.03 3.1476±0.01 3.4900±0.02

estate 3.2910±0.03 3.3281±0.01 3.3149±0.01 3.3360±0.01 3.1848±0.03
yacht 1.8259±0.05 1.7677±0.01 2.0108±0.01 2.0267±0.01 1.3956±0.02
fish 1.4240±0.04 1.7178±0.04 1.7517±0.01 1.7508±0.01 1.6817±0.02

aquatic 1.4248±0.05 1.6138±0.02 1.5141±0.04 1.5344±0.03 1.4219±0.02
airfoil 2.1680±0.03 2.0635±0.02 2.1429±0.03 2.1842±0.03 1.9541±0.03
ccpp 2.8540±0.02 2.8579±0.01 2.8679±0.01 2.8653±0.01 2.8257±0.01

Table 3: Average test NLL. Results in the format ”mean ± std”. Lower is better.

Figure 2: Marginal posterior for ω1 of a Bayesian lin-
ear model under different divergences. In VOT, we set
λ = 1. Prior specification: σ2 ∼ IG(2, 5), ω1 ∼
N (0, 0.162), ω2 ∼ N (0, 0.162).

priors p0 and variational family Q unchanged, the choice
of divergence D significantly impacts the performance. 2.
OT distances exhibit a desirable behavior in VI.

Bayesian Neural Network Regression
We now evaluate our method on a Bayesian neural network,
where a single-layer neural network with 100 hidden units
(ReLU) for all data sets is used. We choose a default prior,
i.e., a fully factorized Gaussian prior p0(z) = N (z; 0, I) for
the network weights, which is often an inappropriate prior in
practice (Fortuin et al. 2022; Wenzel et al. 2020). We assume
the variational distribution to be a fully factorized Gaussian
distribution i.e., qθ(z) = N (z;µθ, diag(σ

2
θ)), where varia-

tional parameters µθ and σθ are to be optimized. The linear
regression task is performed on seven widely-used bench-

Figure 3: Convergence curves of variational inference meth-
ods on two data sets: (a) ccpp and (b) concrete.

mark data sets from the UCI dataset repository 3. The statis-
tics of the data sets are shown in Table 1. Each data set is
randomly split into 90% for training and 10% for testing.
We compare our method with four well-known variational
inference methods with different α-divergences, i.e., α ∈
{0.5,→ 1 (KL divergence), 1.5, 2 (χ2 − divergence)}.
All methods are evaluated on the test sets using the average
Root Mean Square Error (RMSE) and the average Negative
Log Likelihood (NLL).

The results are shown in Tables 2 and 3. We see that both
test RMSE and test NLL values of VOT are significantly
lower than those computed by other methods in most cases.
These results imply that our method VOT can compute more
accurate approximations to the true posterior, since it takes
advantage of OT distances to produce desirable uncertainty
quantification under misspecified prior distribution.

Convergence. We present the convergence of VOT on
training sets using RMSE evaluation method in Figure 3.
Despite the non-convex nature of the optimization over θ and
the presence of regularization in the OT distance, VOT can

3http://archive.ics.uci.edu/ml/datasets.html
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Figure 4: MNIST dataset reconstruction. The first line is the real number in MNIST dataset. The second line is generated by
our method VOT, and the third line is generated by WVI.

Figure 5: MNIST interpolations. The first line shows the interpolation behavior for VOT. The second line shows the interpolation
behavior for WVI.

Dataset
VOT VOT(λ = 1)

RMSE NLL RMSE NLL
concrete 4.9419 3.6076 5.1378 3.6230

estate 8.5780 3.6791 10.6277 3.9733
aquatic 1.2768 1.6782 1.3901 1.7101

Table 4: Effectiveness of λ on over-parameterized models.

empirically converge to a local optimum. Due to the com-
plex computation of OT distances, VOT converges relatively
slowly in some cases, but this is acceptable.

Effectiveness of λ. To evaluate the effectiveness of the hy-
perparameter λ on over-parameterized models, we set the
network to have two hidden layers and 128 features with
ReLU activations. The linear regression task is performed
on three data sets. We give the result of the ablative version
of VOT, i.e., λ = 1 in Table 4. We see that VOT with λ = 1
performs worse than λ ̸= 1. This directly indicates the posi-
tive impact of λ in VI.

Variational Autoencoder
We present the qualitative performance of our method for
image reconstruction and generation on MNIST dataset4,
a collection of handwritten digits from zero to nine. The
sizes of training and testing are 60000 and 10000, respec-
tively. Similarly to (Ambrogioni et al. 2018), we use a three-
layered fully connected network which has 100-300-500-
1568 units with ReLu nonlinearities in the hidden layers
for generative model and a three-layered ReLu network with
748-500-300-100 units for a variational model. We compare
our method with the pseudo OT-based method, referred to as
WVI(Ambrogioni et al. 2018), which is implemented upon
the publicly available code 5.

4http://yann.lecun.com/exdb/mnist/
5https://github.com/zqkhan/wvi pytorch

Some reconstructed and generated images from VOT and
WVI are presented in Figure 4. More results can be found
in Appendix. We clearly see that the visual quality of these
samples from VOT is identical to those from real data in
most cases. Additionally, Figure 5 offers an illustration of
transforming a digit 7 into a digit 9, highlighting the interpo-
lation behavior of VOT on the MNIST dataset. We find that
the images generated by VOT exhibit remarkable clarity and
completeness, implying that VOT is capable of producing
realistic and smooth interpolations. These results demon-
strate that using OT distance to measure the difference be-
tween the prior and variational distribution in VOT can yield
improved behavior of the variational objective, thereby re-
sulting in accurate approximations for inference.

Conclusion
In this paper, we propose a novel method VOT for varia-
tional inference, which employs OT distance to measure the
distance between the prior and the variational distribution.
We further enhance the objective by gradually including the
OT term using a hyperparameter λ for over-parameterized
models. The proposed variational objective can be iteratively
optimized by a gradient-based black-box algorithm with the
reparameterization trick. We demonstrate the effectiveness
of our proposed method on Bayesian neural network for lin-
ear regression and variational autoencoder for image recon-
struction and interpolation.
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