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Abstract

Adversarial training is usually difficult to optimize. This pa-
per provides conceptual and analytic insights into the diffi-
culty of adversarial training via a simple theoretical study,
where we derive an approximate dynamics of a recursive
multi-step attack in a simple setting. Despite the simplicity
of our theory, it still reveals verifiable predictions about var-
ious phenomena in adversarial training under real-world set-
tings. First, compared to vanilla training, adversarial training
is more likely to boost the influence of input samples with
large gradient norms in an exponential manner. Besides, ad-
versarial training also strengthens the influence of the Hessian
matrix of the loss w.r.t. network parameters, which is more
likely to make network parameters oscillate and boosts the
difficulty of adversarial training.

1 Introduction
Although deep neural networks (DNNs) have shown
promise in different tasks, the DNN was generally fooled by
specific imperceptible perturbations of the input data (Good-
fellow, Shlens, and Szegedy 2014; LeCun, Bengio, and Hin-
ton 2015), which were termed adversarial examples. Ad-
versarial training (Kurakin, Goodfellow, and Bengio 2016;
Madry et al. 2018) is the most widely used strategy to de-
fend against adversarial examples. Despite the effectiveness
of adversarial training, extensive experiments have shown
that adversarial training is considerably more difficult to
optimize than vanilla training. Previous studies have ex-
plained this from various perspectives, such as sharp loss
landscapes (Liu et al. 2020; Kanai et al. 2021; Wu, Xia,
and Wang 2020; Yamada et al. 2021), obfuscated gradi-
ents (Athalye, Carlini, and Wagner 2018), and inhomoge-
neous data distributions (Sinha et al. 2017; Zhang and Wang
2019; Miyato et al. 2018).

Unlike previous research, we make a first attempt to pro-
vide conceptual and analytic insights into the difficulty of
adversarial training from the perspective of the dynamics of
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generating multi-step perturbations. However, it is a signifi-
cant challenge to solve the exact dynamics of multi-step per-
turbations analytically. Thus, we derive an exceedingly sim-
ple theory to approximate the dynamics of multi-step pertur-
bations on a two-layer ReLU network under three simplify-
ing assumptions (cf. A1-A3 in Section 3.1).

More crucially, this approximate-yet-analytic dynamics
of perturbations provides new insights into different find-
ings in adversarial training, which are responsible for the
difficulty of adversarial training.
• Finding 1. The dynamics of the adversarial perturba-

tion reveals that the perturbation strengthens gradient com-
ponents along a few top-ranked eigenvectors of the Hessian
matrix of the loss w.r.t. the input.
• Finding 2. Based on the above dynamics, we infer that

adversarial training is more influenced by a few input sam-
ples with large gradient norms, compared to vanilla training.
This unbalanced influence on adversarial training over dif-
ferent samples boosts the difficulty of adversarial training.
According to our analysis, the normalization/regularization
of perturbations in `2 attacks and `∞ attacks usually can al-
leviate such an imbalance.
• Finding 3. Adversarial training usually strengthens the

influence of Hessian matrix of the loss w.r.t. network param-
eters, which makes network parameters more likely to oscil-
late and increases the difficulty of adversarial training.

Although our simple theory is derived on a two-layer
ReLU network, our findings can still predict the imbalance
problem and the oscillation problem in adversarial train-
ing on deeper and more complex networks in experiments,
which account for the difficulty of adversarial training. Our
simple theory also reveals interesting verifiable predictions
about the dynamics of perturbations on deeper networks.

2 Related Work
Previous studies have analyzed the difficulty of adversar-
ial training from different perspectives. Specifically, some
works (Liu et al. 2020; Kanai et al. 2021; Wu, Xia, and Wang
2020; Yamada et al. 2021; Yu et al. 2018) considered that the
sharp loss landscape w.r.t. network parameters resulted in
the difficulty of adversarial training. Kurakin, Goodfellow,
and Bengio (2016) demonstrated that label leaking hindered
adversarial training. Tsipras et al. (2019) had proven com-
pared to vanilla training, adversarial training relied on robust
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features and did not use non-robust features for inference,
which resulted in the inferior classification performance.
The gradient-masking phenomenon (Papernot et al. 2017;
Athalye, Carlini, and Wagner 2018; Tramèr et al. 2018) led
to a false sense of security in defenses against adversarial
examples. Please see Appendix A for detailed discussions.

Unlike previous works, this paper makes a first attempt to
formulate the dynamics of perturbations in a simple setting.
Despite the simplicity of our theory, it can still provide con-
ceptual and analytic insights into the difficulty of adversarial
training on DNNs in real-world settings.

3 Explaining Adversarial Perturbations and
Adversarial Training

First, let us revisit adversarial training. Given a DNN fθ pa-
rameterized by θ and an input sample x ∈ Rn with its true
label y, an adversarial attack adds a human-imperceptible
perturbation δ to fool the DNN with an adversarial example
x+ δ, whose objective is generally formulated as follows.

max
δ
L(fθ(x+ δ), y), s.t. ‖δ‖p ≤ ε, (1)

where fθ(x + δ) denotes the network output, and L(fθ(x +
δ), y) represents the loss function. ε is the constraint of the `p
norm of the adversarial perturbation. To defend against ad-
versarial attacks, adversarial training is generally formulated
as a min-max game (Madry et al. 2018).

min
θ

E{x,y}
[

max
δ
L(fθ(x+ δ), y)

]
, s.t. ‖δ‖p ≤ ε. (2)

3.1 Analysis of Adversarial Perturbations
Generally speaking, it is a significant challenge to solve the
dynamics of adversarial perturbations analytically. Thus, we
analyze the following two-layer ReLU network f in a sim-
ple setting, so as to obtain an analytic approximation of the
dynamics of the perturbation in a multi-step attack.

h(x) = WT
1 x+ b1,

z(x) = WT
2 ReLU(h(x)) + b2 = WT

2 Σh(x) + b2,

f(x) = softmax(z(x)) or sigmoid(z(x)),

(3)

where W1 ∈ Rn×D and b1 ∈ RD. The diagonal matrix
Σ = diag(σ1, σ2, . . . , σD) ∈ RD×D represents the binary gat-
ing states of the ReLU layer, σd ∈ {0, 1}.

Then, the adversarial perturbation δ(m) generated on the
ReLU network f after m steps can be written as

δ(m) =
∑m−1

t=0
α · gx+δ(t) , (4)

where α indicates the step size. Intuitively, the most straight-
forward method to craft a multi-step adversarial attack is to
set gx+δ(t) = ∂

∂x
L(f(x + δ(t)), y). For the widely used `2 at-

tack and `∞ attack (Goodfellow, Shlens, and Szegedy 2014;
Madry et al. 2018), the gradient is regularized or normalized
as g(`2)

x+δ(t)
= gx+δ(t)/‖gx+δ(t)‖, and g(`∞)

x+δ(t)
= sign(gx+δ(t)).

However, the exact dynamics of perturbations in Eq. (4)
is difficult to solve analytically. Therefore, to approximate
the first analytic dynamics of perturbations, we make the
following three simplifying assumptions (A1-A3). Intrigu-
ingly, our theory based on these simplifying assumptions

provides an approximate-yet-analytic prediction about ad-
versarial perturbations. We find, nicely, that this prediction
still hold in experiments on deeper networks.

(A1) We assume the perturbation is generated by the gra-
dient ascent gx+δ(t) without regularization/normalization.

Thus, we obtain a reduced dynamics for the adversarial
perturbation generated by the gradient ascent, which is the
most straightforward method to craft an attack. While A1
is a simplification, as we shall see, it can enable us to pro-
vide an interesting insight into the `2 attack or the `∞ attack.
Please see Section 3.2 for details.

(A2) We assume that a small perturbation does not sig-
nificantly change gating states of the ReLU layer in Eq. (3),
i.e., we assume W̃T = WT

2 ΣWT
1 as a constant matrix during

the attacking process, so that z(x) = (W̃ )Tx+ b̃.
Appendix J shows a small approximation error based on

this assumption1. In fact, many previous studies have made
similar assumptions to ignore the change of gating states
or remove ReLU layers (Tian, Chen, and Ganguli 2021;
Kumar et al. 2022; Arora, Cohen, and Hazan 2018), be-
cause the change of gating states is usually quite unpre-
dictable/chaotic. Since our fundamental goal is to obtain an
analytic understanding of the dynamics of perturbations, it is
useful to achieve this in the simple setting. Interestingly, we
discover our final conclusions can generalize to deep nets.

Theorem 1 (Dynamics of perturbations of the m-step attack,
proven in Appendix B). Let us fix a small constant β to
reflect the overall adversarial strength. The step size is α =
β/m, where the step number m is a large integer. Based on
assumptions A1 and A2, the adversarial perturbation δ(m)

can be approximated as

δ(m) =
∑n

i=1

(1 + αλi)
m − 1

λi
γivi + ρ,

gx+δ(m) =
∑n

i=1
(1 + αλi)

mγivi,

(5)

where λi and vi denote the i-th largest eigenvalue
of the matrix H̄x = W̃ H̄z(W̃ )T and its corre-
sponding eigenvector, respectively. The matrix2 H̄z =

1∑m−1
t=1 ‖∆x

(t)‖

∑m−1
t=1 ‖∆x

(t)‖H(t)
z is a weighted sum of the

Hessian matrix H
(t)
z = ∂2

∂z∂zT
L(f(x + δ(t)), y), where

∆x(t) = α · gx+δ(t−1) ; γi = gTx vi ∈ R; gx = ∂
∂x
L(f(x), y).

Each element ρi ∈ R of the residual term ρ ∈ Rn in Taylor
expansion is proven to be of the order O(1/m).

In Theorem 1, the matrix2 H̄x is used to approximate
the second derivative of the loss w.r.t. the input sample x.
Note that the second-order derivative of the output z of
a ReLU network mainly comes from the sigmoid/softmax

1Appendix J has shown that the change of the largest eigenvalue
of H̄x during an attack is generally at the level of 10−4—10−2.

2To obtain an approximate analytic understanding of the dy-
namics of δ(m), we use the matrix H̄z to approximate the equiva-
lent Hessian matrix. Intriguingly, we find that our theory under this
approximation can still reveals verifiable predictions about the per-
turbation generated on deeper networks, i.e., the error between the
real perturbation and the theoretically derived one was at the level
of 10−8—10−4 in Table 1.
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3-layer
MLP

4-layer
MLP

5-layer
MLP

3-layer
CNN

4-layer
CNN

5-layer
CNN

3-layer
ResCNN

4-layer
ResCNN

5-layer
ResCNN

10-layer
ResCNN

Error κ 1.5 ×10−5 3.5 ×10−6 6.6 ×10−7 3.4 ×10−7 5.1 ×10−8 4.7 ×10−8 1.3 ×10−5 1.5 ×10−5 3.7 ×10−5 1.7 ×10−4

Table 1: The difference (i.e., the error κ) between the derived perturbation δ̂ in Theorem 2 and the real perturbation generated
on different ReLU networks. The small error κ verified Theorem 2, i.e., the theoretical perturbation fitted well with the real one.

function in the end of the network. Thus, we can write
H̄x = W̃ H̄z(W̃ )T , where z is the input of the sigmoid/-
softmax function. Moreover, if the step number m is large
enough, the residual term ρ is negligible.

(A3) In the following manuscript, we assume that the ad-
versarial perturbation is generated via an infinite-step at-
tack with an infinitesimal step size.

Assumption A3 is motivated by the fact that different set-
tings of the step number m and the step size α = β/m
slightly influence perturbations, when the overall adversar-
ial strength β is given. Thus, we propose A3 to remove side
effects of the step size and the step number in multi-step at-
tacks, and simplify the story.

In this way, given a fixed adversarial strength β, the multi-
step attack in Theorem 1 can be extended to a more ide-
alized case of the infinite-step attack with the step number
m→ +∞ and the step size α = β/m→ 0. This infinite-step
perturbation δ̂ = limm→+∞ α

∑m−1
t=0

∂
∂x
L(f(x+ δ(t)), y) fur-

ther enables us to provide interesting verifiable insights into
the difficulty of adversarial training.

Theorem 2 (Perturbations of the infinite-step attack, proven
in Appendix C). Based on assumptions A1-A3, the infinite-
step perturbation δ̂ can be re-written as follows.

δ̂ =

n∑
i=1

exp(βλi)− 1

λi
γivi, gx+δ̂ =

n∑
i=1

exp(βλi)γivi. (6)

λi denotes the i-th largest eigenvalue of H̄x. H̄x is defined in
Theorem 1 and computed at a condition m→ +∞.

Particularly, the residual term ρ in Theorem 1 is elimi-
nated in Theorem 2. This is because ρi is proven to be on the
order of O(1/m), which means ρ→ 0, subject to m→ +∞.

Theorems 1 and 2 show the following two conclusions.
(C. 1) The adversarial perturbation strengthens gradient

components in gx along a few eigenvectors with large eigen-
values λi of the matrix H̄x exponentially. A larger adver-
sarial strength β constrains the perturbation along very few
top-ranked eigenvectors more significantly.

(C. 2) Both the gradient norm ‖gx+δ̂‖ w.r.t. the perturba-
tion and the perturbation norm ‖δ̂‖ increase exponentially
with the overall adversarial strength β = αm.
• Experimental verification 1 of Theorem 2. Although

Theorem 2 was derived on a simple two-layer network,
we tested whether our theory could predict the dynamics
of adversarial perturbations on deep networks. That is, we
checked whether δ̂ derived in Theorem 2 fitted well with the
real perturbation δ∗. Specifically, we calculated the metric
κ = Ex[‖δ∗ − δ̂‖]/Ex[‖δ∗‖] to evaluate the error between the

! "# #∗ #∗ − "# #(ℓ!) #(%&&%'()*%, ℓ")

! "# "# − #∗ "# − #(ℓ!) "# − #(%&&%'()*%, ℓ")

Figure 1: Visualization of the difference between the theo-
retical perturbation δ̂ and the real perturbation δ∗, the dif-
ference between δ̂ and the perturbation δ(`2) of the `2-PGD
attack, and the difference between δ̂ and the effective com-
ponent δ(effective,`∞) of the perturbation of the `∞-PGD attack.
We found that δ̂ fitted well with δ∗, δ(`2), and δ(effective,`∞). All
perturbations were generated using a 3-layer MLP. The mag-
nitudes of the perturbations were enlarged for clarity.

derived perturbation δ̂ and the real perturbation δ∗3. To this
end, we crafted perturbations δ∗ on different ReLU networks
with more than two linear layers for the MNIST dataset (Le-
Cun et al. 1998). We followed the settings in (Ren et al.
2022) to construct various MLPs, CNNs, and CNNs with
skip connections (namely ResCNNs), respectively.

Table 1 shows that the error κ for each network was
small, i.e., at the level of 10−8—10−4, which indicated that
the theoretical perturbation δ̂ well fitted the real one. Thus,
Theorem 2 was verified. Additionally, Fig. 1 shows that the
theoretical perturbation δ̂ and real one δ∗ were quite similar.

As a supplementary to the above experiment, Appendix
J shows that adversarial perturbations do not significantly
changed gating states Σ or the equivalent weight W̃ 1.
• Experimental verification 2 of Theorem 2. We con-

ducted experiments to check whether Theorem 2 derived on
a simple two-layer network could predict the conclusion (C.
2) on deep networks. That is, we examined whether both the
gradient ‖gx+δ̂‖ on the adversarial example and the perturba-
tion ‖δ̂‖ had exponentially increasing norms w.r.t. the over-
all adversarial strength β ∝ m (α is fixed here). Specifically,
we generated perturbations δ̂ in Theorem 2 based on VGG-
11 (Simonyan and Zisserman 2014), AlexNet (Krizhevsky,
Sutskever, and Hinton 2012), and ResNet-18 (He et al.
2016), which were all learned using the MNIST dataset.
The perturbation δ̂ was crafted by the gradient gx+δ̂(t) =
∂
∂x
L(f(x + δ̂(t)), y). Besides, we also generated two base-

line perturbations via the `2 attack and the `∞ attack for
comparison, i.e., applying g

(`2)

x+δ(t)
, and g

(`∞)

x+δ(t)
defined un-

der Eq. (4). Please see Appendix L for the hyper-parameters
of the attack. Considering that different samples were suc-
cessfully attacked at different steps (denoted by msuccess), we
normalized the step number to generate the relative progress

3Table 1 reports results generated under assumption A2. Ap-
pendix J shows results generated without assumption A2.
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Figure 2: The increase of the overall adversarial strength β ∝ m (because α was fixed here) boosted both perturbation norms ‖δ̂‖
and gradient norms ‖gx+δ̂(t)‖ exponentially. In subfigures (a-d) , the exponential increase was verified in experiments without
assuming gating states unchanged (A2). Whereas, in subfigure (e), we controlled the gating states of each ReLU layer in each
step of the adversarial attack, to remove side effects caused by chaotic gating states, so that subfigure (e) exhibited a more
clearly exponential increase of ‖δ̂‖ w.r.t. m.

rate m/msuccess as the horizontal axis in Fig. 2. This relative
progress rate m/msuccess was used to align the progress of
the attack on different samples. Fig. 2 shows both ‖gx+δ̂‖
and ‖δ̂‖ increased exponentially with β ∝ m (because α was
fixed here), which verified conclusion (C. 2).

3.2 Discussions on `2 Attacks and `∞ Attacks
Intriguingly, we find that our simple theory can also provide
a new insight into `2 attacks and `∞ attacks. Thus, in this
subsection, we discuss whether in the specific scenario of
the infinite-step attack with the infinitesimal step size, the
perturbation δ̂ in Theorem 2 can be used to analyze pertur-
bations generated by the `2 attack and the `∞ attack.

For `2 attack. Let δ̂(`2) denote the perturbation generated
by the infinite-step `2 attack with the infinitesimal step size.
We have proven in Appendix D that based on assumption A2,
δ̂(`2) equals to δ̂, in the specific scenario of the infinite-step
attack. Furthermore, we examine whether the perturbation δ̂
in Theorem 2 can well approximate δ(`2) generated by the
`2-PGD attack (Madry et al. 2018) with a few steps. Ap-
pendix D shows that the matching error 1 − cos(δ̂, δ(`2)) be-
tween δ̂ and δ(`2) is at the level of 10−6—10−4 for different
networks. Additionally, Fig. 1 also illustrates the good fit-
ness between the theoretically derived perturbation and real
perturbations of the `2 attack and `∞ attack.

For `∞ attack. Let δ̂(`∞) =
∑
t α · g

(`∞)

x+δ(t)
=
∑
t α ·

sign(gx+δ(t)) denote the perturbation of the infinite-step `∞
attack. We first disentangle the gradient g(`∞)

x+δ(t)
as g(`∞)

x+δ(t)
=

g
(effective)
x+δ(t)

+ g
(ineffective)
x+δ(t)

, where g
(effective)
x+δ(t)

= oTx g
(`∞)

x+δ(t)
ox rep-

resents the gradient component along gx+δ(t) , subject to
ox = gx+δ(t)/‖gx+δ(t)‖. In fact, we roughly consider g(effective)

x+δ(t)

is effective on `∞ attacks, while g
(ineffective)
x+δ(t)

has negligible
effects. Because g

(effective)
x+δ(t)

is parallel to the exact gradient
gx+δ(t) of the loss, δ̂(effective,`∞) =

∑
t α · g

(effective)
x+δ(t)

=
∑
t α ·

oTx sign(gx+δ(t))ox denotes the effective component w.r.t. the
adversarial utility, which is disentangled from δ̂(`∞).

In this way, let us check whether we can roughly use
C`∞ · δ̂/‖δ̂‖ to approximate δ̂(effective,`∞) in the infinite-step
`∞ attack based on assumption A2, although there may be
some errors. Here, C`∞ ∈ R reflects the total adversar-
ial strength of the `∞ attack. To this end, we experimen-
tally test the similarity between C`∞ · δ̂/‖δ̂‖ and δ(effective,`∞)

generated by the `∞-PGD attack with a few steps in Ap-
pendix D, which shows that the average matching error
1− cos(C`∞ · δ̂/‖δ̂‖, δ(effective,`∞)) is as small as 3.4× 10−5.

Notice that δ̂(`2) of the infinite-step `2 attack equals δ̂
under assumption A2. Thus, we use the notation δ̂(norm) =

C · δ̂/‖δ̂‖ = C ·
∑n
i=1

exp(βλi)−1
λi

γivi/
√∑n

i=1( exp(βλi)−1
λi

γi)2

as a roughly unified approximation of `2 attacks and the ef-
fective component in `∞ attacks, where we set C = ‖δ̂‖ for
`2 attacks and set C = C`∞ for `∞ attacks.

(C. 3) Above approximation based on δ̂(norm) shows that a
weak adversarial strength β makes the perturbation δ̂(`2) (or
δ̂(effective,`∞)) approximately parallel to the gradient gx, due
to gx =

∑n
i=1 γivi. Whereas, a large adversarial strength

β makes perturbations δ̂(`2) (or δ̂(effective,`∞)) approximately
parallel to the eigenvector v1 w.r.t. the largest eigenvalue.

Constraint of adversarial perturbations. It is a signif-
icant challenge to derive the exact dynamics of perturba-
tions analytically. To simplify the problem setting, we fol-
low (Wang et al. 2021) to ignore the clip operation. Experi-
ments in Appendix D and Appendix J show that our simple
theory derived under a simple setting can still well predict
dynamics of perturbations generated with the clip operation.

3.3 Difficulty of Adversarial Training
The dynamics of adversarial perturbations enables us to pro-
vide conceptual insights into the difficulty of adversarial
training. Specifically, we analyze the effects of adversarial
perturbations on weight optimization in adversarial train-
ing based on a simple two-layer ReLU network f . Intrigu-
ingly, we find that our analysis under this simple setting can
still reveal verifiable predictions about adversarial training
on deeper and more complex networks in later experiments.

Let gW = ∂
∂W

L(f(x), y) denote the gradient of the
loss w.r.t. the weight of the first layer W def

= W1 in Eq. (3)4,
when we use vanilla training to fine-tune the network on the
original input sample x for a single step. In comparison, let
g(adv)
W = ∂

∂W
L(f(x+ δ̂), y) denote the gradient of the loss w.r.t.

W , when we train the network on the adversarial example
x + δ̂ for a single step. Thus, ∆gW = g(adv)

W − gW denotes

4We can use W to approximate an equivalent weight matrix
of multiple layers, because δ̂ does not significantly change most
gating states of ReLU layers, according to assumption A2.
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3-layer
MLP

4-layer
MLP

5-layer
MLP

3-layer
CNN

4-layer
CNN

5-layer
CNN

3-layer
ResCNN

4-layer
ResCNN

5-layer
ResCNN

10-layer
ResCNN

Error κ′ 3.9 ×10−5 8.8 ×10−6 1.5 ×10−6 8.5 ×10−7 1.3 ×10−7 1.2 ×10−7 3.4 ×10−5 3.9 ×10−5 9.0×10−5 1.9×10−4

Table 2: The difference (i.e., the error κ′) between the theoretical effect φ̂ of g̃Tx ∆g̃x derived in Theorem 3 and the real effect φ∗
measured in experiments. The small error κ′ verified Theorem 3.

additional effects of adversarial training on the gradient.

∆gW = g(adv)
W − gW =

∂

∂W
L(f(x+ δ̂), y)− ∂

∂W
L(f(x), y).

(7)
Similarly, ∆g(norm)

W = g(adv,norm)
W − gW represents the additional

effects on the gradient brought by adversarial training, when
we use the perturbation δ̂(norm) (related to `2 and `∞ attacks).

∆g(norm)
W = g(adv,norm)

W − gW

=
∂

∂W
L(f(x+ δ̂(norm)), y)− ∂

∂W
L(f(x), y).

(8)

Lemma 1 (proven in Appendix F). Let us focus on the cross-
entropy loss L(f(x), y). When the classification is based
on a softmax operation, then the Hessian matrix Hz =
∂2

∂z∂zT
L(f(x), y) is positive semi-definite. When the classi-

fication is based on a sigmoid operation, the scalar Hz ≥
g2
z ≥ 0, if z(x) · y > 0, y ∈ {−1,+1} (i.e., the attacking has

not completed). Here, gz = ∂
∂z
L(f(x), y) ∈ R.

Theorems 3 and 4 yield insights into how perturbations δ̂
in Theorem 2 make effects on adversarial training.

Theorem 3 (proven in Appendix G). Based on Lemma 1
and assumption A2, let us focus on the binary classification
based on a sigmoid function. Then, the effect of the adver-
sarial perturbation δ̂ in Eq. (6) on the change of the gradient
g̃x is formulated as follows.

g̃Tx ∆g̃x = −ηg̃Tx ∆gW g̃h

= (eA − 1)g̃Tx ∆g̃(ori)
x − ηg2

z ‖g̃h‖2

H̄z
(e2A − eA),

(9)

where η denotes the learning rate to update the weight;
∆g̃x

def
= −η∆gW g̃h; g̃x = ∂z(x)

∂x
; g̃h = ∂z(x)

∂h
, h = WTx + b1;

∆g̃(ori)
x

def
= −ηgW g̃h; A = βH̄z‖g̃x‖2 ∈ R.

In Theorem 3, ∆g̃x = −η∆gW g̃h represents the additional
effects of adversarial training on changing the gradient g̃x,
which are owing to the additional change −η∆gW on W 5

made by adversarial training. In this way, g̃Tx ∆g̃x measures
the significance of these additional changes along the direc-
tion of the gradient g̃x. Similarly, ∆g̃(ori)

x = −ηgW g̃h mea-
sures effects of vanilla training on changing g̃x in the current
back-propagation5.

Theorem 4 (proven in Appendix H). Based on Lemma 1
and assumption A2, let us focus on the binary classification
based on a sigmoid function. Then, we derived the following

5It is because adversarial training changes W by −ηg(adv)
W , and

vanilla training changes W by −ηgW , η > 0.

equation w.r.t. adversarial training based on the perturba-
tion δ̂ in Theorem 2, where ∆g̃(adv)

x
def
= −ηg(adv)

W g̃h.

g̃Tx ∆g̃(adv)
x = −ηg̃Tx g(adv)

W g̃h

= eAg̃Tx ∆g̃(ori)
x − ηg2

z(e2A − eA)

H̄z
‖g̃h‖2.

(10)

In Theorem 4, ∆g̃(adv)
x = −ηg(adv)

W g̃h reflects effects of ad-
versarial training on changing the gradient g̃x5. In this way,
g̃Tx ∆g̃(adv)

x represents the significance of these effects along
the direction of gradient g̃x.

A common understanding of adversarial training is to al-
leviate the current gradient gx, i.e., having a trend towards
gTx ∆g̃x < 0, so as to boost the adversarial robustness. Then,
Theorems 3 and 4 reveal the following two conclusions.

(C. 4) Adversarial training has a potential to reduce the
significance of the current gradient. More importantly, if
vanilla training has already alleviated the current gradient
gx (i.e., g̃Tx ∆g̃(ori)

x < 0), then adversarial training will further
strengthen such an alleviation exponentially.

The conclusion (C. 4) is obtained based on the following
analysis. Because the second terms in Eq. (9) and Eq. (10)
are both non-positive (owing to H̄z > 0 in Lemma 1), adver-
sarial training tends to push g̃Tx ∆g̃x and g̃Tx ∆g̃(adv)

x towards
negative values, i.e., alleviating the gradient gx.

(C. 5) Adversarial training makes additional effects be-
yond vanilla training on strengthening the influence of a
few samples with large H̄z ∈ R and large gradient norms
‖g̃x‖ exponentially. To be precise, these samples in adver-
sarial training have about exp(A) times larger influence than
vanilla training. We consider it as an imbalance over differ-
ent samples in adversarial training.

The conclusion (C. 5) is obtained because g̃Tx ∆g̃x and
g̃Tx ∆g̃(adv)

x have exponential relation with A = βH̄z‖g̃x‖2.
These mechanisms make adversarial training more likely
to oscillate in directions of a few samples (cf. Theorem 6),
which increases the difficulty of adversarial training.

Besides, the derived imbalance of influence A on adver-
sarial training over different samples provides new insights
into the selection of an optimal step number for attacking in
adversarial training. Please see Appendix M for details.
• Experimental verification 1 of Theorem 3. Although

Theorem 3 was derived on a simple two-layer network,
we checked whether our theory could predict the effects
of adversarial perturbations on training deep networks ad-
versarially. That is, we examined whether the theoretical
derivation φ̂ computed according to the right side of Eq. (9)
fitted well with the real values of φ∗ = g̃Tx ∆g̃x mea-
sured in experiments. Thus, we calculated a metric κ′ =
Ex[‖φ∗ − φ̂‖]/Ex[‖φ∗‖] to evaluate the fitness between the
theoretical derivation φ̂ and the real effect φ∗, where φ∗ was
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Figure 3: Illustration of the additional effects (quantified as ‖∆gW ‖ and |g̃Tx ∆g̃x|) of adversarial training on each sample (each
dot) beyond vanilla training. This figure verified the conclusion (C. 5) that adversarial training boosted the influence of samples
with large H̄z, H̄z‖g̃x‖2, and Â values, i.e., these samples usually yielded larger |g̃Tx ∆g̃x| and ‖∆gW ‖ values.

computed using real measurements of g̃x, η, g(adv)
W , gW , and g̃h

on a ReLU network under assumption A2. In this way, we
learned three types of ReLU networks on the MNIST dataset
through adversarial training, following settings in (Ren et al.
2022) to construct MLPs, CNNs, and ResCNNs. Please see
Appendix L for hyper-parameters of the attack in testing.
Table 2 shows that for each ReLU network, the error κ′ was
small, which indicates that the derived training effect φ̂ well
matched the real effect φ∗. Thus, Theorem 3 was verified.
• Experimental verification 2 of Theorem 3. Here, we

conducted experiments to check whether Theorem 3 (con-
clusion (C. 5)) derived on a simple two-layer network
could predict the behavior of learning deep networks ad-
versarially. We examined whether samples with large H̄z,
large H̄z‖g̃x‖2 values, and large A values had large im-
pacts |g̃Tx ∆g̃x| and ‖∆gW ‖, i.e., whether adversarial training
boosted the influence of such samples (concluded from The-
orem 3). Note that in real applications, the A value changed
at each step of the attack, because the step-wise perturba-
tion sometimes changed the matrix H̄z and the gradient g̃x.
Thus, to be precise, we estimated the real A value in The-
orem 3 as Â =

∑m
t=1 αH̄z‖g̃x+δ̂(t)‖

2, subject to g̃x+δ̂(t) =
∂
∂x
z(x+δ̂(t)). To this end, we learned AlexNet, VGG-11, and

ResNet-50 on the MNIST dataset via adversarial training on
PGD attack, respectively. Fig. 3 shows that input samples
with larger values of H̄z, H̄z‖g̃x‖2, and Â generally yielded
larger |g̃Tx ∆g̃x| and ‖∆gW ‖ values, which indicated adver-
sarial training strengthened the influence of these samples.
Thus, conclusion (C. 5) was verified on deep networks.

Additionally, Appendix K also visualized samples with
large gradients ‖g̃x‖, and samples with small gradients ‖g̃x‖.
• Experimental verification 3 of Theorem 3. We also ob-

tained the conclusion (C. 5) from Theorem 3 that the opti-
mization direction of adversarial training was dominated by
a few samples with large A = βH̄z‖g̃x‖2 values. We con-
ducted experiments to verify this conclusion on deep neural
networks. Specifically, let ∆gW = g(adv)

W − gW denote the ad-
ditional effect of adversarial training on a specific sample x
beyond vanilla training. Based on the adversarially trained
networks in experimental verification 2 of Theorem 3, we
measured the cosine similarity cos(∆gW ,∆gW ) between the
training effect ∆gW on a single adversarial example and the
average effect ∆gW = Ex+δ̂[∆gW ] over different adversar-
ial examples. Please see Appendix L for hyper-parameters
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Figure 4: Verifying that the optimization direction of ad-
versarial training was dominated by samples with large Â
values (the conclusion (C. 5)). We divided samples into 10
groups with different ranges of Â values. We found that the
average cosine similarity Ex∈Xgroup [cos(∆gW |x,∆gW )] be-
tween ∆gW = Ex∈Xall [∆gW ] and each sample’s effect ∆gW
in the group increased along with the value of Â, which ver-
ified the conclusion (C. 5).

of the attack in testing. Fig. 4 shows that the direction of
the average effect ∆gW was similar to (dominated by) train-
ing effects of a few samples with large Â values (the real A
calculated in experiments), which verified conclusion (C. 5).
We also conducted experiments on CIFAR-10 dataset in Ap-
pendix K, which shows the same phenomenon as in Fig. 4.

Effects of `2 attacks and `∞ attacks on adversarial
training. Section 3.2 reveals that in our simple setting, we
can roughly use to approximate the infinite-step `2 attack
and the the effective component in `∞ attack. Thus, we fur-
ther analyze the effects of the perturbation δ̂(norm) on adver-
sarial training, so as to approximate the effects of `2 attack
and the `∞ attack on adversarial training.
Theorem 5 (proven in Appendix I). Based on Lemma 1
and assumption A2, let us focus on the binary classification
based on a sigmoid function. We derive the following equa-
tion w.r.t. adversarial training on the perturbation δ̂(norm).

g̃Tx ∆g̃(norm)
x =C ·

( eA
‖δ̂‖
− 1

‖δ̂‖
)
g̃Tx ∆g̃(ori)

x

−C · ηg
2
z ‖g̃h‖2

H̄z

(
eA

‖δ̂‖
− 1

‖δ̂‖
+C · ( e

A

‖δ̂‖
− 1

‖δ̂‖
)2

)
,

(11)
where ∆g̃(norm)

x
def
= −η∆g(norm)

W g̃h = −η(g(adv, norm)
W − gW )g̃h.

In Theorem 5, ∆g̃(norm)
x = −η∆g(norm)

W g̃h represents the ad-
ditional effects of adversarial training on changing g̃x, which
are owing to the additional change −η∆g(norm)

W on W 4 made
by adversarial training. Thus, g̃Tx ∆g̃(norm)

x = −ηg̃Tx ∆g(norm)
W g̃h

reflects the significance of such additional effects along the
direction of the gradient g̃x.
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According to Lemma 1, compared with the term 1/‖δ̂‖
in Eq. (11), we prove that the strength of the training effect
g̃Tx ∆g̃(norm)

x is mainly determined by the term exp(A)/‖δ̂‖ =
exp(βH̄z‖g̃x‖2)/‖δ̂‖, owing to H̄z ≥ 0. Moreover, given a
relatively strong attack, the dominant term can be approxi-
mately represented as exp(A)/‖δ̂‖ ≈ ‖gx‖·exp(β‖g̃x‖2(H̄z−
g2
z)). It is because Theorem 2 indicates that a relatively

strong adversarial strength β generally results in ‖δ̂‖ →
exp(β‖g̃x‖2g2

z)/‖gx‖ with an exponential strength (proven in
Appendix I). Hence, we obtain following two conclusions.

(C. 6) Adversarial training based on δ̂(norm) makes addi-
tional effects beyond vanilla training on strengthening in-
fluences of a specific set of samples, which must satisfy two
requirements, i.e., (1) they have large gradient norms ‖g̃x‖;
(2) they are neither z(x) · y →∞ nor z(x) · y → 0. Precisely,
these samples in adversarial training on δ̂(norm) have about
[exp(A)−1]/‖δ̂‖ times larger influence than vanilla training.

This is because, according to Lemma 1, as long as the
attack has not yet succeeded, we have H̄z−g2

z > 0. However,
for samples s.t. z(x)·y →∞ or z(x)·y → 0, we get H̄z−g2

z →
0, thereby obtaining a small value of exp(A)/‖δ̂‖.

(C. 7) Unlike adversarial training based on perturbations
δ̂ focusing on a few samples with large H̄z and large gradient
‖g̃x‖ (cf. Theorems 3 and 4), the perturbation δ̂(norm) allevi-
ates the imbalance between different samples, but such an
imbalance is still larger than vanilla training.

Oscillation of network parameters. Above proofs pro-
vide insights into that adversarial training makes network
parameters oscillate in very few directions, which is consid-
ered as a common phenomenon in adversarial training. This
insight is based on a typical claim in optimization (Cohen
et al. 2021; Wu, Ma et al. 2018) that if the largest eigenvalue
of the Hessian matrix of the loss w.r.t network parameters
is sufficiently large, network parameters will oscillate along
the eigenvector corresponding to the largest eigenvalue.

Here, although we do not directly prove that adversarial
training can boost the largest eigenvalue of the Hessian ma-
trix ∂2

∂W∂WT L(f(x), y), Theorems 1 and 2 show that training
on adversarial examples is somewhat equivalent to boosting
the influence of the Hessian matrix.

Specifically, given a two-layer network f and an adversar-
ial example x+ δ̂ for adversarial training, let us consider the
Hessian matrix Hh

def
= ∂2

∂h∂hT L(f(x), y) w.r.t h = WTx + b1.
We use the second-order Taylor expansion to decompose the
loss on adversarial examples L(f(x+ δ̂), y) = Loss(h+ ∆h),
where ∆h = WT δ̂ ∈ RD×1 denotes the change of the
intermediate-layer feature h caused by δ̂. In this way, the loss
function can be decomposed into Loss(h+ ∆h) = Loss(h) +
gTh∆h + 1

2!
∆hTHh∆h + R2(∆h) = Loss(h) + gTh (WT δ̂) +

1
2!

(WT δ̂)THh(WT δ̂)+R2(∆h), where gh = ∂L(f(x), y)/∂h,
and R2(∆h) indicates terms higher than the second order.

Theorem 6. Let δ̂i ∈ R denote the i-th dimension of δ̂. Then,
the loss function Loss(h+ ∆h) can be represented as

Loss(h+ ∆h) = τ + [δ̂i g
T
h,i]w

T
i + wi[

1

2!
δ̂2
iHh]wTi , (12)

where wi denotes the i-th row of the weight matrix W , and
τ is a constant w.r.t the change of wi.
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Figure 5: Comparison of the instability of weight gradi-
ents between vanilla training and adversarial training, which
proved that adversarial training was more likely to make net-
work parameters oscillation (the conclusion (C. 8)). ∆(adv)

measured the instability of weight gradients in adversarial
training, and ∆(ori) estimated the instability of weight gradi-
ents in vanilla training. We found that the value of ∆(adv) was
larger than that of ∆(ori), which verified conclusion (C. 8).

(C. 8) Adversarial training is more likely to make network
parameters oscillate than vanilla training.

This conclusion is obtained because Theorem 6 shows
that adversarial training is equivalent to setting the Hessian
matrix ∂2

∂wi∂w
T
i
L(f(x), y) proportional to δ̂2

iHh. Thus, the ex-

ponential increase of the perturbation δ̂ (shown in Eq. (6))
makes adversarial training more likely to oscillate.
• Experimental verification of Theorem 6. We checked

whether the conclusion (C. 8) could well generalize to deep
networks. Specifically, we trained AlexNet and VGG-11
on the MNIST dataset, and measured the effects of adver-
sarial examples on the optimization of network parame-
ters. To this end, we used an original input sample x and
its corresponding adversarial example x + δ to update the
weight Wj ∈ RD×D in each layer by the length ‖∆Wj‖ and
‖∆W (adv)

j ‖, respectively.
In this way, the instability of the weight gradients

in vanilla training could be measured as ∆(ori) =
‖(∂L(f(x|Wj + ∆Wj), y)/∂Wj) − (∂L(f(x|Wj), y)/∂Wj)‖
/(D‖∆Wj‖). Similarly, the instability of the weight gra-
dients in adversarial training could be estimated as
‖(∂L(f(x+ δ|Wj + ∆W

(adv)
j ), y)/∂Wj) − (∂L(f(x+ δ|Wj)

, y)/∂Wj)/(D‖∆W (adv)
j ‖). Here, f(x|Wj +∆Wj) denotes the

output of the ReLU network f , when the weight of the j-th
linear layer was updated to Wj + ∆Wj . Please see Appendix
L for more details regarding experimental settings.

Fig. 5 compares the instability of weight gradients be-
tween vanilla training ∆(ori) and adversarial training ∆(adv).
We discovered that adversarial training exhibited much
higher instability than vanilla training, which demonstrated
that adversarial training boosted the influence of Hessian
matrix w.r.t. the network parameters. This verified the con-
clusion (C. 8).

4 Conclusion and Discussion
This paper makes a first attempt to derive an approximate-
yet-analytic dynamics of perturbations on a simple two-layer
ReLU network. Based on this, we provide conceptual in-
sights into the difficulty of adversarial training. Although
our theory is derived under simplifying assumptions, it can
still reveal verifiable predictions about dynamics of pertur-
bations, the imbalance problem, and the oscillation problem
in adversarial training under real-world settings.
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