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Abstract

Due to the scarcity of training samples, Few-Shot Learning
(FSL) poses a significant challenge to capture discrimina-
tive object features effectively. The combination of transfer
learning and meta-learning has recently been explored by pre-
training the backbone features using labeled base data and
subsequently fine-tuning the model with target data. How-
ever, existing meta-learning methods, which use embedding
networks, suffer from scaling limitations when dealing with a
few labeled samples, resulting in suboptimal results. Inspired
by the latest advances in FSL, we further advance the ap-
proach of fine-tuning a pre-trained architecture by a strength-
ened hierarchical feature representation. The technical con-
tributions of this work include: 1) a hybrid design named
Intra-Block Fusion (IBF) to strengthen the extracted features
within each convolution block; and 2) a novel Cross-Scale
Attention (CSA) module to mitigate the scaling inconsis-
tencies arising from the limited training samples, especially
for cross-domain tasks. We conducted comprehensive eval-
uations on standard benchmarks, including three in-domain
tasks (miniImageNet, CIFAR-FS, and FC100), as well as two
cross-domain tasks (CDFSL and Meta-Dataset). The results
have improved significantly over existing state-of-the-art ap-
proaches on all benchmark datasets. In particular, the FSL
performance on the in-domain FC100 dataset is more than
three points better than the latest PMF of Hu et al. 2022.

Introduction
When large and well-annotated datasets are available, deep
learning including Convolutional Neural Networks (CNNs)
and Vision Transformers has made substantial progress in
many areas, including classification, detection, and segmen-
tation. However, deep learning encounters challenges in
real-world scenarios due to the cost of collecting sufficient
data or even the impracticality to do so. Optimizing deep
CNNs or Transformers with significantly larger parameters
than the training dataset can result in severe overfitting. Few-
Shot Learning (FSL) aims to solve this problem by allowing
CNN or Transformer models to learn from very few anno-
tated data and transfer the knowledge across different do-
mains (Wang et al. 2020). FSL methods can be divided into
two types: (1) inductive few-shot, where each prediction is
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made independently, and (2) transductive few-shot, where
predictions are made taking into account the relationships
among all labeled and unlabeled samples in a batch.

Many methods have been developed to address FSL in
recent years, including transfer-based methods that achieve
state-of-the-art (SOTA) performance. With the constraints of
few samples, transfer learning aims to transfer the knowl-
edge learned from a large labeled dataset (base case) to
the unlabeled target dataset (novel case). Recent studies
(Shalam and Korman 2022; Hu, Pateux, and Gripon 2022;
Hu, Gripon, and Pateux 2021) claim that the main prob-
lem of transfer learning is the skewed distribution of fea-
ture maps extracted using the feature backbone pre-trained
with the base case, which might deviate from that in the
target case. To strengthen the quality of the extracted fea-
tures, they preprocess the feature maps with PCA-like trans-
forms and power transforms to fit a particular distribution
(i.e. Gaussian-like), then apply optimal transport to solve
the classification problem. The current SOTA method of
P>M>F (PMF) (Hu et al. 2022) demonstrates that large-
scale models can also be feasible for FSL after pre-training
with external data. Furthermore, fine-tuning the model on
the target dataset can further boost the FSL performance.
However, little is known about how much room is left for
further optimization of FSL performance, partially due to
the simplicity of the pipeline considered in PMF.

The motivation behind this work is two-fold. On the one
hand, conventional wisdom in supervised learning requires
abundant labeled training data, because each convolution
block in the CNN model is finely trained to provide fea-
ture maps for the following convolution blocks. However,
when it comes to few-shot classification tasks, the practi-
cality of fine-tuning each convolution block using the novel
target data becomes doubtful. Imprecise information gener-
ated by previous blocks may lead to drift in the subsequent
blocks, and therefore degrades the FSL performance. On the
other hand, FSL tasks demand the model to learn from a
few labeled samples, which may not fully represent the en-
tire distribution of the target classes. It is desirable to let
the model combine local and global information for mak-
ing predictions. How to handle few-shot examples on a lo-
cal scale while also capturing higher-level patterns from the
entire dataset remains an open question in the FSL litera-
ture (Song et al. 2023). Such scaling-related inconsistencies
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Figure 1: The proposed model architecture. Following CNN backbone, our model consists of two stages: feature strengthening
and feature weighting. Feature strengthening includes IBF and CSA modules whose outputs are passed to feature weighting for
nearest centroid classification.

become even more pronounced for cross-domain tasks (Fu
et al. 2023) where generalization to novel classes by fine-
tuning has not been optimized by a simple pipeline such
as PMF (Hu et al. 2022). In summary, we identify and ad-
dress two problems in conventional deep learning models
that stem from the few training data in fine-tuning: (1) the
inability of conventional models to sufficiently extract in-
formative features for downstream classification tasks, and
(2) the suboptimal fine-tuning due to the insufficient train-
ing samples as well as the lack of local-global consistency
between extracted features.

This paper tackles the above two problems by pushing
the limit of fine-tuning for FSL. For the former, we pro-
pose a feature-strengthening module, which consists of an
Intra-block Fusion (IBF) to extract more informative fea-
tures from the backbone and repair the imprecise features on
each scale. We consider ResNet50 (He et al. 2016) and Swin
Transformer (Liu et al. 2021) as our feature backbones in
this paper to demonstrate the usefulness of this approach in
both conventional CNN models and trendy transformer ar-
chitectures. For the latter, we present how to reconcile scale
inconsistency with a novel cross-Scale Attention (CSA)
module. Fig. 1 shows an overview of our proposed architec-
ture. As shown in Fig. 3(c), our model better concentrated
the attention on the important areas. Our experimental re-
sults show that our approach has outperformed other com-
peting approaches, including the latest PMF (Hu et al. 2022).
In summary, the contributions of this paper are fourfold:

• We present an Intra-block Fusion module to fine-tune
features within each convolution block in a pre-trained
backbone to strengthen features extracted for FSL.

• We introduce a Cross-Scale Attention module to rem-
edy the insufficiency of local-scale features by exploiting
global-local consistencies for better fine-tuning.

• We propose a meta-testing stage for cross-domain FSL
tasks, in contrast to the PMF of (Hu et al. 2022). Model
fine-tuning with the aid of data augmentation from novel
targets leads to improved generalization performance af-

ter several gradient updates.
• We achieve new SoTA results on three in-domain few-

shot classification tasks with two settings and two cross-
domain few-shot classification tasks with several set-
tings. We achieve noticeable FSL performance on the
in-domain FC100 dataset that is more than three points
better than the latest PMF method.

Related Works
Few-Shot Learning is now a widely studied and active
topic (Wang et al. 2020). A popular solution for FSL is meta-
learning also known as learning-to-learn (Hospedales et al.
2021), which aims to find meta-weights that can quickly
converge to the target task with a limited number of target
data. This method consists of two phases: meta-training and
meta-testing. In the meta-training phase, the training data
are split into a series of episodes/tasks that simulate the tar-
get few-shot task, usually in a 5-way 5-shot or 5-way 1-shot
form. The few-shot learner learns meta-weights with these
tasks arriving in an episodic fashion. After meta-training,
the learner undergoes meta-test evaluation on target few-shot
tasks. The Model-Agnostic Meta-Learning (MAML) (Finn,
Abbeel, and Levine 2017) selects optimal initial weights
through gradient descent for the few-shot learner, making
fine-tuning fast and simple. REPTILE (Nichol and Schul-
man 2018) uses the L2 loss to simplify complex com-
putations in MAML. The Latent Embedding Optimization
(LEO) network (Rusu et al. 2018) further reduces the com-
plexity by employing a low-dimensional latent embedding
optimization process.
Metric Learning (Kaya and Bilge 2019) aims at learn-
ing a feature backbone that maps input data into a high-
dimensional feature space that preserves similarity among
samples in each class. The similarity between the two fea-
ture maps is obtained via Cosine or Euclidean distance met-
rics. Metric learning is widely used in FSL (Vinyals et al.
2016; Sung et al. 2018; Snell, Swersky, and Zemel 2017).
The Prototypical Network (ProtoNet) (Snell, Swersky, and
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Zemel 2017) is a well-known metric-based FSL method,
where prototypes (centroids) are generated by computing
the average of every channel on all high-dimensional feature
maps corresponding to each class. The feature backbone is
trained to center the feature maps in the prototype of each
class. For evaluation, the backbone maps the query set to the
feature space and performs nearest-centroid classification.
Cross-attention allows the network to selectively attend
to relevant parts of each input sequence while comput-
ing the representation for a specific element (Bahdanau,
Cho, and Bengio 2014; Luong, Pham, and Manning 2015).
Cross-attention has been applied in various natural lan-
guage processing tasks, such as machine translation (Bah-
danau, Cho, and Bengio 2014; Vaswani et al. 2017), im-
age captioning (Anderson et al. 2018), and visual question
answering (Antol et al. 2015). The Transformer is a pop-
ular architecture for implementing cross-attention, which
consists of a stack of self-attention and cross-attention lay-
ers (Vaswani et al. 2017). Cross-attention is a powerful
mechanism to model the relationships between multiple data
modalities with SoTA performance in various tasks (An-
derson et al. 2018; Tan and Bansal 2019). Most recently,
cross-scale attention has been applied to the transformers
e.g., CrossViT (Chen, Fan, and Panda 2021) and Cross-
former (Wang et al. 2023).
Cross-domain few-shot learning handles the challenging
but practically relevant cases, where objects and scenes
are significantly different between the source and target
datasets. In contrast, the within-domain few-shot setting is
limited by the assumption that all source data sets are within
the same domain. Cross-Domain FSL (CDFSL) (Guo et al.
2020) and Meta-Dataset (Triantafillou et al. 2019) are two
major benchmarks of cross-domain few-shot learning that
reflect real-world FSL scenarios.

The Proposed Method
This paper aims to address two generic issues for model fine-
tuning in the FSL setting: (1) the inability of pre-trained
models to accurately extract informative features from tar-
get data; and (2) suboptimal fine-tuning of the convolution
blocks due to the scarce training samples, leading to a strong
bias in the extracted features. We derive two approaches,
namely the Intra-Block Fusion (IBF) and Cross-Scale At-
tention (CSA) modules to address these issues.

Problem Setup
We focus on the few-shot classification tasks, where the clas-
sification model must learn from only a few annotated target
samples. In a transfer-based few-shot classification task, a
well-labeled base dataset Dbase is first used to train a back-
bone F for feature extraction parameterized by θ. The pre-
trained model Fθ will be evaluated later with a series of
few-shot classification tasks constructed with a novel dataset
Dnovel. Note that Dbase and Dnovel are completely disjoint.

Each few-shot classification task is built up with a support
set Sτ and a query set Qτ to form an N -way K-shot clas-
sification task τ , where K denotes the number of samples
of each class in Sτ . Both Sτ and Qτ consist of N different

Figure 2: (a) Traditional convolution block only leverages
the feature of the last layer from the previous convolution
block, which is not informative. (b) Dense block connects
each layer to every other layer, which suffers from high com-
putational cost. (c) IBF leverages the features from all layers
of a block in a hybrid manner.

classes from Dnovel. Let Q be the number of samples of each
class in Qτ . After pre-training with Dbase, we further fine-
tune the pre-trained feature backbone Fθ with Sτ to better fit
the evaluation task and perform inference on Qτ .

For the case of transductive few-shot learning, prediction
is performed by considering all N × (K + Q) samples to-
gether. In contrast, for the case of inductive few-shot learn-
ing, the prediction is performed independently on each of
the N × Q samples. Here, the prediction does not rely on
other query samples, which align better with real-world us-
age scenarios. Therefore, we aim to solve 5-way 1/5/20/50-
shot within-domain and cross-domain few-shot tasks with an
inductive setting. The key motivation behind our approach
is to improve the fine-tuning by heuristics related to feature
engineering i.e., how best to optimize the feature represen-
tation during fine-tuning with the FSL constraint?

Architecture Overview
In a general CNN model, the classification task is conducted
mainly with a fully connected layer based on the feature map
produced by the convolution blocks followed by a Global-
Average Pooling (GAP) layer. For example, ResNet (He
et al. 2016) is mainly built up with four convolution blocks,
followed by a GAP layer and a fully connected layer. After
being passed through each convolution block, the size of the
feature map becomes smaller, but with a larger channel size
so that deeper features are embedded with a larger receptive
field. To leverage multiscale features, our overall architec-
ture takes advantage of the feature maps of each convolu-
tion block. Assume that there are B branches of convolu-
tion blocks in a backbone F . Four convolution blocks are
adopted for feature extraction. Let Bb denote the b-th convo-
lution block in F ; and we use f l

b to denote the l-th feature
layer in Bb, where fL

b represents the last feature layer in Bb.
Most SoTA methods (Wang et al. 2020; Hospedales et al.
2021) adopt only the last feature layer fL

b in each Bb to per-
form FSL tasks.

We propose a two-stage approach (feature strengthening
and feature weighting) to better leverage the cross-scale fea-
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tures for FSL. Fig. 1 shows the proposed model architec-
ture, which consists of two stages: feature strengthening via
the IBF module and feature weighting via the CSA mod-
ule. One contribution of this paper is to introduce the idea
of IBF to fine-tune features within a convolution block from
a pre-trained model to form better informative feature maps
for few-shot learning. Another contribution is the CSA mod-
ule, which remedies the insufficiency of local-scale features
from other scales. These fine-tuned feature maps are then fed
to the FC layers to integrate the features and are weighted
by a trainable parameter Wb, which represents the impor-
tance of the features on each scale. These weighted features
are then concatenated together and further weighted by a
one-by-one convolutional layer to assign importance to each
channel. Next, we will elaborate on the design of the IBF
and CSA modules.

Intra-Block Fusion (IBF)
The IBF module is designed with the objective of strength-
ening features while maintaining low cost. To address the
problem of few-shot classification, an intuitive strategy is
to increase the amount of information that the model can
extract from the limited number of samples. Although var-
ious convolutions followed one by one are applied to ex-
tract various features, only the feature map at the last layer
of each convolution block is fed to the next layer (denoted
by the red stripe in Fig. 2(a)). However, not only the last
layer but also previous layers within the convolution block
can provide fine-grained features to generate a more ac-
curate feature map for few-shot learning. One remedy is
through the dense block in DenseNet that connects each
layer to every other layer in a feed-forward fashion; see
Fig. 2(b). Although dense connections can help mitigate the
vanishing gradient problem and make the network deep, it is
not necessary to build an extremely deep network for few-
shot learning. In addition, dense block suffers from a high
computational cost. The above observations inspire us to
take a hybrid approach and design an IBF module to bet-
ter leverage the features from all layers within the same
block; see Fig. 2(c). Before sending the feature map at the
last layer out, a 1× 1 convolution is first adopted to fuse all
feature layers within the same convolution block (denoted
by the yellow box) and then the fused result within more
fine-grained information is sent to the decoder for better
few-shot learning. We add this technique to the fine-tuning
steps to extract more informative features. Using feature-
strengthening techniques, our IBF module can generate fine-
grained features in a more computationally efficient manner
than DenseNet (Huang et al. 2017).

Cross-Scale Attention (CSA)
The CSA module is designed to further strengthen the fea-
ture by multiscale attention-guided fusion. In deep learn-
ing models, feature maps are propagated from shallow to
deep layers during feature extraction. In supervised learn-
ing, deep learning models are trained with a large amount
of data, allowing each layer to contain rich and informative
features. However, the limited amount of training data in the
FSL setting prevents the model from being finely trained,

resulting in suboptimal feature extraction in each layer. In-
spired by recent work of CrossViT (Chen, Fan, and Panda
2021) and Crossformer++ (Wang et al. 2023), we propose
a cross-scale attention (CSA) module to compensate for the
lack of use of single-scale features, as shown in Fig. 3(a,b).
Unlike CrossViT (Chen, Fan, and Panda 2021) dealing only
with two levels, we focus on the fusion of weighted features
on multiple scales similar to Crossformer++ (Wang et al.
2023), using both spatial and channel attention. Spatial at-
tention produces attention maps to help highlight informa-
tive locations and downplay the opposite ones in the feature
maps, and channel attention is renowned for enhancing the
performance of the models by selectively weighting feature
maps in each channel of each feature map.

Unlike other Transformer architectures (Chen, Fan, and
Panda 2021; Liu et al. 2021) that pay attention to only fea-
ture maps at the same scale, the CSA module accepts mul-
tiscale feature maps as input and selectively highlights in-
formative features within them. When the CSA module op-
erates on a feature map fb of dimensions Cb × Hb × Wb

obtained from the b-th convolution block in the backbone
network F , CSA takes into account feature maps from all
scales (f1∼B) and calculates an attention map for fb by
performing cross-attention to generate a new feature map
f ′
b. As shown in Fig. 3(b), all operations involved are de-

tailed in the CSA block (CSAB), as shown in Fig. 3(a).
Cross-attention involves the query vector(q), key vector(k),
and value vector(v) from different-scale sources, as opposed
to self-attention which operates q, k, and v generated from
sources at the same scale. In this context, the feature maps
from other scales(f1∼B , except for fb) are first resized to
Hb × Wb to match the size of fb using interpolation, then
transformed by one-by-one convolutions to form the keys
and values. fb is transformed by one-by-one convolutions to
form the queries for each scale, the keys, and the values. The
subsequent steps are similar to typical self-attention. These
queries, keys, and values are reshaped to Cb × Nb, while
Nb = Hb ×Wb.

For the cross-scale spatial attention module, q is trans-
posed to shape Nb × Cb, then the matrix is multiplied by
k to form a Nb × Nb spatial attention map. This spatial at-
tention map highlights the informative regions of the input
feature map by taking into account feature maps from mul-
tiple scales. For the cross-scale channel attention module, k
is transposed to shape Nb × Cb, then q is matrix multiplied
by k to form a Cb×Cb channel attention map. Then channel
attention map assigns importance to each channel in a fea-
ture map by considering feature maps from multiple scales.
These attention maps are generated using a cross-scale at-
tention mechanism that computes attention weights based
on channel-wise and spatial-wise relationships among the
input feature maps from different scales. After calculating
attention maps, v value from each scale is matrix-multiplied
by the attention map. These values from each scale are then
concatenated with the v generated from the scale of fb fol-
lowed by a one-by-one convolution to generate the output
feature map for the scale of fb. The output feature maps in-
volve the feature maps from each scale. The CSA module
enhances the spatial/channel relations within the input fea-
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(a) (b) (c)

Figure 3: (a) The proposed Cross-Scale Attention (CSA) module consists of several CSA Blocks, each of which corresponds to
a resized feature map; (b) The CSA Block concatenates v values from each scale and passes through a one-by-one convolution
to generate the output feature map. (c) Class Activation Maps (CAM) of three images from the novel domain: (Left) raw image,
(Middle) CAM generated using PMF (Hu et al. 2022), (Right) CAM generated using our CSA module.

ture map with the help of cross-scale features, allowing for
more effective feature extraction and classification. In sum-
mary, the proposed CSA module can function as both chan-
nel and spatial attention with minimal adjustment.

Pre-training, Meta-training, and Meta-testing
Similarly to (Hu et al. 2022), we have pre-training and meta-
training (fine-tuning) for FSL. However, for cross-domain
FSL tasks, fine-tuning becomes more challenging due to
novel classes. Inspired by MAML (Finn, Abbeel, and Levine
2017), we propose a meta-testing to achieve permutation-
invariant FSL (Ye and Chao 2021).
Pre-training. We opt for traditional supervised learning and
DINO (Caron et al. 2021) as our pre-training algorithms, us-
ing ImageNet as the pre-training foundation, following the
approach in (Hu et al. 2022). DINO is a well-known self-
supervised learning algorithm utilizing the consistency in
feature embedding capability. It achieves this by predict-
ing relationships between a large cropped region and sev-
eral smaller cropped regions within an image. The large crop
captures the entire foreground object, while the smaller ones
only capture portions of it. Pre-training on a large external
dataset is crucial for enhancing model flexibility, particu-
larly for FSL tasks.
Meta-training. We adopt an effective meta-training process
using episodic tasks. Each episodic task follows the N -way
K-shot setup identical to the target task. Through episodic
training, the model learns a meta-weight capable of rapid
adaptation to the classes presented in the target task.
Meta-testing. For standard within-domain few-shot tasks,
we directly apply the meta-trained model to all new target
instances. However, in cross-domain few-shot tasks where
target instances belong to previously unseen domains, dis-
rupting the learned feature representation, we fine-tune the
model. This involves data augmentation through several gra-
dient steps, akin to the procedure outlined in (Hu et al.
2022). Due to limited labeled data, we utilize the support
set for model fine-tuning. Initially, prototypes for each class

are computed using the original support set. The model is
then updated using a loss derived from a pseudo-query set,
generated by augmenting the support set in various ways.

Experimental Results
Experimental Setup
We tested our approach using the standard inductive setting:
a 5-way, 1/5-shot, 15-query classification scenario, com-
mon for within-domain few-shot classification tasks. In ad-
dition, we use 5-way, 5/20/50-shot, and 15-query classifi-
cation settings for the cross-domain few-shot classification
task; that is, N = 5,K = 1/5, Q = 15, and N = 5,K =
5/20/50, Q = 15. The average prediction accuracy among
each randomly sampled Qτ is used as the evaluation metric.

In-domain few-shot classification Evaluation is per-
formed on three standard in-domain benchmarks: mini-
ImageNet (Vinyals et al. 2016), CIFAR-100 Few-Shots
(CIFAR-FS) (Bertinetto et al. 2018), and FC100 (Oreshkin,
Rodrı́guez López, and Lacoste 2018). The miniImageNet
contains 100 randomly chosen classes from ILSVRC-12,
which are then divided into 64 training, 16 validation, and 20
testing classes. Each class contains 600 images of 84 × 84.
CIFAR-FS and FC100 are two different split datasets based
on CIFAR-100, each containing 60 base classes for training,
20 classes for validation, and 20 novel classes for evaluation.
Each class consists of 600 images of 32× 32.

Cross-domain few-shot classification Evaluation is per-
formed on two cross-domain benchmarks: CDFSL (Guo
et al. 2020) and Meta-Dataset (Triantafillou et al. 2019).

CDFSL comprises four distinct datasets, each exclusive
to a particular domain: ChestX (X-ray images), ISIC2018
(dermoscopic images of skin lesions), EuroSAT (satellite
images), and CropDisease (plant disease images). These
datasets reflect real-world FSL use cases, capturing the chal-
lenges and cost associated with data collection. The model
undergoes evaluation simulating real-world usage scenarios.
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Ext. CIFAR-FS miniImageNet FC100
Method (backbone) data 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s
Matching Networks (CNN-4-64) (Vinyals et al. 2016) - - 43.5 55.3 - -
MAML (CNN-4-64) (Finn, Abbeel, and Levine 2017) - - 48.7 63.1 - -
ProtoNet (CNN-4-64) (Snell, Swersky, and Zemel 2017) 55.5 72.0 49.4 68.2 37.5 51.4
MetaOpt-SVM (RN12) (Lee et al. 2019) 72.0 84.2 62.6 78.6 49.8 67.2
Meta-Baseline (RN12) (Chen et al. 2021b) - - 68.6 83.7 - -
EASY 3xResNet12 (RN12) (Bendou et al. 2022) 75.24 89.0 71.75 87.15 48.0 64.7
Baseline++ (WRN-28-10) (Chen et al. 2019) 67.5 80.1 57.5 73.0 - -
S2M2R (WRN-28-10) (Mangla et al. 2020) 74.8 87.5 64.9 83.2 - -
HCTransformers (ViT-S) (He et al. 2022) 79.9 90.5 74.7 89.2 48.3 66.4
AMDIM (AmdimNet) (Chen et al. 2021a) ✓ - - 76.8 91.0 - -
P>M>F (IN1K, Sup., RN50)† (Hu et al. 2022) ✓ 76.73 87.60 83.74 94.33 58.91 74.01
P>M>F (IN1K, Sup., Swin-S)† (Hu et al. 2022) ✓ 84.41 92.16 95.26 98.20 69.92 82.98
Ours (1N1K, Sup., RN50) ✓ 78.62 89.15 88.78 96.76 64.03 79.64
Ours (1N1K, Sup., Swin-S) ✓ 87.06 93.62 97.03 99.04 73.07 86.02

Table 1: Accuracy comparisons with other methods, including the SoTA with in-domain few-shot settings. Methods using
external data are marked with ✓. † indicates results reproduced by us using the publicly released codes from the original work.

ChestX ISIC EuroSAT CropDisease
5w5s 5w20s 5w50s 5w5s 5w20s 5w50s 5w5s 5w20s 5w50s 5w5s 5w20s 5w50s

ProtroNet (RN10) 24.05 28.21 29.32 39.57 49.50 51.99 73.29 82.27 80.48 79.72 88.15 90.81
RelationNet (RN10) 22.92 26.63 28.45 39.41 41.77 49.32 61.31 74.43 74.91 68.99 80.45 85.08
MetaOptNet (RN10) 22.53 25.53 29.35 36.28 49.42 54.80 64.44 79.19 83.62 68.41 82.89 91.76
Finetune (RN10) 26.97 31.32 35.49 48.11 59.31 66.48 79.08 87.64 90.89 89.25 95.51 97.68
CHEF (RN10) 24.72 29.71 31.25 41.26 54.30 60.86 74.15 83.31 86.55 86.87 94.78 96.77
DeepCluster2 (1N1K, RN50) 26.51 31.51 34.17 40.73 49.91 53.65 88.39 92.02 93.07 93.63 96.63 97.04
P>M>F (IN1K, Sup., RN50) 27.04 35.33 41.32 46.97 61.51 69.72 85.57 92.30 95.55 93.14 96.75 98.04
P>M>F (IN1K, DINO, RN50) 26.56 32.98 36.07 45.03 60.34 67.94 86.10 93.90 95.79 93.98 97.74 98.10
Ours (IN1K, Sup., RN50) 27.83 34.20 43.18 48.04 62.36 70.51 86.98 93.58 95.72 94.39 97.81 98.86
Ours (IN1K, DINO, RN50) 27.43 33.62 36.64 47.10 61.90 69.62 88.23 94.26 96.08 95.21 97.90 98.54

Table 2: Accuracy comparison with others including the SoTA on the CDFSL dataset with cross-domain few-shot settings.

The Meta-Dataset comprises 10 diverse datasets spanning
a broad range of domains: ImageNet-1k (INet), Omniglot
(Omglot), FGVC-Aircraft (Acraft), CUB-200-2011 (CUB),
Describable Textures (DTD), QuickDraw (QDraw), FGVCx
Fungi (Fungi), VGG Flower (Flower), Traffic Signs (Sign),
and MSCOCO (COCO), where abbreviations are shown in
parentheses. Each domain includes a train/val/test set. Two
training protocols are conducted: (1) Throughout the meta-
training and validation procedures, the train/val splits of
the first eight in-domain datasets are utilized, while the test
splits of all ten datasets are leveraged for meta-testing. (2)
Only ImageNet-1k is used for meta-training and validation
procedures, while all other configurations remain the same.

Implementation Details
Training details. We start by pre-training our model with
ImageNet-1k through supervised learning and DINO (Caron
et al. 2021). Subsequently, we apply a standard meta-
training algorithm on the pre-trained model. The meta-train
process spans 100 epochs, with each epoch comprising
2,000 training episodes/tasks. At the end of each epoch, we
conduct validation with 1,000 validation episodes/tasks. The
training episodes are randomly selected from the training
classes in Dbase for each epoch, while validation episodes

are randomly selected from the validation classes in Dbase

and remain constant across all epochs. The complete train-
ing duration is 100 epochs, with the learning rate starting at
10−6 and increasing to 10−5 over 5 epochs as warm-up, fol-
lowed by a decrease to 10−6 using the learning rate of cosine
annealing (Loshchilov and Hutter 2017).
Evaluation details. For the standard within-domain few-
shot tasks, we verify our meta-trained model with 2000
testing episodes/tasks randomly selected from Dnovel. For
CDFSL, we transfer the model trained with miniImageNet
to the new target. The fine-tuning step heavily relies on the
learning rate. For each domain, we carefully select the learn-
ing rate by comparing model results within a reasonable
range (e.g., 0.001, 0.005, 0.0001, 0) across 600 randomly
chosen episodes. Subsequently, we fine-tune the model and
assess its performance on another set of 600 randomly cho-
sen episodes, using the chosen learning rate. For Meta-
Dataset, we uniformly and randomly select ways, shots, and
query images based on dataset specifications, except for
ImageNet-1k and Omniglot.

Benchmark Results
We report the results of the evaluation against existing
methods, including the SoTA PMF method (Hu et al.
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In-domain Out-of-domain
8 in-domain datasets INet Omglot Acraft CUB DTD QDraw Fungi Flower Sign COCO Avg.
SUR (RN18) 57.20 93.20 90.10 82.30 73.50 81.90 67.90 88.40 67.40 51.30 75.32
URL (RN18) 57.51 94.51 88.59 80.54 76.17 81.94 68.75 92.11 63.34 54.03 75.75
ITA (RN18) 57.35 94.96 89.33 81.42 76.74 82.01 67.40 92.18 83.55 55.75 78.07
P>M>F (RN50) 67.51 85.91 80.30 81.67 87.08 72.84 60.03 94.69 87.17 58.92 77.61
Ours (RN50) 75.68 91.67 87.93 90.72 85.02 73.43 69.22 96.10 90.31 56.07 81.61

In-domain Out-of-domain
In-domain=INet INet Omglot Acraft CUB DTD QDraw Fungi Flower Sign COCO Avg.
ALFA+FP-MAML (RN12) 52.80 61.87 63.43 69.75 70.78 59.17 41.49 85.96 60.78 48.11 61.41
BOHB (RN18) 51.92 67.57 54.12 70.69 68.34 50.33 41.38 87.34 51.80 48.03 59.15
CTX (RN34) 62.76 82.21 79.49 80.63 75.57 72.68 51.58 95.34 82.65 59.90 74.28
P>M>F (RN50) 67.08 75.33 75.39 72.08 86.42 66.79 50.53 94.14 86.54 58.20 73.25
Ours (RN50) 75.96 80.58 81.75 86.05 83.24 67.27 58.37 95.75 89.08 52.15 77.02

Table 3: Accuracy comparison with others including the SoTA on the Meta-Dataset with cross-domain few-shot settings.

CIFAR-FS miniImageNet FC100
IBF CSA 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

RN50 ✓ 77.98 87.94 86.36 94.91 61.01 77.09
✓ 78.04 88.35 87.08 96.31 63.24 78.95

✓ ✓ 78.62 89.15 88.78 96.76 64.03 79.64
Swin-S ✓ 86.38 92.23 95.92 97.61 71.65 84.87

✓ 86.70 92.41 96.58 98.50 72.57 85.49
✓ ✓ 87.06 93.62 97.03 99.04 73.07 86.02

Table 4: Comparison of effectiveness of the Intra-block Fu-
sion (IBF) and the Cross-Scale Attention (CSA) modules.

CIFAR-FS miniImageNet FC100
RN50 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

local 77.73 88.75 85.93 95.24 59.71 77.48
cross 78.62 89.15 88.78 96.76 64.03 79.64
Swin-S 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s
local 85.97 92.58 95.51 97.81 70.28 84.19
cross 87.06 93.62 97.03 99.04 73.07 86.02

Table 5: Ablation study comparing the use of local-scale vs.
cross-scale features.

2022) on common benchmarks for both within-domain and
cross-domain few-shot settings. Best-performing scores are
marked in bold. RN50 and Swin-S are the abbreviations of
ResNet50 and Swin Transformer small, respectively.

Table 1 shows within-domain performance comparison.
Our method outperforms all comparison methods including
SoTA PMF on CIFAR-FS, miniImageNet, and FC100 by
about 2.0% to 2.5% in accuracy, when evaluated with 5-way
5-shot and 5-way 1-shot settings.

Tables 2 and 3 show cross-domain performance com-
parisons on the CDFSL dataset and Meta-Dataset, respec-
tively. Table 2 shows that our method outperforms others
with all settings except for EuroSAT with 5-way 5-shot set-
ting, where our accuracy is only 0.16% lower than Deep-
Cluster2 (Ericsson, Gouk, and Hospedales 2021). Table 3
shows that our method achieves the highest average accu-
racy with a significant improvement of 3.77%. These results
provide compelling evidence of the significant adaptability
of our method in divergent scenarios.

Ablation Study

We conducted ablation studies on two aspects, namely (1)
the effectiveness of the IBF and CSA modules and (2) the
distinction between the use of local-scale features vs. cross-
scale features. Evaluations are performed on CIFAR-FS,
miniImageNet, and FC100 with 5-way 5-shot and 5-way 1-
shot settings, with the same setting as our main method.

Table 4 shows that both the IBF and CSA modules
demonstrated performance enhancements. When both mod-
ules were removed, the performance decreased compared to
the baseline models. This makes sense because the shallower
layers are trained in the baseline models to provide features
for the deeper layers. Incorporating these features directly
into the final output could introduce inaccuracies. There-
fore, our introduced modules enhance cross-scale features,
making them more valuable for downstream tasks and thus
effectively capitalizing on the hierarchically learned repre-
sentations to boost overall performance.

We swap the CSA module with self-attention layers for
each scale. Table 5 shows that harnessing cross-scale fea-
tures to amplify features from each scale unanimously re-
sulted in improved performance for two different backbones
and three benchmark datasets. The largest performance im-
provement is up to 4.32 points (RN50 on FC100).

Conclusion

We identify and tackle the limitations associated with con-
ventional CNN models when applied to few-shot classifi-
cation tasks. To address these limitations, we propose two
feature strengthening methods: Intra-Block Fusion (IBF) to
preserve cross-layer features within each convolution block,
and the Cross-Scale Attention (CSA) module to alleviate the
constraints imposed by using a single scale. Our architecture
achieves new state-of-the-art results on three within-domain
benchmarks and two cross-domain benchmarks, substantiat-
ing its effectiveness in addressing the challenges of few-shot
classification. Future works will involve further evaluation
of the IBF and CSA modules on additional computer vision
tasks, such as semantic segmentation and crowd counting.
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