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Abstract

In this work, we focus on high-dimensional single index mod-
els with non-Gaussian sensing vectors and generative pri-
ors. More specifically, our goal is to estimate the underlying
signal from i.i.d. realizations of the semi-parameterized sin-
gle index model, where the underlying signal is contained in
(up to a constant scaling) the range of a Lipschitz continu-
ous generative model with bounded low-dimensional inputs,
the sensing vector follows a non-Gaussian distribution, the
noise is a random variable that is independent of the sensing
vector, and the unknown non-linear link function is differen-
tiable. Using the first- and second-order Stein’s identity, we
introduce efficient algorithms to obtain estimated vectors that
achieve the near-optimal statistical rate. Experimental results
on image datasets are provided to support our theory.

Introduction
There has been a significant amount of research into the
theoretical and computational aspects of high-dimensional
linear inverse problems. The standard compressed sensing
problem, which relies on the assumption of low-complexity
structure through sparsity to achieve the accurate recovery
of a high-dimensional signal using a small number of (noisy)
linear measurements, has been extensively investigated since
2006 and is now well-understood (Candès, Romberg, and
Tao 2006; Candes, Romberg, and Tao 2006; Donoho 2006;
Candès and Wakin 2008; Foucart et al. 2013).

Although the linear measurement model is widely used
in conventional compressed sensing and can be a useful
tool for demonstrating conceptual phenomena, it may not
be appropriate or even feasible in many real-world scenar-
ios. For example, the phase retrieval problem is encoun-
tered in various fields of science and engineering, such as
acoustics, astronomy, microscopy, optics, quantum informa-
tion, wireless communications, and X-ray crystallography,
where direct linear measurements are not possible, and only
the magnitudes or intensities of the measurements can be
recorded (Candes, Li, and Soltanolkotabi 2015). The limita-
tions of the linear data model have led to the exploration of
general non-linear measurement models, such as the semi-
parametric single index model (SIM), which has been exten-
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sively studied for both conventional and high-dimensional
settings (Han 1987; Sherman 1993; Hristache, Juditsky, and
Spokoiny 2001; Plan and Vershynin 2016; Plan, Vershynin,
and Yudovina 2017). The data of the SIM can be of the fol-
lowing form:

yi = f
(
aTi x

∗, wi
)
, i = 1, 2, . . . ,m, (1)

where {yi}mi=1 are the observations, f is an unknown non-
linear link function, {ai}mi=1 are the sensing vectors, x∗ ∈
Rn is the target signal, and {wi}mi=1 are the noises.

The semi-parametric single index model (SIM) is a flex-
ible nonlinear measurement model that can accommodate
various measurement models of interest, including those re-
lated to the first-order link functions defined after (4). How-
ever, to utilize the first-order Stein’s identity or to transform
the nonlinear model into an unconventional linear one, the
model must satisfy an important assumption like the one pre-
sented in equation (4). Unfortunately, this assumption is not
valid for the non-linear link functions associated with the
phase retrieval problem. To address this issue, we propose
to use second-order link functions (defined after (12)) based
on the second-order Stein’s identity.

Furthermore, most prior research on SIMs assumes that
the sensing vectors are Gaussian-distributed and that the un-
derlying signal is limited to a low-complexity set that con-
forms to traditional modeling assumptions, such as sparsity
and low-rankness. In contrast, the present work focuses on
the scenario where the sensing vectors are non-Gaussian and
the signal falls within the range of a generative model. For
both first- and second-order link functions, we present ef-
ficient algorithms that can find estimated vectors achieving
the near-optimal statistical rate.

Related Work
In this subsection, we provide a brief overview of relevant
works on SIMs.

Low-dimensional SIMs: There is a substantial body of
research on the SIM in the conventional low-dimensional
setting where the number of measurements m is greater than
the data dimension n, see, e.g., (Han 1987; Li and Duan
1989; Sherman 1993; Hristache, Juditsky, and Spokoiny
2001). We do not aim to cover all of them since our attention
is focused on the high-dimensional scenario where m ≪ n.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11346



High-dimensional SIMs without generative priors (ex-
cluding phase retrieval models): The SIM has also gar-
nered considerable research in the high-dimensional set-
ting, utilizing Lasso (Tibshirani 1996) and related high-
dimensional linear estimators (Bühlmann and Van De Geer
2011), with various studies focusing on variable selection,
estimation, and inference under traditional low-complexity
structures such as sparsity and low-rankness (Ganti et al.
2015; Radchenko 2015; Luo and Ghosal 2016; Neykov, Liu,
and Cai 2016; Cheng, Zeng, and Zhu 2017; Oymak and
Soltanolkotabi 2017; Pananjady and Foster 2021).

For instance, the authors of (Plan and Vershynin 2016)
show that the generalized Lasso approach works for SIMs
in high dimensions, and a tighter but asymptotic result is
presented in (Thrampoulidis, Abbasi, and Hassibi 2015) un-
der the same setting. In addition, the results of (Plan and
Vershynin 2016) are extended to the case of general convex
loss functions in (Genzel 2016), and it is shown in (Plan,
Vershynin, and Yudovina 2017) that a simple projection-
based approach leads to accurate reconstruction in high di-
mensions. All these works adopt the assumption of Gaus-
sian sensing vectors. In the two recent works (Goldstein,
Minsker, and Wei 2018; Wei 2018), high-dimensional SIMs
with heavy-tailed elliptical symmetric sensing vectors are
investigated and the authors introduce thresholded least
square estimators that achieve similar performance guaran-
tees as those for the Gaussian case. The assumption of Gaus-
sian or elliptical symmetric sensing vectors has been relaxed
in (Yang et al. 2015; Soltani and Hegde 2017; Zhang, Yang,
and Wang 2018) to allow for general sensing vectors, but at
the cost of assuming a known and monotonic link function.
To obtain a consistent estimator for general sensing vectors
with unknown (but differentiable) non-linear link functions,
the authors of (Yang, Balasubramanian, and Liu 2017) pro-
pose thresholded score function estimators based on Stein’s
identity. However, these methods are restricted to the estima-
tion of sparse or low-rank signals and thus their performance
heavily depends on the chosen basis.

High-dimensional SIMs without generative priors (en-
compassing phase retrieval models): It is worth mention-
ing that all the above-discussed works for high-dimensional
SIMs rely on the pivotal assumption similar to (4), for the
purpose of making use of the first-order Stein’s identity or
converting the non-linear model into an unconventional lin-
ear model. Such an assumption fails to hold for non-linear
link functions corresponding to the popular phase retrieval
problem. SIMs that encompass phase retrieval models as
special cases have been studied in (Yang et al. 2019; Neykov,
Wang, and Liu 2020), under the assumptions that the sens-
ing vectors are Gaussian and the target signal is sparse. The
assumption of Gaussian sensing vectors has been relaxed
in (Yang et al. 2017) by employing the second-order Stein’s
method, but this work shares the same limitation as (Yang,
Balasubramanian, and Liu 2017) and is only applicable to
the reconstruction of sparse or low-rank signals.

High-dimensional SIMs with generative priors: In re-
cent years, motivated by tremendous successful applications
of deep generative models in an abundance of real-world
applications, to solve high-dimensional inverse problems,

there has been an increasing interest in replacing the com-
monly made sparsity assumption with the generative model-
ing assumption. That is, instead of being sparse, the underly-
ing signal is assumed to be contained in the range of a gener-
ative model. The seminal work (Bora et al. 2017) studies lin-
ear compressed sensing with generative priors and demon-
strates via numerical experiments on image datasets that us-
ing a pre-trained generative prior can significantly reduce the
number of required measurements (compared to that of us-
ing the sparse prior) for accurate signal recovery. This has
led to a significant volume of follow-up works in (Dhar,
Grover, and Ermon 2018; Hand, Leong, and Voroninski
2018; Heckel and Hand 2018; Shah and Hegde 2018; Aubin
et al. 2019; Jagatap and Hegde 2019; Latorre, Cevher et al.
2019; Asim et al. 2020; Jalal et al. 2020; Ongie et al. 2020;
Daras et al. 2021; Jalal et al. 2021b,a; Joshi et al. 2021),
which explore various aspects of high-dimensional inverse
problems with generative priors. A recent literature review
in this area can be found in (Scarlett et al. 2022).

In particular, under generative priors, there have been sev-
eral studies on 1-bit compressed sensing (Qiu, Wei, and
Yang 2020; Liu et al. 2020) and phase retrieval (Hand,
Leong, and Voroninski 2018; Hyder et al. 2019; Jagatap and
Hegde 2019; Aubin et al. 2020; Shamshad and Ahmed 2020;
Liu, Ghosh, and Scarlett 2021; Killedar and Seelamantula
2022), among others. However, it is worth noting that the
non-linear link function used in these studies is typically
known and specific.

SIMs that account for unknown nonlinearity and gener-
ative priors have been explored in several studies, includ-
ing (Wei, Yang, and Wang 2019; Liu and Scarlett 2020a; Liu
and Liu 2022; Liu and Han 2022; Liu, Wang, and Liu 2022;
Chen et al. 2023). More specifically, the works (Liu and
Scarlett 2020a; Liu and Liu 2022; Liu and Han 2022; Chen
et al. 2023) focus on SIMs that are unable to handle phase re-
trieval models, and provide recovery guarantees for the gen-
eralized Lasso approach and practical algorithms under the
assumptions of Gaussian sensing vectors. SIMs that encom-
pass phase retrieval models have been studied in (Liu, Wang,
and Liu 2022) under a generative prior, but this work is
also restricted to Gaussian sensing vectors. The work (Wei,
Yang, and Wang 2019) is the most relevant to ours. In (Wei,
Yang, and Wang 2019), SIMs with link functions of first-
and second-order (including classical phase retrieval models
as special cases) are studied through Stein’s identity, allow-
ing for general non-Gaussian sensing vectors. However, this
work is primarily theoretical, and the recovery guarantees
are only given with respect to globally optimal solutions to
corresponding optimization problems, which are challeng-
ing to attain due to the typical non-convexity of these opti-
mization problems.

Contributions
Throughout this work, we make the assumption that the un-
derlying signal is within (up to a constant scaling) the range
of a Lipschitz continuous generative model with bounded
inputs. The main contributions of this paper are as follows:

• Based on the first-order Stein’s identity, we provide near-
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optimal recovery guarantees for a practical projected gra-
dient descent algorithm for SIMs with first-order link
functions and non-Gaussian sensing vectors. We also
show that for this case, a simple non-iterative approach
with arbitrary initialization is effective for accurate re-
construction.

• Based on the second-order Stein’s identity, we provide
near-optimal recovery guarantees for a practical pro-
jected power method for SIMs with second-order link
functions and non-Gaussian sensing vectors.

• We conduct experiments on image datasets to validate the
effectiveness of our proposed approaches.

Preliminary
Throughout this paper, we will use the following notations.

Notations
We use upper and lower case boldface letters to de-
note matrices and vectors respectively. We write [N ] =
{1, 2, · · · , N} for a positive integer N . We use ∥·∥ to denote
the ℓ2 norm and use a∧b to denote min{a, b}. We define the
ℓ2-ball in Rk as Bk(r) := {z ∈ Rk : ∥z∥ ≤ r} and the unit
sphere in Rn as Sn−1 := {x ∈ Rn : ∥x∥ = 1}. A gener-
ative model is a function G : D → Rn, with latent dimen-
sion k, ambient dimension n, and input domain D ⊆ Rk.
We focus on the setting where k ≪ n and D = Bk(r).
Additionally, we use R(G) = G(Bk(r)) = {G(z) :
z ∈ Bk(r)} to denote the range of G. A random vari-
able X is sub-Gaussian if supp≥1 p

−1/2(E[|X|p])1/p < ∞
and ∥X∥ψ2

:= supp≥1 p
−1/2(E[|X|p])1/p denotes its sub-

Gaussian norm. A random vector b ∈ Rn is sub-Gaussian if
the one-dimensional marginals ⟨b, s⟩ are sub-Gaussian ran-
dom variables for all s ∈ Rn, and the sub-Gaussian norm
of b is defined as ∥b∥ψ2 := sups∈Sn−1 ∥⟨b, s⟩∥ψ2 . For a
univariate function g : R → R and a vector b, we denote
g⊙ (b) as the output of applying g element-wisely to b. We
use standard Landau symbols for asymptotic notations.

The Assumption on the SIM
Except where stated otherwise, we make the following as-
sumption on the SIM.

Assumption 1. We have m i.i.d. realizations of the semi-
parameterized SIM

y = f(aTx∗, w), (2)

where similarly to (Wei, Yang, and Wang 2019), we assume
that the following conditions are satisfied by the parameters
of the SIM.

• The underlying signal x∗ ∈ Rn is contained in (up to a
constant scaling) the range of an L-Lipschitz generative
model G : Bk(r) → Rn. In addition, since the norm of
the signal is sacrificed in the SIM, we assume that x∗ is
a unit vector for brevity.

• The sensing vector a ∈ Rn has joint density p with
p(a) =

∏n
j=1 p0(aj) for some non-Gaussian 1-d den-

sity p0. Let s0 be the 1-d score function corresponding

to p0, i.e., s0(a) = −p′0(a)/p0(a). We assume that the
score function Sp(a) := −∇p(a)/p(a) = s0 ⊙ (a) is
sub-Gaussian.

• The random noise w is independent of a.
• The non-linear link function f : R2 → R is unknown

and differentiable with respect to the first argument. We
make no assumption on the specific form of the nonlin-
earity other than differentiability.

• Given the non-linear link function f is unknown and has
arbitrary properties (except the differentiability with re-
spect to the first argument), it is not reasonable to expect
the observed random variable y to possess nice statis-
tical properties like finite higher-order moments. There-
fore, following (Wei, Yang, and Wang 2019), we assume
that y is heavy-tailed with ∥y∥Lq := E

[
|y|q
]1/q

< ∞ for
some q > 4.

The Algorithm and Theory for First-order
Links

We have the following lemma for the first-order Stein’s iden-
tity.

Lemma 1. (First-order Stein’s identity (Stein et al. 2004))
Let g : Rn → R be continuously differentiable and
a ∈ Rn be a random vector with continuously differen-
tiable density p : Rn → R. Let Sp(a) = −∇ log p(a) =
−∇p(a)/p(a). Then, under the assumption that the expec-
tations E[g(a)Sp(a)] and E[∇g(a)] are both well-defined,
we have the generalized Stein’s identity E[g(a)Sp(a)] =
E[∇g(a)].

Based on Lemma 1, it is easy to calculate that for y gen-
erated from the SIM (2) (see, e.g., (Wei, Yang, and Wang
2019, Eq. (3))),

E[ySp(a)] = E[f ′(aTx∗, w)] · x∗, (3)

where we use f ′(x,w) to abbreviate ∂f(x,w)/∂x. Then, if

µ := E
[
f ′ (aTx∗, w

)]
̸= 0, (4)

we can estimate x∗ from E[ySp(a)]. A link functions f that
satisfies (4) is called a first-order link. In particular, based
on (3), if assuming µx∗ ∈ R(G), we can estimate µx∗ via
solving the following optimization problem:

min
x∈R(G)

∥x∥2 − 2E
[
ySp(a)

Tx
]
, (5)

which yields x = µx∗ as a solution. Furthermore, the au-
thors of (Wei, Yang, and Wang 2019) consider estimating
µx∗ by solving the empirical version of (5):

min
x∈R(G)

∥x∥2 − 2

m

m∑
i=1

ỹiSp(ai)
Tx, (6)

where ỹi = sign(yi) · (|yi| ∧ τ) is the truncated version of
yi and is utilized to improve concentration with respect to
heavy-tailed yi, and 1

m

∑m
i=1 ỹiSp(ai) is an empirical ap-

proximation of E[ySp(a)]. The truncation parameter τ > 0
is specified in the statement of Theorem 1 below. Due to
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the typical non-convexity of R(G), the optimization prob-
lem (6) is non-convex, and the optimal solution is difficult to
attain. In this work, we propose to approximately solve (6)
using the following projected gradient descent algorithm:

x(ℓ+1) = PG

(
x(ℓ) − 2η

(
x(ℓ) − 1

m

m∑
i=1

ỹiSp(ai)

))
,

(7)
where η > 0 is the step size, the initial vector x(0) is ar-
bitrarily chosen, and PG(·) denotes the projection onto the
range of G, i.e., PG(x) = argminv∈R(G) ∥v − x∥ for any
x ∈ Rn.1 We have the following theorem for the projected
gradient descent algorithm (7).
Theorem 1. Suppose that Assumption 1 is satisfied with
µx∗ ∈ R(G) and the non-linear link function f sat-
isfies (4). Let β ≥ 2 be a positive constant and
let the truncation parameter τ = m1/2(1+κ)My with
some My ≥ ∥y∥Lq and κ ∈

(
0, q4 − 1

)
. Let

Ca,y,β = C∥Sp(a)∥ψ2
My

√
β(1 + κ)/κ, where C is an

absolute constant. Then, for any δ > 0 satisfying δ ≤
4ηCa,y,β

√
k log 4Lr

δ

m and any η ∈
(
1
4 ,

1
2

]
, with probability

at least 1 − e−Ω(k log Lrδ ) − e−β , we have for any integer
ℓ ≥ 0, it holds that∥∥∥x(ℓ+1) − µx∗

∥∥∥
≤ 2(1− 2η)

∥∥∥x(ℓ) − µx∗
∥∥∥+ 4ηCa,y,β

√
k log 4Lr

δ

m
. (8)

Remark 1. In (Wei, Yang, and Wang 2019), it is assumed
that both x∗ and µx∗ are contained in the range of the gen-
erative model. When µ ̸= 1, this is a restrictive assumption,
and is only naturally satisfied when the structured set R(G)
is a cone (e.g., when G is a neural network with ReLU ac-
tivations and no offsets). We relax this assumption to only
require that µx∗ is contained in the structured set, which
coincides with the assumptions made in prior works such
as (Plan and Vershynin 2016; Liu and Scarlett 2020a).

Given that a d-layer fully-connected neural network typ-
ically has the Lipschitz constant L = nΘ(d) (Bora et al.
2017), r can be set to of the same order as L, and δ can be

set to be as small as O(1/(Lr)), the term
√

k log 4Lr
δ

m in (8)

is roughly of the near-optimal order
√

k logL
m (Liu and Scar-

lett 2020b). Then, we observe from Theorem 1 that when
m = O

(
k
ε2 logL

)
and 2(1 − 2η) ∈ (0, 1) (or equivalently,

1
4 < η < 1

2 ), the projected gradient descent algorithm (7)
converges linearly to a point achieving ε-accurate recovery.
Moreover, when η = 1

2 , our result indicates that one step

1We will follow prior works (Shah and Hegde 2018; Peng,
Jalali, and Yuan 2020; Liu et al. 2022; Liu and Liu 2022) to implic-
itly assume that the projection step can be accurately performed,
although approximate methods, such as gradient descent (Shah and
Hegde 2018; Peng, Jalali, and Yuan 2020) or GAN-based projec-
tion methods (Raj, Li, and Bresler 2019), may need to be used in
practice.

is sufficient to obtain an estimated vector that achieves the
near-optimal statistical rate. For this case, when setting the
initial vector x(0) to be a zero vector, the projected gradient
descent algorithm (7) reduces to the non-iterative approach:

x(1) = PG

(
1

m

m∑
i=1

ỹiSp(ai)

)
. (9)

The Algorithm and Theory for
Second-order Links

For SIM with first-order links, we impose the first-order link
condition (4), which does not hold for non-linear link func-
tions associated with popular phase retrieval models (Yang,
Balasubramanian, and Liu 2017). In order to address phase
retrieval models, we rely on the following lemma for second-
order Stein’s identity.
Lemma 2. (Second-order Stein’s identity (Janzamin,
Sedghi, and Anandkumar 2014)) Let a ∈ Rn be a ran-
dom vector with twice differentiable density p. We define
the second-order score function Tp(a) : Rn → Rn×n as
Tp(a) = ∇2p(a)/p(a). Then, for any twice differentiable
function g : Rn → R such that E[∇2g(a)] exists, we have

E [g(a)Tp(a)] = E
[
∇2g(a)

]
. (10)

Based on the second-order Stein’s identity, for y gen-
erated from the SIM (2), it is easy to calculate that (see,
e.g., (Wei, Yang, and Wang 2019, Eq. (4)))

E[yTp(a)] = E
[
f ′′(aTx∗, w)

]
· x∗(x∗)T , (11)

where we use f ′′(x,w) to abbreviate ∂2f(x,w)/∂x2.
Therefore, when 2

ν := E
[
f ′′ (aTx∗, w

)]
̸= 0, (12)

we can estimate the underlying signal x∗ by reconstructing
the leading eigenvector of E [g(a)Tp(a)]. A link function f
that satisfies (12) is called a second-order link. Then, based
on (11), if assuming x∗ ∈ R(G) ⊆ Sn−1,3 we can estimate
x∗ by solving the following optimization problem:

max
x∈R(G)

xTE[yTp(a)]x, (13)

which has the solution x = x∗. Note that Tp(a) =
Sp(a)Sp(a)

T −Diag(s′0⊙ (a)) (cf. Assumption 1). The au-
thors of (Wei, Yang, and Wang 2019) consider recovering
x∗ by solving the empirical version of (13), which gives the
following optimization problem:

max
x∈R(G)

1

m

m∑
i=1

ỹi
(
Sp(ai)

Tx
)2

, (14)

2We will focus on the case that ν > 0. The case that ν < 0 can
be similarly handled by replacing y with −y.

3For convenience, here we follow (Liu et al. 2020, 2022) to
assume that the range of the generative model is a subset of the
unit sphere in Rn. For a general unnormalized Lipschitz continu-
ous generative model, we can essentially consider its normalized
version. See (Liu et al. 2022, Remark 1) for more details.
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where ỹi = sign(yi) · (|yi| ∧ τ) is a truncated version of yi
and 1

m

∑m
i=1 ỹiSp(ai)Sp(ai)

T is an empirical approxima-
tion of E[ySp(a)Sp(a)T ]. The truncation parameter τ > 0
differs slightly from the one used in the section on first-order
links and is specified in the statement of Theorem 2 below.

The optimization problem (14) is typically non-convex,
making it difficult to find the optimal solution. To tackle this
issue, we propose the following iterative approach, called
the projected power method, which is a variation of the tradi-
tional power method with an additional projection operation
in each iteration:

x(ℓ+1) = PG

(
1

m

m∑
i=1

ỹi

(
Sp(ai)

Tx(ℓ)
)
Sp(ai)

)
. (15)

We have the following theorem for the projected power
method (15).
Theorem 2. Suppose that Assumption 1 is satisfied with
x∗ ∈ R(G) ⊆ Sn−1 and the non-linear link function f
satisfies (12). Let β ≥ 2 be a positive constant and let τ =(k log(Lr)

m

)− 1
2(1+κ) · My with some My ≥ ∥y∥Lq and κ ∈(

0, q4−1
)
. Let C ′

a,y,β =
C(1+κ)(∥Sp(a)∥ψ2

+∥Sp(a)∥2
ψ2

)My

√
β

νκ ,
where C is an absolute constant. Then, for any δ > 0 sat-

isfying δ ≤ 2C ′
a,y,β

√
k log 4Lr

δ

m , with probability at least

1−e−Ω(k log Lrδ )−e−β , we have that if there exists an ℓ0 ≥ 0
such that c0 := ⟨x(ℓ0),x∗⟩ > 0, then it holds for any ℓ > ℓ0
that ∥∥∥x(ℓ) − x∗

∥∥∥ ≤
4C ′

a,y,β

νc0
·

√
k log 4Lr

δ

m
. (16)

Remark 2. In certain scenarios, we may make the as-
sumption that the data only contains non-negative vectors,
such as in the case of image datasets. In addition, during
pre-training, we can set the activation function of the final
layer of the neural network generative model to be a non-
negative function, such as ReLU or sigmoid, which further
restricts the range of the generative model to be contained
in the non-negative orthant. Therefore, the assumption that
c0 := ⟨x(ℓ0),x∗⟩ > 0 is mild and similar assumptions
have been adopted in prior works including (Liu et al. 2022;
Liu, Wang, and Liu 2022). As a result, we provide an up-
per bound on

∥∥x(ℓ) − x∗
∥∥, instead of the distance measure

min
{∥∥x(ℓ)−x∗

∥∥, ∥∥x(ℓ)+x∗
∥∥} that is commonly adopted in

relevant literature on real-valued phase retrieval problems.
Remark 3. The iterative algorithm (15) is similar to that
proposed by (Liu et al. 2022). However, the authors of (Liu
et al. 2022) do not employ Stein’s identity to make use of
the score functions of distributions in their algorithm, and
their theoretical guarantees are only applicable to phase re-
trieval with Gaussian sensing vectors, as noted in Example 2
of their paper. For the case of handling phase retrieval with
non-Gaussian sensing vectors as we explore in this paper,
the proof technique is significantly different from that used
in (Liu et al. 2022).

Similarly to the discussion after Theorem 2, we know
that the term

√
(k log(4Lr/δ))/m in (16) is roughly of or-

der
√

(k logL)/m. Therefore, Theorem 2 essentially says

that under appropriate initialization, approximately m =
O
(
k
ε2 logL

)
measurements suffice to ensure that the pro-

jected power method (15) returns an estimated vector that
achieves ε-accurate recovery.

Experiments
We present numerical results for the MNIST (LeCun et al.
1998) and CelebA (Liu et al. 2015) datasets to support our
theoretical results, with the results for CelebA being pre-
sented in the supplementary material due to the page limit.

The MNIST dataset contains 60,000 images of handwrit-
ten digits, each measuring 28 × 28 pixels, resulting in an
ambient dimension of n = 784. The generative model G
for the MNIST dataset is chosen to be a pre-trained varia-
tional autoencoder (VAE) model with a latent dimension of
k = 20. The encoder and decoder are both fully connected
neural networks with two hidden layers, having an architec-
ture of 20− 500− 500− 784. The VAE is trained using the
Adam optimizer with a mini-batch size of 100 and a learning
rate of 0.001 on the original MNIST training set. To approx-
imately perform the projection step PG(·), we use a gradient
descent method with the Adam optimizer, using step size of
100 and a learning rate of 0.1. This approximation method
has been used in several works, including (Shah and Hegde
2018; Peng, Jalali, and Yuan 2020; Liu et al. 2020, 2022;
Liu and Liu 2022). The reconstruction task is evaluated on
a random subset of 10 images drawn from the testing set of
the MNIST dataset.

We follow (Yang, Balasubramanian, and Liu 2017) to set
the 1-d density p0 to be that corresponds to the Gamma
distribution with shape parameter 5 and scale parameter 1,
i.e., p0(a) = a4e−a/Γ(5), or the Rayleigh distribution with
scale parameter 2, i.e., p0(a) = (ae−a

2/8)/4. We conduct
the experiments for the SIM (2) with first- and second-order
link functions. Since the norm of the signal is absorbed in the
SIM, we focus on the estimation of the direction of the signal
and do not consider its norm. To compare the performance of
different algorithms, we use the scale-invariant Cosine Sim-
ilarity metric, which is defined as CosSim

(
x∗, x̂) = x̂Tx∗,

with x∗ being the underlying signal and x̂ referring to the
normalized output vector of each algorithm. We use 10 ran-
dom restarts to mitigate the impact of local minima and se-
lect the best result among these random restarts. The cosine
similarity is averaged over the 10 test images and over these
10 restarts. All experiments are conducted using Python
3.10.6 and PyTorch 2.0.0 with an NVIDIA RTX 3060 Lap-
top 6GB GPU.

First-order Links
Similarly to (Yang, Balasubramanian, and Liu 2017), we set
f to be either

f(x, y) = 3x+ 10 sin(x) + y, (17)

or
f(x, y) =

√
2x+ 4 exp

(
−2x2

)
+ y. (18)

Both non-linear link functions (17) and (18) are not mono-
tonic with regards to x. We assign the random noise w
(see (2)) to have zero-mean Gaussian distribution with a
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Figure 1: Reconstructed images of the MNIST dataset for
SIM with link function (17) and Gamma sensing vectors.
The number of measurements m = 400.
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Figure 2: Reconstructed images of the MNIST dataset for
SIM with link function (17) and Rayleigh sensing vectors.
The number of measurements m = 500.

standard deviation of 0.1. To demonstrate the effect of the
number of measurements m, we vary m within the values of
{100, 200, 300, 400, 500}. The truncation parameter τ is set
to be τ = 5

√
m. Based on Theorem 1, we perform the exper-

iments for the efficient non-iterative approach (9) (denoted
by 1st-S). We note that it has been shown in (Liu and Liu
2022) that a similar non-iterative approach with respect to
ai (instead of Sp(ai); the corresponding estimated vector is
PG
(

1
m

∑m
i=1 ỹiai

)
) is effective for standard Gaussian sens-

ing vectors. We compare with such an approach, and denote
it by 1st-A to highlight that it is with respect to the sensing
vectors ai directly. It has been established in various pre-
vious studies (see, e.g. (Bora et al. 2017; Liu et al. 2020;
Liu and Liu 2022)) that when the number of measurements
is comparatively small in relation to the ambient dimension,
generative model-based approaches yield significantly supe-
rior reconstructions compared to sparsity-based approaches.
Therefore, in this work, we will not compare our proposed
method with sparsity-based approaches.

The reconstructed images from the experiments are de-
picted in Figures 1, 2, 4, 5, and the corresponding quan-
titative results are demonstrated in Figures 3, 6. From the
figures provided, it is evident that for non-Gaussian sens-
ing vectors, the non-iterative method using score function-
valued sensing vectors Sp(ai) (i.e., (9)) yields significantly
better reconstructions compared to the non-iterative method
using sensing vectors ai themselves. This is consistent with
the theoretical findings in (Ai et al. 2014; Goldstein and Wei
2019) that for SIM with non-Gaussian sensing vectors, con-
ventional estimators that directly apply to sensing vectors
can lead to fixed bias terms, regardless of the number of
measurements taken.

Second-order Links
Similarly to (Yang et al. 2017), we set f to be either

f(x, y) = |x|+ y, (19)

or
f(x, y) = 4x2 + 3 sin(x) + y, (20)

which corresponds to (misspecified) phase retrieval models
with additive noise. The random noise w (see (2)) is also
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(a) Gamma distr. (b) Rayleigh distr.

Figure 3: Quantitative results of the performance of 1st-S
and 1st-A for SIM with link function (17) and Gamma or
Rayleigh sensing vectors on the MNIST dataset.
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Figure 4: Reconstructed images of the MNIST dataset for
SIM with link function (18) and Gamma sensing vectors.
The number of measurements m = 300.
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Figure 5: Reconstructed images of the MNIST dataset for
SIM with link function (18) and Rayleigh sensing vectors.
The number of measurements m = 400.
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Figure 6: Quantitative results of the performance of 1st-S
and 1st-A for SIM with link function (18) and Gamma or
Rayleigh sensing vectors on the MNIST dataset.
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Figure 7: Reconstructed images of the MNIST dataset for
SIM with link function (19) and Gamma sensing vectors.
The number of measurements m = 400.
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Figure 8: Reconstructed images of the MNIST dataset for
SIM with link function (19) and Rayleigh sensing vectors.
The number of measurements m = 300.

set to be zero-mean Gaussian with a standard deviation of
0.1. To illustrate the effect of the number of measurements
m, we vary m in {100, 200, 300, 400, 500}. The truncation
parameter τ is set to be τ = 5

√
m/k with k = 20. Based

on Theorem 2, we perform the experiments for the projected
power method with respect to Sp(ai) as presented in (15)
(denoted by 2nd-S). We compare with the projected power
method that applies to the sensing vectors ai directly (de-
noted by 2nd-A; for such an approach, the estimated vector
is PG

(
1
m

∑m
i=1 ỹi

(
aTi x

(ℓ)
)
ai
)
). For both methods, the num-

ber of iterations is set to 10. It has also been established in
prior works, such as (Hyder et al. 2019; Jagatap and Hegde
2019; Liu et al. 2022), that for phase retrieval problems,
when the number of measurements is relatively small com-
pared to the ambient dimension, generative model-based ap-
proaches yield significantly better reconstructions compared
to those of sparsity-based approaches. As such, we will not
compare with sparsity-based approaches.

The reconstructed image results are displayed in Fig-
ures 7, 8, 10, 11, and the corresponding quantitative results
are demonstrated in Figures 9, 12. These figures indicate
that for SIM with non-Gaussian sensing vectors and second-
order links (19) and (20), the projected power method with
respect to Sp(ai) (as shown in (15)) yields significantly bet-
ter reconstructions compared to that of the projected power
method with respect to sensing vectors ai.

Conclusion
This work offers recovery guarantees for efficient algorithms
designed for high-dimensional SIMs with first- and second-
order links, utilizing generative priors and non-Gaussian
sensing vectors.
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Figure 9: Quantitative results of the performance of 1st-S
and 1st-A for SIM with link function (19) and Gamma or
Rayleigh sensing vectors on the MNIST dataset.
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Figure 10: Reconstructed images of the MNIST dataset for
SIM with link function (20) and Gamma sensing vectors.
The number of measurements m = 400.
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Figure 11: Reconstructed images of the MNIST dataset for
SIM with link function (20) and Rayleigh sensing vectors.
The number of measurements m = 400.
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Figure 12: Quantitative results of the performance of 2nd-S
and 2nd-A for SIM with link function (20) and Gamma or
Rayleigh sensing vectors on the MNIST dataset.
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