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Abstract

Understanding intermediate representations of the concepts
learned by deep learning classifiers is indispensable for inter-
preting general model behaviors. Existing approaches to re-
veal learned concepts often rely on human supervision, such
as pre-defined concept sets or segmentation processes. In this
paper, we propose a novel unsupervised method for discov-
ering distributed representations of concepts by selecting a
principal subset of neurons. Our empirical findings demon-
strate that instances with similar neuron activation states
tend to share coherent concepts. Based on the observations,
the proposed method selects principal neurons that construct
an interpretable region, namely a Relaxed Decision Region
(RDR), encompassing instances with coherent concepts in
the feature space. It can be utilized to identify unlabeled sub-
classes within data and to detect the causes of misclassifi-
cations. Furthermore, the applicability of our method across
various layers discloses distinct distributed representations
over the layers, which provides deeper insights into the in-
ternal mechanisms of the deep learning model.

Introduction
Despite the remarkable performance of Deep Neural Net-
works (DNNs) in learning intricate data relationships (Le-
Cun, Bengio, and Hinton 2015), their inherent lack of trans-
parency remains a significant challenge. This opacity makes
it difficult to understand the decision-making process, reduc-
ing model reliability and weakening the applicability in risk-
sensitive domains where careful decisions are needed (Gun-
ning et al. 2019; Samek et al. 2019). To gain insights into
the general behaviors of DNNs, it is essential to reveal the
semantic representations that DNNs learn. Our primary goal
is to understand the distributed representations of concepts
embedded within a trained model without external supervi-
sion. This approach facilitates the identification of diverse
concepts within the model, including subclass distinctions,
class-agnostic concepts, and even concepts that might con-
tribute to misclassification.

Various eXplainable Artificial Intelligence (XAI) meth-
ods have been developed to enhance the transparency of
a model. The gradient-based methods reveal which parts
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Figure 1: Relaxed Decision Region (RDR). Top: Description
of the target sample and its neighbors. Middle: Visualiza-
tion of the feature space and the RDR. Our RDR framework
groups instances that have similar neuron activation states
in the feature space. Bottom: Instances in the RDR share the
coherent concept of ‘a person with a stick’.

of input significantly contribute to the model’s classifica-
tion result based on the gradient information (Simonyan,
Vedaldi, and Zisserman 2014; Bach et al. 2015; Selvaraju
et al. 2017; Sundararajan, Taly, and Yan 2017; Chattopadhay
et al. 2018). Yet, they focus on individual instances rather
than the representative concepts that the model has learned
in terms of generality. In this context, concept-based expla-
nation methods emerge to provide more nuanced and gen-
eral explanations (Kim et al. 2018; Ghorbani et al. 2019;
Crabbé and van der Schaar 2022). Despite their perceptu-
ally intuitive results, most methods heavily rely on human
supervision. Not only does it take substantial cost to require
a refined concept dataset, but also there is no guarantee that
the pre-defined concepts truly reflect the model behavior.
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Figure 2: Without prior knowledge of label information, our RDR framework successfully captures learned concepts such as
subclasses, shapes, crowds, composition, and the degree of flowering, as well as simple color schemes.

Another line of research takes a distinct approach that di-
rectly discloses the concepts embedded in the model by ob-
serving the role of internal neurons (Bau et al. 2017; Fong
and Vedaldi 2018). In particular, under the assumption of a
distributed representation (Hinton 1984), Fong and Vedaldi
(2018) find combinations of neurons that represent learned
concepts with segmentation information. Nevertheless, they
still require human-annotated information and often entail
computationally intensive manual searching.

In this paper, we present an interpretation framework aim-
ing to elucidate learned concepts in DNNs. The proposed
framework captures concept representations by leveraging
the inherent information in the intermediate layers and of-
fers example-based explanations without supervision. We
first empirically demonstrate that instances with similar ac-
tivation states share coherent concepts, and select a subset
of relevant neurons, namely the principal configuration. Us-
ing the principal configuration, our approach constructs an
interpretable region named Relaxed Decision Region (RDR)
(Figure 1). Our RDR framework can reveal various learned
concepts, including subclasses (Figure 2), concepts leading
to misclassification, and diverse concepts across different
layers.

Related Work
Concepts learned by DNNs can be unveiled by leverag-
ing human supervision directly. Concept discovery methods,
when given a predefined concept set, compute a relevant
concept vector or a region in the internal feature space (Kim

et al. 2018; Schrouff et al. 2021; Crabbé and van der Schaar
2022; Sajjad, Durrani, and Dalvi 2022; Oikarinen and Weng
2023). Although attempts have been made to bypass the
need for pre-defined concept sets (Ghorbani et al. 2019;
Küsters et al. 2020; Koh et al. 2020), they entail other types
of costs, such as the segmentation process.

Other notable approaches aim to identify the role of in-
ternal components in DNNs, such as convolutional filters,
by aligning activation patterns with pre-defined informa-
tion (Bau et al. 2017; Fong and Vedaldi 2018; Angelov 2020;
Achtibat et al. 2022). These approaches commonly utilize
segmentation information to evaluate individual concepts
captured through internal neurons. Recently, Oikarinen and
Weng (2023) introduced a method providing textualized ex-
planations for internal neurons, leveraging a CLIP model
with pre-defined textual concept sets. Although these ap-
proaches still involve human supervision, they offer strong
empirical evidence that internal neuron activations poten-
tially encode information about learned semantics.

To avoid the requirement of supervision, example-based
explanation methods select representative exemplars that
summarize data distribution (Kim, Khanna, and Koyejo
2016; Khanna et al. 2019; Cho et al. 2021). Despite the ad-
vantages of their unsupervised algorithms, there is no guar-
antee that the exemplars precisely reflect the decision logic
of the model. Another way is to explicitly design a specific
structure capable of learning prototypical representations it-
self (Chen et al. 2019; Nauta et al. 2023). In such cases,
however, the model structure is necessarily constrained.
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Lam et al. (2021) proposed the Representative Interpreta-
tion (RI) method, which establishes a region in the feature
space encompassing the maximum number of instances of a
target class. While RI focuses on a specific target class, our
objective is to construct a region where instances share co-
herent concepts without being constrained by class distinc-
tions. We achieve it by leveraging activation patterns in an
unsupervised manner. The idea is based on the fact that ac-
tivation patterns are closely linked to model decisions (Chu
et al. 2018; Gopinath et al. 2019) and captured representa-
tions (Bau et al. 2017; Fong and Vedaldi 2018).

Problem Definition
To set the groundwork for our discussion, this section intro-
duces necessary terminologies and definitions. We start by
clarifying the key properties of the concept sets we aim to
find from a trained DNN. (1) Learned representation: The
concept should originate within the model and be extractable
from the set of neurons. (2) Coherence: The concept should
convey a common semantic meaning that is consistently ob-
served across multiple instances. (3) Discrimination: The
extracted concept set should be distinguishable from non-
concept sets, ensuring straightforward human comprehen-
sion.

To identify a concept with the aforementioned properties,
we select principal neurons that represent the corresponding
concept, enabling interpretation for a target instance. The
chosen neurons constitute the Relaxed Decision Region, de-
scribed in the next section. The motivation of our neuron-
selection approach is rooted in the principle of distributed
representation (Hinton et al. 1986; Fong and Vedaldi 2018),
suggesting that a model’s learned concept representations
are distributed across multiple internal components, akin to
neurons in DNNs.

Terminologies
Consider a neural network F : Rn0 → Rnout with L layers.
For each layer l ∈ [L], let Nl denote the set of neurons in
layer l and nl the number of neurons in layer l. With the as-
sumption of the piecewise linear activation function, such as
the family of ReLU (Montufar et al. 2014; Chu et al. 2018),
the neural network can be represented as a composition of
piecewise linear functions F (x) = f out ◦ fL ◦ fL−1 ◦ · · · ◦
f2 ◦ f1(x) where x ∈ Rn0 , f l : Rnl−1 → Rnl is a piece-
wise linear function for l ∈ [L], and f out is a linear map-
ping to the final logit. The output of the l-th layer is denoted
by xl = [xl

1, . . . ,x
l
nl
]⊤. Note that the output of the layer

refers to the post-activation value of the layer. To express
the internal process of the network F , we define a function
F (i+1):j(xi) = f j◦f j−1◦· · ·◦f i+2◦f i+1(xi) as the succes-
sive partial representation of F , meaning the mapping from
layer i to layer j.

Decision region. Given instance x, the computation from
the intermediate layer to the final logit can be represented as
a linear projection

F (x) = f out ◦ f (l+1):L(xl) = Wxl + b. (1)
Note that W,b depend on x and l. The preimage of f out ◦
f (l+1):L is divided into convex polytopes where the function

becomes linear for each polytope (Chu et al. 2018). We call
each polytope as decision region since the network applies
the same linear projection for the belonging instances to ob-
tain the final logit values. A decision region in the l-th layer
is determined by the activated states of neurons in the higher
layers, namely configuration.
Definition 1 (Activation State). Given an input x ∈ Rn0

and a neuron i in layer l of the neural network, the activation
state is

ci(x) =

{
0, if xl

i ≤ 0

1, if xl
i > 0.

(2)

This is the case of the network with ReLU activation. We
can easily extend the above definition to the other piecewise
linear activation functions. The activation states can be rep-
resented as a vector code with discrete values. We define this
code as a configuration.
Definition 2 (Configuration). Given an input x ∈ Rn0 and
a set of neurons N , the configuration is

cN (x) = [cN [1](x), . . . , cN [|N |](x)] (3)

where N [i] denotes the i-th neuron in set N .
In consequence, a decision region where the given

x located in the l-th layer is determined by c(x) =
concat([cNl+1(x), . . . , cNL(x)]). Unless we specify the
neuron set N , a configuration of x denotes c(x), considering
every neurons in higher layers.

Internal decision boundary. We define an internal de-
cision boundary as the boundary within the feature space
where a transition in the activation state of each neuron oc-
curs. In other words, each element of c(x) implies which
state x is located with respect to the corresponding inter-
nal decision boundary. Note that the term decision bound-
ary typically refers to the boundary where the classification
results change in other literature. However, in this paper,
we use the term decision boundary as the internal decision
boundary.

Methods
The configuration, representing the activated states of the
internal decision boundaries, determines the decision region
to which an instance pertains at the target layer. This region
serves as a guide for the model to extract pivotal information
from the feature space. From the perspective of distributed
representations, this information is captured by a specific
subset of neurons, as experimentally observed by Fong and
Vedaldi (2018). In this spirit, to understand the nature of the
captured information for a target instance, it is imperative to
identify a subset of principal neurons shared with relevant
instances.

Following this logic, we present an interpretation frame-
work designed to identify an interpretable region that aligns
with the desired concept properties of learned concepts:
learned concepts with coherence and discrimination. Our
method automatically finds a set of instances sharing a con-
cept of target instance through Configuration distance, and
forms a Relaxed Decision Region by extracting principal
neurons that represent this concept.
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Configuration Distance
Before identifying a subset of principal neurons, the initial
step involves finding the concept set. In contrast to other
methods that heavily rely on pre-defined concept sets, we au-
tomatically discover a group of instances that share learned
concepts with a given target instance. To enable this process,
we introduce a metric to evaluate the difference in configu-
rations as follows.

Definition 3 (Configuration Distance). Given an instance
x, x̃ ∈ X , the Configuration distance for a set of neurons N
is defined as follows:

dC(x, x̃) = dH(cN (x), cN (x̃)) (4)

where dH denotes the Hamming distance.

N can be selected from either a single layer or multiple
layers. If we want to focus on the specific projection from
the l-th layer to the (l+1)-th layer, the configuration at the
(l+1)-th layer, denoted as dNl

C , would be considered. We em-
pirically verify in the following sections that concept sets are
effectively found through the Configuration distance.

Relaxed Decision Region
From the configuration of a target, we select a principal
subset of neurons. The activation states of these neurons
construct an integrated decision region in the feature space
where encompassed instances share the learned concept. We
call the states of these selected neurons as the principal con-
figuration cp and the corresponding region as a Relaxed De-
cision Region (RDR), R. Finding a principal configuration
can be formulated as follows:

min
cp∈{0,1}t

N∗⊂N

Ex[dH(cN
∗
(x), cp)]− Ey[dH(cN

∗
(y), cp)]

s.t. |N∗| = t

(5)

where x, y represent random variables corresponding to the
positive (concept) set of inputs and the negative (concept)
set of inputs, respectively. We find a principal subset N∗

that consists of t number of neurons from a neuron set N .
Minimizing the objective function encourages the principal
configuration to exhibit strong coherence with the positive
set (the first term) while also ensuring distinctiveness from
the negative set (the second term).

In practice, we construct a positive set S and a negative
set Sneg from training data. For a given target instance, we
collect k-nearest neighbors (including itself) based on the
dNC and assign them to the positive set S. The negative set
Sneg can be easily set to the remaining data points. One of
the strengths of our framework here is that it does not re-
quire a pre-defined concept set. To address the optimization
problem in Equation (5), we employ a greedy algorithm for
assigning neurons to N∗. Our greedy algorithm is described
in Algorithm 1.

Theorem 1. The optimal solution N∗ of the problem in
Equation (5) can be obtained by the greedy algorithm.

Proof. See Appendix.

Algorithm 1: Finding a Relaxed Decision Region

Input: S, Sneg, a set of neurons N , layer l
Parameter: the number of neurons to select t
Output: N∗, cp, R

1: Initialize N∗={}, cp ∈ {0, 1}t
2: c̄ = 1

|S|
∑

x∈S cN (x)

3: c̄neg = 1
|Sneg|

∑
y∈Sneg

cN (y)

4: for i = 1, . . . , t do
5: i∗ = argmaxi∈N |c̄i − c̄neg,i|
6: cp,i∗ = c̄i∗
7: N∗ = N∗ ∪ {i∗} and N = N \ {i∗}
8: end for
9: R = {xl | dH(cN

∗
(x), cp) = 0,x ∈ X}

In our problem, the candidate neuron set N consists of
neurons that exhibit identical activation states for all in-
stances in S so that RDR encompasses all instances in S.
c̄, c̄neg denote the frequencies of neuron activations for in-
stances in S and Sneg, respectively. Our greedy algorithm
then iteratively selects a neuron that has the largest fre-
quency difference between S and Sneg, indicating a high in-
formation gain to explain S. As each neuron is associated
with an internal decision boundary in the feature space, we
select a subset of the boundaries to form a larger region for
coherent interpretation. This is why we use the term ‘Re-
laxed’ in RDR.

The parameter t controls the number of principal neurons.
A smaller t makes the RDR looser so that it captures a more
general concept while a larger t leads to detecting more spe-
cific properties. The number of neighbors k gives a similar
but opposite effect to the results with t. To mitigate the con-
cern about the difficulty of parameter selection, we provide
guidance on selecting t and k in Appendix. We empirically
check that the RDR works effectively with the parameters
k ∈ [5, 10] and t ∈ [9, 15] in the penultimate convolutional
block of the models in our experiments.

Geometric understanding of RDR. Figure 1 illustrates
how RDR captures instances with learned concepts in the
feature space from the geometric view. We selected three in-
stances, two of which seem similar while the last one has dis-
tinct semantics. Then, we drew the 2-d plane that passes the
feature maps of three given instances on the feature space of
the 12th layer in VGG19. Each line on the plane represents
an internal decision boundary corresponding to each neu-
ron in the higher layers. Although the third instance has a
smaller Euclidean distance value, the second instance (with
a smaller Configuration distance value) is much more akin
to the first instance. Indeed, We can easily check that there
are numerous internal decision boundaries between the third
instance and the others.

This intricate space partition enables DNN to apply differ-
ent mappings according to inputs (Chu et al. 2018; Gopinath
et al. 2019). Our RDR framework finds core internal deci-
sion boundaries and relaxes the decision regions where map-
pings are similar (highlighted in green in Figure 1). Further
explanations are provided in Appendix.
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Analysis for the Distance metrics
We demonstrate the effectiveness of the Configuration dis-
tance in disclosing learned concepts in the feature space
compared to other standard metrics. Our analysis gives in-
sights into the characteristics of decision regions.

We compare the Configuration distance with two standard
distance metrics, the Euclidean distance and the Cosine dis-
tance, in terms of conceptual similarity among the nearest
instances. The Configuration distance effectively captures
instances with similar concepts in the feature space, whereas
the Euclidean distance tends to fail in evaluating resem-
blance. In the case of the Cosine distance, while the closest
neighbors usually include appropriate instances, some less
relevant instances are also present among the neighbors.
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Figure 3: Top 4 nearest instances with different distance met-
rics. In the case of the Euclidean distance and the Cosine dis-
tance, the irrelevant instances are detected. These instances
have large Configuration distances from the target.

In Figure 3, we visualize the top 4 nearest instances of
the target ‘stage’ image, based on each distance metric. The
number in parentheses denotes the Configuration distance to
the target. It helps to successfully detect ‘people in the stage-
like place’, while we cannot attain meaningful information
from the Euclidean distance. For the Cosine distance, the
second image, which is semantically distinct, is far away
from the target with respect to the Configuration distance.
The histogram shows the distribution of the 1000 small-
est Configuration distance values within the training data.
Among these, 375 instances are closer to the target than the
‘prayer rug’ image, and none of the top 4 Euclidean images
are included. This serves as compelling evidence of the ef-
fectiveness of the Configuration distance in measuring dif-
ferences in learned concepts.

Insight. We observe that for a given target instances
with smaller Cosine distances tend to have smaller Con-
figuration distances, which supports the efficacy of Cosine
distance in evaluating similarity in the intermediate feature
space compared to the Euclidean distance (more examples
are in Appendix). We conjecture that this phenomenon is at-
tributed to the geometry created by DNN structures. For ex-
ample, in CNNs, decision regions are divided by polyhedral
cones (Carlsson 2019) so that the angular difference between
feature maps becomes highly related to the Configuration

distance. This aligns with the empirical successes of prior
work using the Cosine similarity in the feature space (Fong
and Vedaldi 2018; Kim et al. 2018; Bachman, Hjelm, and
Buchwalter 2019; Jeon, Jeong, and Choi 2020). We plan to
explore this phenomenon further in our future work.

Tibetan mastiff Newfoundland cliff cliff jellyfish green mamba

ta
rg
et

Arctic fox

Figure 4: Mapping differences with 30 nearest neighbors.
The Configuration distance indeed captures instances whose
mappings are close to the target’s one. With a smaller map-
ping difference, the image is more similar to the target.

The viewpoint of Mapping. So far, we have explained
that DNNs extract different information from instances due
to changes in mapping according to the configuration. In
Figure 4, we compute the difference in mappings of 30 near-
est instances. The difference is quantified using the L2 norm
of the weight matrices in two successive layers. Compared
to the other distance metrics, the Configuration distance cap-
tures instances whose mappings are close to the target’s one,
leading to the extraction of more similar information.

Experiments
In this section, we present the qualitative and quantitative
evaluation results of our proposed method as well as vari-
ous use cases. Our experiments are conducted on the Mini-
ImageNet (Vinyals et al. 2016), Flowers Recognition (de-
noted by Flowers), Oxford pet, Broden (Bau et al. 2017),
Imagenet-X (Idrissi et al. 2022) datasets, using VGG19 (Si-
monyan and Zisserman 2014), ResNet50 (He et al. 2016),
and MobileNetV2 (Sandler et al. 2018) models. The choice
of parameters t and k adheres to the criteria outlined in the
previous section unless explicitly stated. Detailed settings of
each experiment are provided in Appendix.

Coherence of Captured Concepts
To assess the coherence of captured concepts, we identify
which parts in the image correspond to concepts with princi-
pal configurations from a convolutional layer. Following the
methods of Bau et al. (2017) and Fong and Vedaldi (2018),
we visualize activation maps of the channels that contain the
neurons in the principal configuration.

Figure 5 shows our visualization results compared to
those from other interpretability methods: Grad-CAM (Sel-
varaju et al. 2017), IG (Sundararajan, Taly, and Yan 2017)
and ACE (Ghorbani et al. 2019). To apply IG for the inter-
mediate layer, we compute the attribution scores for each
neuron in the feature map and sum the scores across chan-
nels at each spatial location. In ACE, we adhere to the set-
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Figure 5: Retrieval results using RDR and masking for
Concept Location. Without supervision, RDR successfully
groups similar instances and related parts. The concept of
‘legs’ is learned for the images in the 12th layer.

tings outlined in the original paper and visualize images by
masking all except the top 30% of significant segmentation
patches. These results are obtained from the 12th layer in
VGG19 using d12C with k=8, t=10. The instances in RDR
share the concept of ‘legs’ and the selected channels focus
on the ‘legs’ parts. Grad-CAM fails to find appropriate parts
in the middle layer. While IG emphasizes specific parts of
an object, it lacks consistency across the images. ACE pri-
oritizes features for classification rather than maintaining
a coherent conceptual interpretation. These results support
the necessity of group-level interpretation to understand dis-
tributed representations, moving beyond the consideration
of class-specific information such as gradients.

target Instances in RDR

Figure 6: Identifying the coherent properties using human-
annotated information in the Broden dataset.

We conduct additional investigations to assess whether
concepts identified across instances in RDR align with pre-
defined concept labels in the Broden dataset. The Broden
dataset provides pixel-wise segmentation concept labels for
each image. In Figure 6, we initially collect instances within
an RDR (left) and identify the top 5 concept labels that
they share (right). The experiment follows the same setting
in Figure 5 but with k=10, t=15. The experimental results

clearly demonstrate that the concepts captured with an RDR
align well with human-labeled concepts.

Identifying Learned Concepts over Layers
By constructing RDR across various layers, we investigate
how DNN recognizes instances at different stages of its ar-
chitecture. Figure 7 illustrates the layer-wise differences of
RDRs in the feature space of VGG19. We observe that the
lower layers tend to capture spatial information, such as the
object shape, whereas higher layers learn more detailed and
class-specific features. The results align with the observa-
tions identified by Bau et al. (2017). Additional examples
are provided in Appendix.

layer 4 layer 8 layer 12 layer 16target output

Consomme

Stage

Figure 7: Differences in RDR over layers. The higher the
layer is, the more class-specific concepts are captured.

Reasoning Misclassified Cases
We leverage RDR to comprehend the causes of misclassifi-
cations, under the assumption that certain internal neurons
encode spurious correlations with actual labels, leading to
classification errors. In Figure 8, we present which parts
in the image contribute to misclassifications by designat-
ing Sneg as instances with the true label of the target. By
visualizing the channels associated with the principal con-
figuration, we can obtain evidence for each misclassification
case. For instance, the second row demonstrates that the mis-
classification of the target instance stems from the presence
of long legs, a characteristic commonly linked with Saluki.
To further validate our findings, we double-check whether
the extracted mislearned concepts align with human-labeled
failure reasons from ImageNet-X. Additional illustrative ex-
amples are presented in the Appendix.

Finding Unlabeled Subclasses
Discovering unlabeled subclasses without human supervi-
sion is a challenging task. Our framework can reveal sub-
classes inherent in data without any prior knowledge. In Fig-
ure 2, we detect subclasses in the Mini-ImageNet dataset
and the Flowers dataset captured by VGG19. We compute
the Configuration distance at target layers {12, 14, 16, 17}.
For each class, three target instances are chosen, followed
by displaying 10 randomly selected images from the corre-
sponding RDRs. Consequently, RDRs successfully capture
learned concepts, including subclasses, in an unsupervised
way. This qualitative evidence supports why our framework
achieves good performance on the quantitative comparison
shown in Table 1.
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Figure 8: Misclassification reasoning can be investigated by
examining RDR. In the Mini-ImageNet case, we provide the
ratio of classes in RDR. In the ImageNet-X case, we de-
scribe the annotated failure type.

Quantitative Evaluation
We quantitatively evaluate the coherence of subclass groups
identified by RDR, comparing with other methods on the
Oxford-pet dataset. Although each model is trained to solely
distinguish between cat and dog images, our RDR frame-
work can implicitly identify specific breeds (subclasses) of
target instances, even in the absence of explicit breed infor-
mation. For a thorough verification, we form RDRs with 50
randomly chosen target instances, ensuring an equal number
of instances within each group across all methods.

In Table 1, we employ two metrics, namely purity and
entropy, for comprehensive quantitative evaluations (Zhao
and Karypis 2001). Purity assesses the proportion of sam-
ples containing the target subclass within the group. Entropy
measures the uncertainty of subclasses within the group.

Purity =
1

T

T∑
t=1

1[yt=ỹ]

Entropy =
∑

y:Py ̸=0

−Py ∗ logPy

where Py = 1
T

∑T
t=1 1[yt=y] (empirical distribution). T is

the number of samples in each group, and yt is the subclass
of t-th sample in a group. Subclass is denoted as y and that
of a target instance is ỹ. High purity or low entropy indicates
that the group consistently extracts the subclass of the target.

We compare RDR with other approaches that can define
interpretable regions: K-Nearest Neighborhood, Represen-

Purity Entropy
VGG RSN MBN VGG RSN MBN

RDR 0.351 0.408 0.346 1.527 1.372 1.531
KNNC 0.303 0.328 0.329 1.588 1.497 1.498
CARC 0.022 0.038 0.036 2.264 2.153 2.527
CAVC 0.314 0.387 0.323 1.549 1.416 1.575

RI 0.045 0.056 0.056 2.161 1.971 2.369
RDREuc 0.241 0.252 0.303 1.76 1.779 1.76
KNNEuc 0.183 0.166 0.275 1.835 1.862 1.791
CAREuc 0.039 0.037 0.037 2.272 2.17 2.476
CAVEuc 0.207 0.240 0.283 1.811 1.787 1.745
RDRCos 0.309 0.307 0.346 1.613 1.7 1.628
KNNCos 0.250 0.232 0.283 1.672 1.771 1.635
CARCos 0.042 0.027 0.036 2.251 2.14 2.576
CAVCos 0.261 0.283 0.274 1.596 1.734 1.651

Table 1: Quantitative results for evaluating the coherence
of subclass grouping. VGG, RSN, MBN represent VGG19,
ResNet50, and MobileNetV2, respectively.

tative Interpretation (Lam et al. 2021), CAR (Crabbé and
van der Schaar 2022) and CAV (Kim et al. 2018). To ensure
a fair comparison, we consider the nearest neighbors as a
concept set for CAR and CAV, as they require pre-defined
concept sets. In the case of CAV, since the original CAV
does not output a region, we define a region for CAV by
containing instances with have high cosine similarities to the
computed CAV. As shown in Table 1, RDR generally outper-
forms others in both purity and entropy.

Following its original settings, CAR exhibits an exces-
sively broad region, grouping various subclasses into a sin-
gle region. Similarly, RI also generates a wide concept re-
gion, as it is formulated to maximize the number of samples
in a target class, potentially overlooking implicit concepts.
The competitive results observed in CAV can be attributed
to the phenomenon where a high cosine similarity may result
in a low Configuration distance, as elucidated in our analysis
section. We also ablate the methods using different distance
metrics, confirming the effectiveness of configuration.

Conclusion
We introduce a novel interpretation framework that reveals
the learned concepts in DNNs without human supervision.
Our key approach is to leverage the activation states to iden-
tify the distributed representations of concepts. We propose
the Configuration Distance, a novel metric that effectively
assesses the disparity in decision regions. It enables the au-
tomatic collection of concept sets, avoiding the need for
pre-defined information. By extracting the principal config-
uration from the set, we construct a Relaxed Decision Re-
gion (RDR) that provides consistent interpretation for the
related instances. In our experiments, we present various ap-
plications of RDR for interpreting DNNs, including subclass
detection, reasoning misclassification, and exploring layer-
wise concepts. We expect that our work guides the direc-
tion to understanding the decision-making process of DNNs,
which is a crucial step for real-world applications.
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