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Abstract

We examine a private ADMM variant for (strongly) convex
objectives which is a primal-dual iterative method. Each it-
eration has a user with a private function used to update the
primal variable, masked by Gaussian noise for local privacy,
without directly adding noise to the dual variable. Privacy am-
plification by iteration explores if noises from later iterations
can enhance the privacy guarantee when releasing final vari-
ables after the last iteration.
Cyffers et al. explored privacy amplification by iteration for
the proximal ADMM variant, where a user’s entire private
function is accessed and noise is added to the primal variable.
In contrast, we examine a private ADMM variant requiring
just one gradient access to a user’s function, but both primal
and dual variables must be passed between successive itera-
tions.
To apply Balle et al.’s coupling framework to the gradient
ADMM variant, we tackle technical challenges with novel
ideas. First, we address the non-expansive mapping issue in
ADMM iterations by using a customized norm. Second, be-
cause the dual variables are not masked with any noise di-
rectly, their privacy guarantees are achieved by treating two
consecutive noisy ADMM iterations as a Markov operator.
Our main result is that the privacy guarantee for the gradient
ADMM variant can be amplified proportionally to the num-
ber of iterations. For strongly convex objective functions, this
amplification exponentially increases with the number of it-
erations. These amplification results align with the previously
studied special case of stochastic gradient descent.

1 Introduction
Alternating direction method of multipliers (Gabay and
Mercier 1976) (ADMM) has been designed for convex pro-
grams whose objective functions can be decomposed as the
sum f(x)+ g(y) of two convex functions1, where the primal
variables x and y are restricted by some linear constraint
Ax+By = c.

Decomposing the objective function into the sum of two
convex functions offers several advantages. Firstly, differ-
ent optimization algorithms can be applied to each part of
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1It will be clear soon why we use a different font for f.

the function. Secondly, in a distributed learning setting, the
function f refers to the loss functions from various users
which can be optimized in parallel, while the function g
refers to a regularizer term that can typically be optimized
by a central server.

In ADMM, a dual variable λ keeps track of how much
the linear constraint is violated. The method is an itera-
tive procedure that minimizes some Lagrangian function
L(x, y, λ), which is defined in terms of f and g. In each iter-
ation, the three variables x, y and λ are updated in sequen-
tial order. While the primal variables x and y are each up-
dated (while keeping other variables constant) to minimize
L, the dual variable λ is updated to encourage the feasibil-
ity of the linear constraint. The alternating nature of variable
updates makes the method widely adaptable in large-scale
distributed contexts (Boyd et al. 2011).

In this paper, we focus on a stochastic version of ADMM
proposed by (Ouyang et al. 2013), in which the function f
can be viewed as an expectation of functions sampled from
some distributionD. Each iteration t is associated with some
user, whose (private) data is some function ft sampled from
D. Instead of directly accessing f, each iteration t only has
access to the corresponding user’s function ft. While the se-
quence f1, f2, . . . , fT of sampled functions arises from user
data, the function g is publicly known. In one ADMM iter-
ation, ft is only needed for updating the x variable. In the
proximal variant, the whole function ft is used in some opti-
mization step to update x. Instead, we will focus on the more
computationally efficient gradient variant that uses the first
order approximation of ft (Ouyang et al. 2015; Li and Lin
2019), where only one access to the gradient oracle ∇ft(·)
is sufficient.

All variants of differential privacy (Dwork 2006; Bun and
Steinke 2016; Mironov 2017) are based on the principle
that a mechanism or procedure achieves its privacy guaran-
tee through the incorporation of randomness. Private vari-
ants of ADMM have been considered by adding noises to
the variables (Zhang and Zhu 2016). To apply this privacy
framework to ADMM, the function ft is considered as the
private input of the user in iteration t. Hence, one possible
way (Shang et al. 2021) to achieve local privacy (against an
adversary that can observe the variables after each iteration)
for the user t is to sample some noise Nt, which is added
to the result of the gradient oracle oracle ∇ft(·). A popu-
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lar choice for sampling Nt is Gaussian noise, for which the
Rényi Dα and zero-concentrated Dz divergences (formally
explained in Section 3) are suitable to measure the closeness
of the resulting output distributions.

In the literature, privacy amplification loosely refers to
the improvement of privacy analysis for a user using extra
sources of randomness other than the noise used for achiev-
ing its local privacy. An example is the randomness used in
sampling data (Chaudhuri and Mishra 2006; Balle, Barthe,
and Gaboardi 2018); for ADMM, this can refer to the ran-
domness in sampling each ft from D. In applications where
data from different users can be processed in any arbitrary
order, extra randomness from shuffling users’ data have been
considered (Erlingsson et al. 2019; Cheu et al. 2019; Balle
et al. 2019b); for ADMM, this can mean that the order of the
users in the iterative process is randomly permuted. Privacy
amplification by iteration (Feldman et al. 2018) has been
proposed to analyze an iterative procedure in which some
noise is sampled in each iteration to achieve local privacy
for the user in that iteration. The improved privacy analysis
is from the perspective of the user from the first iteration.
The intuition is that by exploiting the extra randomness gen-
erated in subsequent iterations, the privacy guarantee against
an adversary that observes only the result at the end of the fi-
nal iteration can be improved. In this paper, we consider pri-
vacy amplification by iteration for ADMM; in other words,
we consider a deterministic sequence f1, f2, . . . , fT of func-
tions, where the function ft is used in iteration t of ADMM,
and the only source of randomness is the noise Nt sampled
in each iteration t, which is used to mask only the x variable
(during access to the gradient oracle).

Loosely speaking, each iteration in the iterative process
considered in (Feldman et al. 2018; Balle et al. 2019a) cor-
responds to a non-expansive mapping, and an independent
copy of Gaussian noise is added to the result of each itera-
tion before passing to the next iteration. From the perspec-
tive of the user from the first iteration, the privacy guarantee
of the final output after T iterations, when measured with the
Dz-divergence2, is improved by a multiplicative factor of T .

A recent work (Cyffers, Bellet, and Basu 2023) employed
this framework to examine privacy amplification by itera-
tion in the proximal variant of ADMM, for the purpose of
analyzing privacy leakage to both the adversary and among
different users.
Our Contribution. The main purpose of this paper is to
apply the approaches in (Feldman et al. 2018; Balle et al.
2019a) to achieve privacy amplification by iteration for the
gradient variant (that uses only the gradient oracle to update
the variable x). When one iteration of ADMM is considered,
the proximal variant as considered in (Cyffers, Bellet, and
Basu 2023) needs to pass only one variable between succes-
sive iterations, while the gradient variant needs to pass both
the x and λ variables. However, when one analyzes the tran-
sition of variables in the (x, λ)-space, there turns out to be
two major technical hurdles, which we give high levels ideas
for how we resolve them (where more details are described

2The results in (Feldman et al. 2018; Balle et al. 2019a) are
stated equivalently in terms of Rényi divergence.

in Section 4.1).
Non-expansive iteration. In (Feldman et al. 2018; Balle
et al. 2019a), it is essential that each iteration involves a
non-expansive mapping in the variable space before adding
noise. This also applies to the proximal variant (Cyffers,
Bellet, and Basu 2023). However, for the ADMM gradi-
ent oracle variant, one iteration signifies a transition in the
(x, λ)-space, which can be a strictly expanding under the
usual norm. We resolve this by creating a custom norm in the
(x, λ)-space that allows for privacy analysis in ADMM and
ensures non-expansiveness (or contractiveness for strongly
convex objectives).
One-step privacy. In (Feldman et al. 2018; Balle et al.
2019a), each iteration masks variables with Gaussian noise,
allowing for straightforward privacy guarantees in terms of
Dz-divergence. This applies to the proximal ADMM vari-
ant (Cyffers, Bellet, and Basu 2023), where noise is added
to the x variable and linearly transformed to mask the λ vari-
able. However, passing both x and λ variables is more com-
plex. The sampled noise masks only the xvariable, leaving
the λ variable exposed, resulting in infinite Dz-divergence.
Our innovative idea involves considering one step as two
noisy ADMM iterations, using independent noises to mask
each component of (x, λ).
Our Informal Statements. We show that from the perspec-
tive of the user from the first iteration, the final variables
after T noisy ADMM iterations achieve privacy amplifica-
tion in the sense that the Dz-divergence is proportional to 1

T ;
for strongly convex objective functions, the privacy amplifi-
cation is improved to LT

T , for some 0 < L < 1. The formal
results for the general convex case are in Theorem 5.1. The
formal statements for the strongly convex case are given in
the full version3.
Privacy for Other Users. We analyze the privacy guarantee
from the perspective of the first user to make the presentation
clearer. As pointed out in (Feldman et al. 2018), very simple
techniques can extend the privacy guarantees to all users: (1)
random permutation of all users; or (2) random stopping: if
there are n users, stop after a random number R ∈ [1..n] of
iterations. (Hence, with constant probability, a user is either
not included in the sample, or the number of iterations after
it is Ω(n).) We give the details in the full version.
Convergence Rates. We emphasize that our contribution
is to analyze privacy amplification for private variants of
ADMM that have already appeared in the literature (Zhang
and Zhu 2016; Shang et al. 2021), whose applications and
convergence rates have already been analyzed. However, for
completeness, we present the tradeoff between utility (mea-
sured by the convergence rate) and privacy (measured by the
variance of privacy noise) in the full version.
Experimental Results. Despite being primarily theoretical,
we conduct experiments on a general Lasso problem. Specif-
ically, we empirically examine the effects of strong convex-
ity and privacy noise magnitude on convergence rates. The
details are given in the full version.
Paper Organization. While the most relevant works are

3The full version of the paper is available on arXiv (Chan, Xie,
and Zhao 2023).
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mentioned in this section, further details on related work are
given in the full version. Background on ADMM is given in
Section 2 and formal privacy notions are given in Section 3.
In Section 4, we give a short review of the previous coupling
approach (Balle et al. 2019a) that achieves privacy amplifi-
cation by iteration. In Section 5 we outline how we resolve
the technical difficulties to achieve privacy amplification for
ADMM.
Materials in Full Version. In the full verison, we give the
details for the general convex case and the strongly convex
case. Moreover, we apply the techniques in (Feldman et al.
2018) to extend the privacy guarantees to all users. We also
give the trade-off between privacy and utility. We perform a
numerical illustration of our algorithms on a general Lasso
problem. We have empirically confirmed that, as predicted
theoretically, both the contraction factor and noise variance
indeed affect the algorithm’s convergence rates. We discuss
potential improvements of parameters in our bounds.

2 Preliminaries
ADMM Convex Program. Suppose we have convex func-
tions f : Rn → R and g : Rℓ → R, and linear trans-
formations (also viewed as matrices) A : Rn → Rm and
B : Rℓ → Rm, and a vector c ∈ Rm. The method ADMM
is designed to tackle convex programs of the form:

min
x,y

f(x) + g(y) (1a)

s.t. Ax+By = c ∈ Rm (1b)

x ∈ Rn, y ∈ Rℓ (1c)

Function f as an expectation functions. The function f is
derived from a distribution D of functions f : Rn → R
such that f(x) = Ef←D[f(x)]. We assume that the functions
f ∈ D are differentiable. In the basic version, we assume
that the algorithm has oracle access to the gradient ∇f(·).
However, in the stochastic version, there are T i.i.d. samples
(f1, f2, . . . , fT ) from D and the algorithm only has oracle
access to the gradient∇ft(·) for each t ∈ [T ].
Notation. We use ⟨·, ·⟩ to represent the standard inner prod-
uct operation and ∥x∥ :=

√
⟨x, x⟩ to mean the usual Eu-

clidean norm. We use I to denote the identity map (or ma-
trix) in the appropriate space. Since a linear transforma-
tion A can be interpreted as a matrix multiplication, we
use the transpose notation A⊤ : Rm → Rn to denote the
adjoint of A. We also consider the operator norm ∥A∥ :=

supx ̸=y
∥Ax−Ay∥
∥x−y∥ .

Smoothness Assumption. We assume that every function f
in the support of D is differentiable and L-smooth for some
L > 0; in other words, ∇f(·) is L-Lipschitz, i.e., for all x
and x′, we have ∥∇f(x)−∇f(x′)∥ ≤ L∥x−x′∥. (To avoid
too many parameters, later on we will mostly use η = 1

L in
the algorithm description.)
Augmented Lagrangian Function. Recall that we have pri-
mal variables x ∈ Rn and y ∈ Rℓ, and the dual vari-
able λ ∈ Rm corresponds to the feasibility constraint (1b).
For some parameter β > 0, the following augmented La-
grangian function is considered in the literature:

Algorithm 1: One ADMM Iteration.

Input: Previous (xt, λt) ∈ Rn × Rm and function
ft+1 : Rn → R.
Output: (xt+1, λt+1)

1 yt ← G(λt − βAxt) //pick canonical
minimizer (see Lemma 2.1)

2 λt+1 ← λt − β(Axt +Byt − c)

3 xt+1 ← F∇ft+1(xt, yt, λt+1) //oracle access
to ∇ft+1(·) (see Lemma 2.2)

4 return (xt+1, λt+1) //yt+1 ← G(λt+1 − βAxt+1)
can be recovered from (xt+1, λt+1)

f(x) + g(y)− ⟨λ,Ax+By − c⟩+ β

2
∥Ax+By − c∥2.

The parameter β > 0 is chosen to offer a tradeoff between
the approximations of the original objective function f(x) +
g(y) versus the feasibility constraint Ax + By = c, where
a larger value of β means that more importance is placed on
the feasibility constraint.
Augmented Lagrangian Function with First Order Ap-
proximation for Differentiable f . The first order approx-
imation of f (with respect to some current x̂) is considered
in the literature (Ouyang et al. 2015; Li and Lin 2019) as
follows. As we shall see in Algorithm 1, each iteration just
needs one gradient oracle access for ∇f(·). Unless other-
wise stated, we consider this gradient variant of ADMM
throughout the paper.

Lf
x̂(x, y, λ) := f(x̂) + ⟨∇f(x̂), x− x̂⟩+H(x, y, λ)

+
1

2η
∥x− x̂∥2 (2a)

H(x, y, λ) := g(y)− ⟨λ,Ax+By − c⟩

+
β

2
∥Ax+By − c∥2 (2b)

One ADMM Iteration. On a high level, ADMM is an it-
erative method. The three variables are updated in a round-
robin fashion as described in Algorithm 1.

Given (xt+1, λt+1), we can recover yt+1 ← G(λt+1 −
βAxt+1) deterministically as in Lemma 2.1. Hence, we only
need to pass variables in the (x, λ)-space between consecu-
tive iterations and treat y as an intermediate variable within
each iteration.
Lemma 2.1 (Local Optimization for g). There exists G :
Rm → Rℓ such that for all x and λ, G(λ − βAx) =
argminyH(x, y, λ).4

Moreover, for any x ∈ Rn, λ ∈ Rm, y1 = G(λ − βAx)
and y ∈ Rℓ, we have

g(y1)− g(y) ≤ ⟨λ− β(Ax+By1 − c), B(y1 − y)⟩.
4Note that the minimizer might not be unique. In practice, some

deterministic method can pick a canonical value, or alternatively,
we can invoke the Axiom of Choice such that G returns only one
value in Rℓ.
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Proof. Observe that we can express H(x, y, λ) = φ(y) −
⟨λ−βAx, y⟩+ϑ(x, λ) for some functions φ(y) and ϑ(x, λ).
Observe that the variables (x, λ) and y only interact in
the middle inner product term. Therefore, fixing (x, λ),
argminyH(x, y, λ) is a function of λ− βAx.

The optimality of y1 implies that 0 ∈ ∂yH(x, y1, λ) =
∂g(y1)−B⊤λ+ βB⊤(Ax+By1 − c).

Hence, we have s1 := B⊤(λ − β(Ax + By1 − c)) ∈
∂g(y1). The convexity of g implies that for all y ∈ Rℓ,
g(y1)−g(y) ≤ ⟨s1, y1−y⟩ = ⟨λ−β(Ax+By1−c), B(y1−
y)⟩.

Lemma 2.2 (Local Optimization for f ). Given differ-
entiable and convex f : Rn → R, define F∇f :
Rn × Rℓ × Rm → Rn by F∇f (x̂, y, λ) := (I +
ηβA⊤A)−1{x̂ − η · [∇f(x̂) + A⊤(β(By − c) − λ)]}.
Then, it follows that F∇f (x̂, y, λ) is the unique opti-
mizer for problem minx Lf

x̂(x, y, λ), i.e. F∇f (x̂, y, λ) =

argminx Lf
x̂(x, y, λ).

Moreover, if x1 = F∇f (x̂, y, λ), then we have:
∇f(x̂) = A⊤(λ− β(Ax1 +By − c)) + 1

η · (x̂− x1).

Proof. One can check that ∇xLf
x̂(x, y, λ) = ∇f(x̂) −

A⊤λ+ βA⊤(Ax+By − c) + 1
η · (x− x̂).

Setting ∇xLf
x̂(x1, y, λ) = 0 and observing that (I +

ηβA⊤A) has only eigenvalues at least 1 give the result.

Private vs Public Information. We consider the scenario
with T users, where each user t ∈ [T ] samples some func-
tion ft fromD independently. Each user t considers its func-
tion ft as private information and as seen in Algorithm 1,
when a user participates in one each iteration of ADMM,
only oracle access to ∇ft(·) is sufficient, but the resulting
information may leak private information about ft. On the
other hand, all other objects such as g, A, B, c and the ini-
tialization (x0, λ0) are considered public information.
Randomness in Privacy Model. In this paper, our privacy
analysis does not exploit the randomness involved in sam-
pling the functions, but is used in the analysis of conver-
gence rates in the full version. Instead, for privacy analy-
sis, we may assume that the (private) sequence of functions
(ft : t ∈ [T ]) is fixed, which also determines that in itera-
tion t ∈ [T ] of ADMM, the function ft from user t will be
accessed (via the gradient oracle).

Definition 2.3 (Neighboring Functions). For ∆ ≥ 0, define
a (symmetric) neighboring relation ∼∆ on functions in D
such that two functions f ∼∆ f ′ are neighboring if for all
x ∈ Rn, ∥∇f(x)−∇f ′(x)∥ ≤ ∆.

Noisy ADMM for Local Privacy. Where should noised be
added? In iteration t + 1 ∈ [T ] for Algorithm 1, the private
information ft+1 of user t + 1 is accessed only in the com-
putation of xt+1 in line 3 via the gradient oracle∇ft+1(·).
Informal definition of local privacy. Suppose some (xt, λt)
is returned at the end of the iteration t. Consider two neigh-
boring functions ft+1 ∼∆ f ′t+1, which are used in two
scenarios of executing iteration t + 1 with the same input
(xt, λt). Local privacy for user t + 1 means that as long as

the two functions ft+1 and f ′t+1 are neighboring, the corre-
sponding (random) x̃t+1 and x̃′t+1 from the two scenarios
will have close distributions that can be quantified using di-
vergence (see Section 3).

A standard way to achieve local privacy (with respect
to the neighboring notion defined above) for user t + 1 is
to sample some noise Nt+1 ∈ Rn, e.g., Gaussian noise
N (0, σ2I) with some appropriate variance σ2. Then, the
generated noise Nt+1 is used to return the masked value
x̃t+1 ← xt+1 + Nt+1. In this paper, we will refer to this
as the noisy variant of Algorithm 1, or noisy ADMM.

Observe that as far as local privacy is concerned, there is
no need to mask yt or λt+1, whose computation does not
involve the private function ft+1.
Privacy Amplification by Iteration. Observe that in each
iteration t ∈ [T ], some noise Nt is sampled to mask the
value xt to achieve local privacy for user t. Privacy ampli-
fication by iteration refers to the privacy analysis from the
perspective of the first user (i.e. t = 1). Since there is so
much randomness generated in all T iterations, will the pri-
vacy guarantee for the finally returned (x̃T , yT , λT ) be am-
plified with respect to the first user? The challenge here is
that in each iteration t, noise is added only to the computa-
tion of the x variable, but not to the y and λ variables.

Finally, to achieve privacy amplification for ADMM, we
need to transform the problem instance into an appropriate
form, whose significance will be apparent in Section 5.2.

Remark 2.4 (Transformation of the Linear Constraints). By
Gaussian elimination, we may assume without loss of gener-
ality that m ≤ n and the matrix A has the form A = [Im |D]
for some m × (n −m) matrix D. However, after the pro-
cess of Gaussian elimination, we may have extra linear con-
straints of the form B̂y = ĉ, which can be absorbed into a
modified convex function ĝ in the following:

ĝ(y) :=

{
g(y), if B̂y = ĉ;

+∞, otherwise.

Observe this transformation does not change n and ℓ.
However, if initially m is strictly greater than n, then the
transformation ensures that m ≤ n afterwards.

3 Rényi and Zero-Concentrated Differential
Privacy Background

We present the most essential ideas related to differential
privacy (Dwork 2006), Rényi (Mironov 2017) and zero-
concentrated (Bun and Steinke 2016) differential privacy
here.

Recall that the differential privacy states that for neighbor-
ing inputs, the two corresponding outputs have distributions
that are close with respect to some notion of divergence.

Definition 3.1 (Rényi Divergence (Rényi et al. 1961)).
Given distributions P and Q over some sample space O,
the Rényi divergence of order α > 1 between them is:

Dα(P∥Q) := 1
α−1 lnEx←Q

(
P (x)
Q(x)

)α

.
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Zero-Concentrated Divergence. To define zero-
concentrated differential privacy (zCDP), we consider
the following divergence:

Dz(P ||Q) := supα>1
1
α · Dα(P∥Q).

Fact 3.2 (Rényi and Dz-Divergence between Gaussian
Noises (Bun and Steinke 2016)). For any vectors x, x′ ∈
Rn, we have:
• Dα(N (x, σ2I)∥N (x′, σ2I)) = α∥x−x′∥2

2σ2 , for any α ≥ 1.

• Dz(N (x, σ2In)∥N (x′, σ2In)) = ∥x−x′∥2
2σ2 .

The following fact states the properties of Dz-divergence
that we need.

Fact 3.3 (Properties for Dz-Divergence (Bun and Steinke
2016, Lemma 2.2)5). Suppose (X,Y ) and (X ′, Y ′) are joint
distributions with the same support. Then, we have the fol-
lowing conclusions.
(a) Data processing inequality. It holds that Dz(Y ∥Y ′) ≤

Dz((X,Y )∥(X ′, Y ′)).
(b) Uniform to Average Bounds (a.k.a. Quasi-convexity).

Suppose there exists ϵ2 ≥ 0 such that for any x in the
support of X and X ′, the conditional distributions sat-
isfy:
Dz((Y |X = x)∥(Y ′|X ′ = x)) ≤ ϵ2.
Then, the marginal distributions satisfy Dz(Y ∥Y ′) ≤ ϵ2.

(c) Adaptive composition. Suppose, in addition to the con-
dition in (b), there exists ϵ1 ≥ 0 such that Dz(X∥X ′) ≤
ϵ1.
Then, it holds that Dz((X,Y )∥(X ′, Y ′)) ≤ ϵ1 + ϵ2.

4 Summary of Coupling Framework to
Achieve Privacy Amplification by Iteration

We give a short summary of the coupling framework
in (Balle et al. 2019a) used to analyze privacy amplification
in an iterative process.
Iteration interpreted as a Markov operator. Suppose the
information passed between consecutive iterations is an ele-
ment in some sample space Ω (which is also equipped with
some norm6 ∥ · ∥). Since each iteration uses fresh random-
ness, it can be represented as a Markov operator K : Ω →
P(Ω). If z ∈ Ω is the input to an iteration, then K(z) repre-
sents the distribution of the output returned by that iteration.
We use K to denote the collection of iteration Markov oper-
ators, each of which corresponds to some iteration. For each
K ∈ K and z ∈ Ω, we also view that the process samples
some fresh randomness N (independent of z) from an ap-
propriate distribution, and the output is a deterministic func-
tion of (z,N). (We will use this randomness N when we
consider the notion of coupling described below.)
Notation. Observe that we can naturally extend a Markov
operator to K : P(Ω) → P(Ω). If µ ∈ P(Ω) is a distribu-
tion, then K(µ) ∈ Ω is the distribution corresponding to the

5The original results (Bun and Steinke 2016, Lemma 2.2) have
been stated in terms of the Rényi divergence Dα, but they have also
shown that they can be readily generalized to Dz.

6We actually just need the linearity property ∥az∥2 = a2∥z∥2
for a ∈ R and z ∈ Ω.

following sampling process: (i) first, sample z ∈ Ω from µ,
(ii) second, return a sample from the distribution K(z).

Differing slightly from the notation in (Balle et al. 2019a),
we denote the composition of Markov operators using the
function notation, i.e., (K2 ◦K1)(µ) = K2(K1(µ)).
Coupling. Given two distributions µ, ν ∈ P(Ω), a coupling
π from µ to ν is a joint distribution on Ω × Ω such that
marginal distributions for the two components are µ and ν,
respectively.

When the same iterator operator K ∈ K is applied in
two different scenarios, the natural coupling refers to using
the same aforementioned randomness N sampled within the
iteration process for both scenarios.

The following notion gives a uniform bound on the dis-
tance between two distributions.

Definition 4.1 (∞-Wasserstein Distance). Given distribu-
tions µ and ν on some normed space Ω and ∆ ≥ 0, a cou-
pling π from µ to ν is a witness that the (infinity) Wasser-
stein distance W(µ, ν) ≤ ∆ if for all (z, z′) ∈ supp(π),
∥z − z′∥ ≤ ∆.

The distance W(µ, ν) is the infimum of the collection of
∆ for which such a witness π exists.

The following theorem paraphrases the privacy amplifica-
tion result in (Balle et al. 2019a, Theorem 4) for the special
case of non-expansion.

Theorem 4.2 (Privacy Amplification by Iteration (Balle
et al. 2019a)). Suppose the collection K of iteration oper-
ators satisfies the following conditions.
(A) Non-Expansion. There is some 0 < L ≤ 1 such that for

any K ∈ K and z, z′ ∈ Ω, there exists a witness (e.g.,
the natural coupling) for W(K(z),K(z′)) ≤ L∥z− z′∥.

(B) One-step Privacy. There exists a constant CK > 0 (de-
pending on K) such that for any K ∈ K and z, z′ ∈ Ω, it
holds that: Dz(K(z)∥K(z′)) ≤ CK · ∥z − z′∥2.

Then, given for any T ≥ 1 iterator operators
K1,K2, . . . ,KT ∈ K and z, z′ ∈ Ω, it holds that

Dz((KT ◦ · · · ◦K1)(z)∥(KT ◦ · · · ◦K1)(z
′)) ≤ CKLT−1

T ·
∥z − z′∥2.

4.1 Technical Challenges for Applying the
Framework to ADMM

We outline how we resolve the challenges when we apply
this coupling framework to our gradient variant of ADMM.
Non-expansive iteration. It is crucial in (Feldman et al. 2018;
Balle et al. 2019a) that before adding noise, each iteration
corresponds to a non-expansive mapping acting on the vari-
able space, which is also true for the proximal variant con-
sidered in (Cyffers, Bellet, and Basu 2023). As aforemen-
tioned, for the variant of ADMM that uses gradient oracle,
one iteration (in Algorithm 1) corresponds to a transition in
the (x, λ)-space. However, it can be shown (in the full ver-
sion) that this transition may correspond to a strictly expand-
ing mapping under the usual norm.

Our idea is to design a customized norm in the (x, λ)-
space that (i) is suitable for analyzing the privacy of ADMM
and (ii) satisfies the condition that one ADMM iteration
corresponds to a non-expansive (or strictly contractive for
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strongly convex objective functions) mapping under this
customized norm. Our proof technique is reminiscent of the
convergence proofs for ADMM, which crucially utilize the
optimality conditions for variable updates and the (strong)
convexity of the objective functions.
One-step privacy. In (Feldman et al. 2018; Balle et al.
2019a), the variable produced in each iteration is totally
masked at every coordinate with Gaussian noise before pass-
ing to the next iteration. Hence, it is somehow straightfor-
ward (also using the aforementioned non-expansive prop-
erty) to achieve some privacy guarantee for one iteration in
terms of Dz-divergence. Indeed, this can be readily applied
to the proximal variant of ADMM because the noise added
to the x variable is transformed by a linear mapping to to
mask the λ variable, which is the only variable passed to the
next iteration.

However, the case for passing both variables x and λ is
more complicated. As aforementioned, in each iteration, the
sampled noise is used to mask only the x variable. This
means that for the variable in the (x, λ)-space returned in
one iteration, the λ-component receives no noise and is to-
tally exposed. Therefore, no matter how much noise is used
to mask x variable, the resulting privacy analysis for one it-
eration will still give a Dz-divergence of +∞.

Our innovative idea is to consider one step as consisting
of two noisy ADMM iterations. The very informal intuition
is that the two copies of independent noises from two itera-
tions can each be used to mask one component of (x, λ) in
the result at the end of the two iterations. Specifically, one
copy of the noise is used to mask the variable λ (via a lin-
ear transformation) and the other copy is used to mask the
variable x. To avoid complicated integral calculations, we
perform the relevant Dz-divergence analysis using the tools
of adaptive composition of private mechanisms.

5 Summary of Techniques for Amplification
by Iteration for ADMM

We give the technical details for applying the coupling
framework described in Section 4 to achieve privacy ampli-
fication for ADMM.

Recall that the high level goal is to amplify the privacy
guarantee for the user in the first iteration via the random-
ness in subsequent iterations. We will not exploit the mask-
ing randomness (for the variable x) generated in the first iter-
ation in the privacy amplification analysis. Therefore, for the
purpose of privacy amplification, the starting points for the
two scenarios are two inputs (x0, λ0) and (x′0, λ0), where
x0 ̸= x′0 and the λ components are the same. Below is the
main technical result.

Theorem 5.1 (Privacy Amplification by Iteration for
ADMM). Suppose given two input scenarios (x0, λ0) and
(x′0, λ0), a total of 2T noisy ADMM iterations in Algo-
rithm 1 are applied to each input scenario, where for each it-
eration t ∈ [2T ], the same function ft is used in both scenar-
ios and fresh randomness Nt drawn from Gaussian distribu-
tion N (0, σ2In) is used to produce masked x̃t ← xt + Nt

(that is passed to the next iteration together with λt). Then,

the corresponding output distributions from the two scenar-
ios satisfy:

Dz((x̃2T , λ2T )∥(x̃′2T , λ′2T )) ≤ C
T · ∥x0 − x′0∥2,

where C := 1
2σ2 max{2, 3

βη} · (1 + βη · ∥A∥2).
Remark. Observe that in Theorem 5.1, the parameter C has
a dependency of O( 1

βη ) on β and η. We will discuss poten-
tial improvements in the full version.

As described in Section 4.1, the main technical challenges
are how to achieve (A) non-expansion (in Section 5.1) and
(B) one-step privacy (in Section 5.2). After achieving those
two key properties, we will show how everything fits to-
gether to achieve Theorem 5.1 in Section 5.3.

5.1 Achieving Non-expansion via Customized
Norm

As discussed in Section 4.1, one ADMM iteration as in Al-
gorithm 1 may produce a strictly expanding mapping under
the usual norm. We consider the following specialized norm.
Definition 5.2 (Customized Norm). Using the ADMM pa-
rameters η and β from Section 2, we define a customized
norm. For (x, λ) ∈ Rn×Rm, ∥(x, λ)∥2∗ := ∥x∥2+

η
β · ∥λ−

βAx∥2.
Remark. Even though we use the term “norm”, we only
need the linearity property, i.e., for all a ∈ R, ∥(ax, aλ)∥2∗ =
a2 ·∥(x, λ)∥2∗. Note that we do not need any triangle inequal-
ity for the customized norm.
Lemma 5.3 (ADMM Iteration is Non-expansive with Cus-
tomized Norm). Suppose one ADMM iteration in Algo-
rithm 1 is applied to two different inputs (xt, λt) and
(x′t, λ

′
t) with the same function f that is convex and 1

η -
smooth. Then, the corresponding two outputs (xt+1, λt+1)
and (x′t+1, λ

′
t+1) satisfy: ∥(xt+1−x′t+1, λt+1−λ′t+1)∥2∗ ≤

∥(xt − x′t, λt − λ′t)∥2∗.
The detailed proof is given in the full version. Even

though the proof is technical, it uses the same intuition as
an ADMM convergence proof (He and Yuan 2012). Specif-
ically, standard inequalities related to optimality conditions
for updating the x and y variables are used.

5.2 Achieving One-Step Privacy
As described in Section 4.1, the randomness in one noisy
ADMM iteration is not sufficient to achieve one-step privacy
(condition (B) in Theorem 4.2) because only the x com-
ponent of the output of Algorithm 1 is masked with noise,
while the λ component is totally exposed.
Incorporating two noisy ADMM iterations into a single
Markov Operator. Our novel idea is to let each Markov op-
erator represent two ADMM iterations. For instance, an op-
erator K ∈ K in the collection corresponds to iterations t+1
and t + 2, which use two 1

η -smooth convex functions ft+1

and ft+2, respectively. Given some input (x̃t, λt), the ap-
plication K(x̃t, λt) of the operator K is the randomized
process for executing two noisy ADMM interations, whose
source of randomness is two independent copies Nt+1 and
Nt+2 (used for masking each x variable) of Gaussian noise
with some appropriate variance σ2.
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Algorithm 2: MechanismM1

Input: (x̃t, λt) and fixing the last n−m coordinates
of Nt+1 to be z.
Output: w̃t+1

1 yt ← G(λt − βAx̃t)
2 λt+1 ← λt − β(Ax̃t +Byt − c)

3 xt+1 ← Fft+1(x̃t, yt, λt+1) //first 3 lines
same as Algorithm 1

4 wt+1 ← λt+1 − βAxt+1

5 Sample fresh Ut+1 from N (0, σ2Im).
6 return w̃t+1 ← wt+1 − βDz− βUt+1

Proof Setup. Given two input scenarios (x̃t, λt) and
(x̃′t, λ

′
t), our goal is to derive an upperbound for the diver-

gence Dz(K(x̃t, λt)∥K(x̃′t, λ
′
t)) that is defined in Section 3.

Recall that in Remark 2.4, we have transformed the prob-
lem by Gaussian elimination such that A = [ImD] for some
m × (n −m) matrix D. In our privacy analysis, we do not
actually need to use the randomness of all n coordinates of
Nt+1 (but we still need all n coordinates of Nt+2). We use
Ut+1 ∼ N (0, σ2Im) to represent the first m coordinates of
Nt+1. In both scenarios, we will fix the last n −m coordi-
nates of Nt+1 and denote this common part as z ∈ Rn−m

(which is no longer random). By Fact 3.3(b), any uniform
upperbound on the Dz-divergence after conditioning on z
will also be an upperbound for the original divergence. Ob-
serve that ANt+1 = Ut+1 +Dz.
Expressing Markov Operator K as an Adaptive Com-
position of Two Private Mechanisms. Instead of directly
working with probability density function of (x̃t+2, λt+2) in
the analysis of Dz-divergence, we will use properties of Dz-
divergence in Fact 3.3, whose proofs in the literature have
already incorporated the technical manipulation of integrals.
Our approach is to analyze the divergence in the language
of adaptive composition of private mechanisms with which
most readers have some familiarity.
How to decompose (x̃t+2, λt+2)? No matter whether one
wants to directly analyze the probability density functions
or make use of adaptive composition, one technical hur-
dle is that given one component of the pair (x̃t+2, λt+2),
the conditional distribution of the other component is not
easy to analyze. For the composition, it actually suffices to
consider an intermediate variable wt+1 = λt+1 − βAxt+1

and its masked variant w̃t+1 = λt+1 − βA(xt+1 + Nt+1).
We shall see in Algorithm 3 that λt+2 is a deterministic
function of w̃t+1. Hence, by the data processing inequal-
ity in Fact 3.3(a), it suffices to analyze a (randomized)
composition that takes input (x̃t, λt) and returns the pair
(w̃t+1, x̃t+2).
Divergence Analysis. When we consider two inputs (x̃t, λt)
and (x̃′t, λ

′
t), we use a superscript to indicate variables asso-

ciated with the second input. The detailed analysis is given
in the full version. It is shown that the adaptive composition
M2 ◦ M1 is equivalent to the operator K, and a privacy
composition proof leads to the following result.

Algorithm 3: MechanismM2

Input: (x̃t, λt, w̃t+1) and fixing the last n−m coor-
dinates of Nt+1 to be z.
Output: x̃t+2

1 yt ← G(λt − βAx̃t)
2 λt+1 ← λt − β(Ax̃t +Byt − c)

3 xt+1 ← Fft+1(x̃t, yt, λt+1)
4 wt+1 ← λt+1 − βAxt+1 //first 4 lines

the same as Algorithm 2
5 Ut+1 ← 1

β (wt+1 − w̃t+1)−Dz //randomness

‘‘reconstruction’’; A = [Im D]
6 x̃t+1 ← xt+1 + (Ut+1, z) //Nt+1 = (Ut+1, z);

w̃t+1 = λt+1 − βAx̃t+1

7 yt+1 ← G(w̃t+1) //2nd iteration of ADMM
Algorithm 1 with input (x̃t+1, λt+1)

8 λt+2 ← w̃t+1 − β(Byt+1 − c) //λt+2 is a
deterministic function of w̃t+1

9 xt+2 ← Fft+2(x̃t+1, yt+1, λt+2) //oracle
access to ∇ft+2(·)

10 Sample fresh Nt+2 from N (0, σ2In).
11 return x̃t+2 ← xt+2 +Nt+2

Lemma 5.4 (One-Step Privacy of Operator K). Given in-
puts (x̃t, λt) and (x̃′t, λ

′
t) and Markov operator K ∈ K (cor-

responding to two ADMM iterations using convex 1
η -smooth

functions and N (0, σ2In) noise), we have:

Dz
(
K(x̃t, λt)

∥∥K(x̃′t, λ
′
t)
)
≤ CK ∥(x̃t − x̃′t, λt − λ′t)∥

2
∗ ,

where CK = 1
2σ2 max

(
2, 3

ηβ

)
.

5.3 Combining Everything Together to Achieve
Privacy Amplification by Iteration for
ADMM

Proof of Theorem 5.1. Theorem 4.2 can be applied, be-
cause we have already established the corresponding con-
dition (A) can be achieved by the result in Section 5.1 and
condition (B) is attained in Section 5.2. The desired bound
follows because 2T noisy ADMM iterations correspond to
the composition of T Markov operators in the collection K.
The detailed proof is in the full version.

6 Conclusion
We have applied the coupling framework (Balle et al. 2019a)
to achieve privacy amplification by iteration for ADMM.
Specifically, we have recovered the factor of 1

T (or LT

T for
some 0 < L < 1 in the strongly convex case) in the
Dz-divergence as the number T of iteration increases. We
have performed experiments to evaluate the empirical per-
formance of our methods in the full version.
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