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Abstract

Explaining the decision process of machine learning al-
gorithms is nowadays crucial for both a model’s perfor-
mance enhancement and human comprehension. This can
be achieved by assessing the variable importance of sin-
gle variables, even for high-capacity non-linear methods,
e.g. Deep Neural Networks (DNNs). While only removal-
based approaches, such as Permutation Importance (PI), can
bring statistical validity, they return misleading results when
variables are correlated. Conditional Permutation Importance
(CPI) bypasses PI’s limitations in such cases. However, in
high-dimensional settings, where high correlations between
the variables cancel their conditional importance, the use of
CPI as well as other methods leads to unreliable results, be-
sides prohibitive computation costs. Grouping variables sta-
tistically via clustering or some prior knowledge gains some
power back and leads to better interpretations. In this work,
we introduce BCPI (Block-Based Conditional Permutation
Importance), a new generic framework for variable impor-
tance computation with statistical guarantees handling both
single and group cases. Furthermore, as handling groups with
high cardinality (such as a set of observations of a given
modality) are both time-consuming and resource-intensive,
we also introduce a new stacking approach extending the
DNN architecture with sub-linear layers adapted to the group
structure. We show that the ensuing approach extended with
stacking controls the type-I error even with highly-correlated
groups and shows top accuracy across benchmarks. Further-
more, we perform a real-world data analysis in a large-scale
medical dataset where we aim to show the consistency be-
tween our results and the literature for a biomarker predic-
tion.

1 Introduction
Machine Learning (ML) algorithms are extensively used
in many fields of science, such as biomedical application
(Strzelecki and Badura 2022; Alber et al. 2019), neuro-
science (Kora et al. 2021; Knutson and Pan 2020), and so-
cial sciences (Lundberg, Brand, and Jeon 2022; Chen et al.
2021). The increasing importance of ML in society raises is-
sues of accountability, hence, stimulating research on inter-
pretable ML. Reaching a comprehensive understanding of
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the decision process is crucial for providing statistical and,
ideally, scientific insights to the practitioner (Gao et al. 2022;
Molnar et al. 2021a; Fleming 2020; Hooker et al. 2019).

To gauge the impact of variables on model predic-
tion, aka variable importance, several model-agnostic at-
tempts have emerged (Molnar 2022; Ribeiro, Singh, and
Guestrin 2016). Examples include Permutation Feature Im-
portance (PFI) (Breiman 2001), Conditional Randomiza-
tion Test (Candes et al. 2017) and Leave-One-Covariate-
Out (LOCO) (Lei et al. 2018). All these instances consti-
tute removal-based approaches (Covert, Lundberg, and Lee
2020), and are so far, the only ones known to provide sta-
tistically grounded measures of significance. Importantly,
removal-based approaches require retraining the model af-
ter removing the variable of interest and are, therefore,
time-consuming. Moreover, the common Permutation Im-
portance (PI, Breiman 2001) risks mistaking insignificant
variables for significant ones when variables are correlated
(Hooker, Mentch, and Zhou 2021). Conditional Permutation
Importance CPI can overcome these limitations (Blesch,
Watson, and Wright 2023; Watson and Wright 2021; De-
beer and Strobl 2020; Fisher, Rudin, and Dominici 2019;
Chamma, Engemann, and Thirion 2023). However, in high-
dimensional settings, single variable importance computa-
tion suffers from very high correlation between the variables
(Chevalier et al. 2021). More precisely, this makes condi-
tional importance estimation less informative, as it remains
unclear how much information each variable adds. In the
extreme case where variables are duplicated, conditional im-
portance can no longer be defined. More generally, correla-
tions larger than .8 are known to present a hard challenge,
at least for linear learners (Chevalier et al. 2021). Impor-
tance analysis then typically yields spuriously significant
variables, which ruins its ability to statistically control the
false positive rate (Strobl et al. 2008). Besides, examining
the importance of each of the hundreds or thousands vari-
ables separately will result in prohibitive computation costs
(Covert, Lundberg, and Lee 2020) —removal procedures
typically have quadratic complexity— and defy model in-
terpretability.

Group-based analysis can offer a remedy at it regular-
izes power estimates and leads to reduced computation time
(Molnar et al. 2021b; Bühlmann 2013). This can improve
inference as it helps handle the curse of correlated vari-
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ables in high-dimensional settings. So far, common group-
based methods neglected investigating statistical guaran-
tees, in particular, type-I error control, i.e. the percent-
age of irrelevant variables identified as relevant (false pos-
itives). Statistical error control for groups obviously re-
quires information on variable grouping available through
two strategies: Knowledge-driven grouping, where the vari-
ables are grouped based on their domain-specific informa-
tion rather than their shared statistical properties and Data-
driven grouping, where clustering approaches are used such
as hierarchical or divisive clustering.

Grouping has also been successfully performed for multi-
modal applications (Albu, Bocicor, and Czibula 2023; En-
gemann et al. 2020; Rahim et al. 2015) via model stacking
(Wolpert 1992) which is typically based on pipelines of dis-
connected models.

Contributions We propose Block-Based Conditional Per-
mutation Importance (BCPI), a new framework for variable
importance computation (single and group levels) with ex-
plicit statistical guarantees (p-values).

• Following our review of the literature (section 2), we pro-
vide theoretical results on group-based conditional per-
mutation importance (section 3.2).

• We propose a novel internal stacking approach by ex-
tending the architecture of our default Deep Neural Net-
work (DNN) model with the use of a linear projection of
the groups, which can significantly reduce computation
time (section 3.3).

• We conduct extensive benchmarks on synthetic and real
world data (section 4) which demonstrate the capacity of
the proposed method to combine high prediction perfor-
mance with theoretically grounded identification of pred-
icatively important groups of variables.

• We provide publicly available code (compatible with
the Scikit-learn API) on GitHub (https://github.com/
achamma723/Group Variable Importance).

2 Related Work
Group-based variable importance has been introduced for
Random Forests by (Wehenkel et al. 2018), extending the
seminal work of Louppe et al. (2013) on Mean Decrease Im-
purity (MDI). Once all the variables have their correspond-
ing impurity function scores, the importance score of the
group of interest are (1) the sum, (2) the average or (3) the
maximum of the impurity scores among the participating
variables. Despite that, (1) the sum displays bias in favor
of larger-sized groups, (2) the average diminishes a group’s
significance when only a small fraction of its features hold
importance and (3) the maximum suggests that the sole most
important feature reflects the collective importance of the
group.

Williamson et al. (2021) proposed a model-agnostic ap-
proach based on refitting the learner after the removal
of a variable of interest also called LOCO (Leave-One-
Covariate-Out) by Lei et al. (2018). This work has then been
adapted to the group-level by considering the removal of all

the variables of the group of interest jointly, as in Leave-
One-Group-Out (LOGO) presented in (Au et al. 2021). In
lieu of removing the group of interest, Au et al. (2021) es-
tablished Leave-One-Group-In (LOGI) that assesses the im-
pact of the group of interest on the prediction compared to
the null model - the prediction is the average of the outcome.
However, this approach becomes intractable easily due to the
necessity of refitting the learner for each group, particularly
in the case of low cardinality groups.

Mi et al. (2021) proposed an efficient model-agnostic pro-
cedure for black-box models’ interpretation. It uses the per-
mutation approach (Breiman 2001; Fisher, Rudin, and Do-
minici 2019) with the importance score computed as the
reduction in a model’s performance when randomly shuf-
fling the variable of interest. To account for group-level
structure, (Gregorutti, Michel, and Saint-Pierre 2015) sug-
gested taking into account all the variables of the group
of interest in the permutation scheme jointly, known as
Group Permutation Feature Importance (GPFI). Au et al.
(2021) proposed Group Only Permutation Feature Impor-
tance (GOPFI) which examines the level of the group’s in-
dividual contribution to the model’s performance. The ran-
dom joint shuffling is performed for all the variables of the
different groups expect the ones of the group of interest.
However, according to Strobl et al. (2008), simple permuta-
tion approaches yield poor accuracy and specificity in high
correlation settings. Lee, Sood, and Craven (2018) applied
perturbations to the variables and groups of interest while
providing p-values. Nevertheless, they did not focus on the
degree of correlation between the variables (and the groups)
which increases the difficulty of the problem.

A different angle can be motivated by a recent line of
work that developed model-stacking techniques (Wolpert
1992) which combine different input domains and groups
of variables rather than aggregating different estimators
on the input data. This approach has been used in vari-
ous applications ranging from video analysis (Zhou et al.
2021) over protein-protein interactions (Albu, Bocicor, and
Czibula 2023) to neuroscience applications (Rahim et al.
2015). A key benefit of multimodal or group stacking is
that it allows for modality-specific encoding strategies and
while approaching inference at the simplified level of the
2nd level model combining the modality-wise predictions or
activations. This strategy has been used to explore impor-
tance of distinct types of brain activity at different frequen-
cies for age prediction (Sabbagh et al. 2023; Engemann et al.
2020). While stacking is easy to implement with standard
software e.g. scikit-learn (Pedregosa et al. 2011), inference
with stacking has not been formalized yet. Moreover, it re-
quires fitting multiple disconnected estimators which may
limit the capacity of the model.

3 BCPI and Internal Stacking Approach
3.1 Preliminaries
Notations We denote by matrices, vectors, scalar vari-
ables and sets by bold uppercase letters, bold lowercase
letters, script lowercase letters, and calligraphic letters, re-
spectively (e.g. X, x, x, X ). Designating by µ the function
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Figure 1: Block-Based Conditional Permutation Importance: Framework for single/group variable importance computation with
statistical guarantees. (Learner Block) The learner used to predict the outcome y from the design matrix X . Internal stacking
linearly projects each group by the mean of an extra linear sub-layer. (Importance Block): Reconstruction of the group of interest
X ′J is accomplished via CP (Conditional Permutation) block with (CP1) the additive or (CP2) the sampling constructions as
stated in section 3.2. The permutation scheme can be changed to standard permutation (SP).

that maps the sample space X ⊂ Rp to the outcome space
Y ⊂ R and µ̂ is an estimate of µ within a certain class F of
estimators. We express by JnK the set {1, . . . , n}, by ⟨., .⟩
the standard dot product and by (π) the shuffling process.

Let S = {Gk, k ∈ JKK} and S ′ = {G′k, k ∈ JKK}
be the set of K pre-defined subset of variables in the data
and the set of K new subset of variables following linear
projections with a set P of projection matrices, respec-
tively. Projection matrices are meant to produce a group
summary of the information. Let P = {Uk, k ∈ JKK}
be the set of projection matrices Uk ∈ R|Gk|×|G′k|. Let
J = {j1, . . . , jr} ∈ (S ∪ S ′) be a subset of r variables
with consecutive indices in JpK, r ≤ p. Let X ∈ Rn×p be
a design matrix where ith row, jth column and J th subset
of columns are indicated by xi, xj and XJ respectively.
Let X−J = (x1, . . . ,xj1−1,xjr+1, . . . ,xp) be the design
matrix with the J th subset of variables is removed. Let
X(J ) = (x1, . . . ,xj1−1, {xj1}π, . . . , {xjr}π, . . . ,xp)
be the design matrix with the J th subset of variables is
shuffled. The rows of X−J and X(J ) are denoted x−J

i

and x
(J )
i respectively, for i ∈ JnK. Let X′ be the linearly

projected version of X via P where p′ =
∑K

k=1 |G′k|.

Problem Setting We consider the regression or the clas-
sification problem where the response vector y ∈ Rn or
∈ {0, 1}n respectively and the design matrix X ∈ Rn×p

(encompasses n observations of p variables), along with S
(i.e. K pre-defined groups). Across the paper, we rely on an
i.i.d. sampling train/validation/test partition scheme where
the n samples are divided into ntrain training and ntest test
samples. The train samples were used to train µ̂ with empiri-
cal risk minimization. This function is utilized for appraising
the importance of variables on a novel dataset (test set).

3.2 Group Conditional Variable Importance
We define the joint permutation of group xJ conditional
to x−J , as a group x̃J that preserves the joint depen-
dency of xJ with respect to the other variables in x−J ,
although the independent part is shuffled. The reconstruc-
tion of x̃J is done via two approaches, both, based on fast
approximation with a lean model: (1) Additive construction
combines the prediction of a Random Forest using the re-
maining groups and a shuffled version of the residuals i.e.
x̃′J = E(x′J |x′−J

) + (x′J − E(x′J |x′−J
))π where the

residuals of the regression of x′J on x′−J are shuffled. (2)
Sampling construction uses a Random Forest model to fit
x′J from x′−J , followed by sampling the prediction from
within its leaves. When dealing with regression, this results
in the following importance estimator:

m̂J
CPI =

1

ntest

ntest∑
i=1

(
(yi − µ̂(x̃

(J )
i ))2 − (yi − µ̂(xi))

2
)
,

(1)
where X̃(J ) = (x1, . . . ,xj1−1, x̃j1 , . . . , x̃jr ,
. . . ,xp) ∈ Rntest×p be the new design matrix including the
remodeled version of the group of interest XJ .

In Fig. 1, we introduce BCPI a novel general framework
for variable importance, at both single and group levels,
yielding statistically valid p-values. It consists of two blocks:
a Learner Block defined by the prediction model of inter-
est Importance Block reconstructing the variable (or group)
of interest via conditional permutation (CP) – m̂J

CPI . The
implementation provided with this work supports estima-
tors compatible with the scikit-learn API for both blocks.
Yet, our default method BCPI-DNN is adapted with: (1) a
DNN as a base learner for its high predictive capacity in-
spired from (Mi et al. 2021) and (2) a Random Forest, a less
powerful, but much simpler, yet, still generic model as a con-
ditional probability learner. For study purposes, the frame-
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work is also adapted with the standard permutation scheme
through the (SP) block (labeled BPI). The theoretical re-
sults, conditions underlying this proposition as well as limi-
tations of (PI) were developed in (Chamma, Engemann, and
Thirion 2023) and adapted to the group setting (supplemen-
tary materials1).

Proposition. Assuming that the estimator µ̂ is obtained
from a class of functions F with sufficient regularity, i.e. that
it meets conditions of A1: optimality, A2: differentiability,
A3: continuity of optimization, A4: Continuity of derivative,
B1: Minimum rate of convergence and B2: Limited complex-
ity, the importance score m̂J

CPI defined in (1) cancels when
ntrain → ∞ and ntest → ∞ under the null hypothesis, i.e.
the J th group is not significant for the prediction. Moreover,
the Wald statistic zJ =

mean(m̂J
CPI)

std(m̂J
CPI)

obtained by dividing
the mean of the importance score by its standard deviation
asymptotically follows a standard normal distribution.

This implies that in the large sample limit, the p-value as-
sociated with zJ controls the type-I error rate for all optimal
estimators in F . It entails making sure that the importance
score defined in (1) is 0 for the class of learners that meet
specific convergence guarantees and are immutable to arbi-
trary change in their J th arguments, conditional on the oth-
ers. We also state the precise technical conditions under with
m̂J

CPI used is (asymptotically) valid, i.e. leads to a Wald-
type statistic that behaves as a standard normal under the
null hypothesis. As a result, all terms in Eq. 1 vanish with
speed 1√

ntest
from the Berry-Essen theorem, under the as-

sumption that the test samples are i.i.d.

3.3 Internal Stacking
The vector x ∈ X is composed of K groups in S , each con-
sidered as an independent input modality. Performing col-
umn slicing on x, according to S , yields the set {xGk

, k ∈
JKK}. A linear transformation to a lower space is applied on
each input modality xGk

through the set of projection matri-
ces P producing a linear variant denoted x′k as:

x′k =< xGk

,Uk >,

where k ∈ JKK.
Concatenating the set of linear variants {x′k, k ∈ JKK}

provides the linear version of x i.e. the vector x′. If the new
space is a unidimensional Euclidean space i.e. x′ ∈ RK , a
group summary of the information within all groups is re-
turned, and the problem is reduced to the single-level case.
However, if the new space is not unidimensional, we then
have a dimension reduction, where the group summary of
information is exclusive per group (multioutputs per group).
In this case, the new groups contained in x are denoted G′k

with the corresponding linear variant x′G′k
as seen in Fig. 1.

Instead of performing stacking in a separate estimation step
under a different learner, we have incorporated it to the in-
ference process, thus learning a consistent new presentation

1https://arxiv.org/abs/2312.10858

of the groups. This is simply implemented as an initial lin-
ear sub-layer without activation in the µ̂ network. Therefore,
x′k can be seen analogous to the predictions from the input
models in a classical stacking pipeline that are forwarded to
the meta learner, hence, x′k can be treated like a regular data
column by permutation algorithms.

4 Experiments
To ensure a fair comparison across experiments, we use all
methods with their original implementation. As for BCPI-
DNN, BCPI-RF and BPI-DNN particularly, the default be-
havior consists of a 2-fold internal cross validation where the
importance inference is performed on an unseen test set. The
scores from different splits are thus concatenated to compute
the final variable importance. All experiments are performed
with 100 runs.

4.1 Experiment 1: Benchmark of Grouping
Methods

We include BCPI-DNN in a benchmark with other state-of-
the-art methods for group-based variable importance. The
data {xi}ni=1 follow a Gaussian distribution with a prede-
fined covariance structure Σ i.e. xi ∼ N (0,Σ)∀i ∈ JnK. We
consider a block-designed covariance matrix Σ of 10 blocks
with an intra-block correlation coefficient ρintra = 0.8
among the variables of each block and an inter-block cor-
relation coefficient ρinter ∈ {0, 0.2, 0.5, 0.8} between the
variables of the different blocks. Each block is considered as
a separate group. In this experiment, n = 1000 and p = 50
i.e. we have 5 variables per block/group. We defined an im-
portant group as a group having at least one variable that
took part in simulating the outcome y. Thus, to predict y,
we rely on a linear model where the first variable of each of
the first 5 groups is used in the following model:

yi = xiβ + σϵi, ∀i ∈ JnK (2)

where β is a vector of regression coefficients having only 5
non-zero coefficients (the true model), ϵ ∈ N (0, I) is the
Gaussian additive noise with magnitude σ = ||Xβ||2

SNR
√
n

. We
used the same setting from (Janitza, Celik, and Boulesteix
2018) where the β values are drawn i.i.d. from the set
B = {±3,±2,±1,±0.5}. We consider the following state-
of-the-art baselines:

• Marginal Effects: A multivariate linear model is applied
to each group separately. Importance scores correspond
to ensuing p-values.

• Leave-One-Group-In (LOGI) (Au et al. 2021): Similar
to Marginal Effects using a Random Forest. Provides no
p-values.

• Leave-One-Group-Out (LOGO) (Williamson et al.
2021): Refitting of the model is performed after remov-
ing the group of interest.

• Group Only Permutation Feature Importance (GOPFI)
(Au et al. 2021): Joint permutation of all variables except
for those of the group of interest.
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Figure 2: Benchmarking grouping methods: BCPI-DNN is compared to baseline models and competing approaches for group
variable importance. (A) AUC score (correct ranking of variables) and Type-I error (p-val < 0.05) for methods providing p-
values. (B) AUC scores for methods not providing p-values. Prediction tasks were simulated with n = 1000 and p = 50. Dashed
line: targeted type-I error rate at 5%. Solid line: chance level.

• Group Permutation Feature Importance (GPFI) (Gre-
gorutti, Michel, and Saint-Pierre 2015; Valentin,
Harkotte, and Popov 2020): Joint permutation of all
variables of the group of interest.

In addition, we benchmarked the three variants of our pro-
posed method:
• BPI-DNN: Similar to GPFI based on a DNN estimator. It

is also enhanced by the new internal stacking approach.
• BCPI-RF: BCPI where µ̂ is obtaind from a Random For-

est.
• BCPI-DNN: BCPI where µ̂ is a DNN. It is also enhanced

by the new internal stacking approach.

4.2 Experiment 2: Impact of Stacking
To assess the impact of performing stacking regarding ac-
curacy in inference and computation time, we conducted a
comparison restricted to BCPI-DNN. We relied on the same
covariance structure setting as in Experiment 1 with an intra-
block correlation coefficient ρintra = 0.8 and an inter-block
correlation coefficient ρinter = 0.8. The number of samples
n and the number of variables p were both set to 1000 i.e.
the number of variables per block/group increased to 100 in
order to build groups with high cardinality. The outcome y
was simulated using the same model as in Eq. 2 where a
group is predefined as important having at least 10% of its
variables taking part in computing the outcome.

4.3 Experiment 3: Age Prediction with UKBB
We conducted an empirical benchmark of the performance
of BCPI-DNN combined with internal stacking in a real-
world biomedical dataset. The UK Biobank project (UKBB)

encompasses imaging and socio-demographic derived phe-
notypes from a prospective cohort of participants drawn
from the population of the UK (Constantinescu et al. 2022;
Littlejohns et al. 2020). In the past years, the UKBB dataset
has enabled large-scale studies investigating associations be-
tween various phenotypes (physiological, cognitive) and en-
vironmental or life-style factor. This has given rise to suc-
cessful analysis of factors associated to personal well-being
and health (Newby et al. 2021; Mutz and Lewis 2021) at
an epidemiological scale. In the context of machine learning
with brain data, age-prediction is an actively studied task
which can provide a normative score when applying a ref-
erence model on clinical cohorts (Cole and Franke 2017).
State-of-the-art models were based on convolutional neu-
ral networks and report mean absolute errors between 2-3
years (Roibu et al. 2023; Jonsson et al. 2019). Recent exten-
sions have focused on MRI-contrast and region-specific in-
sights, often based on informal inference (Roibu et al. 2023;
Popescu et al. 2021). Another line of work (Dadi et al. 2021;
Anatürk et al. 2021) has focused on other sources of nor-
mative ageing information, highlighting cognitive social and
lifestyle factors. In this context, the analysis of importance
of multimodal inputs has so far been hampered by the lack of
formal inference procedures and the high-dimensional set-
ting with highly correlated variables.

We approached this open task using the proposed method,
reusing the pre-defined groups in the work by (Dadi et al.
2021). We focused on data from participants who attended
the imaging visit (n = 8357) to study the group-level im-
portance rankings provided by BCPI-DNN. We defined im-
portant groups by p-value threshold of < 10−3. While
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Figure 3: Impact of Stacking: Performance at detecting important groups on simulated data with n = 1000 and p = 1000 with 10
blocks/groups, each group having a cardinality of 10. AUC scores and Type-1 error as in Fig. 2. (Power) quantifies the average
proportion of detected informative variables (p-value < 0.05). Panel (Time) displays computation time in seconds with log10
scale per core on 100 cores. Dashed line: targeted type-I error rate. Solid line: chance level.

Figure 4: Brain Age prediction in UKBB: Prediction of brain age from various socio-demographic and brain-imaging groups of
phenotypes in a sample of n = 8357 volunteers from the UK BioBank. (Degree of significance) plots the level of significance
for the different brain (in blue) and social (in red) groups in terms of − log10 of the derived p-values. Dashed line: targeted
type-I error rate at p = 0.001. (R2 score & MAE score) checks the performance of the trained learner when retaining all the
groups vs removing non-significant groups.

this setting lacks an explicit ground truth for the impor-
tant groups, we explored the appropriate group selection
through model performance in terms of (R2 & MAE scores,
10-fold cross-validation) after removing the non-significant
groups. We accessed the UKBB data through its controlled
access scheme in accordance with its institutional ethics
boards (Bycroft et al. 2018; Sudlow et al. 2015).

5 Results
We benchmarked state-of-the-art baselines and the proposed
methods across data-generating scenarios under increasing
inter-block correlation strength {0, 0.2, 0.5, 0.8} (Fig. 2).
BCPI-DNN and BPI-DNN were implemented in two vari-
ants: with or without the novel internal stacking. For the
AUC score, we observed that (BCPI-DNN & BPI-DNN
- based on the DNN) and (BCPI-RF, GPFI & LOGO -
based on Random Forests) showed the highest performance
across the different scenarios, hence, accurately ordering the
variables according to their significance. As expected, the
Marginal baseline performed lowest as it could not access
any conditional information. GOPFI and LOGI both suf-
fered when the correlation between the groups increased,

which is not surprising. Considering false positive rate,
BCPI-DNN controlled the type-I error at the targeted rate
(5 %) while BPI-DNN— based on the standard permuta-
tion of the group of interest— failed to do so in the setting
of high correlations between the groups, and thus provided
spurious results. Interestingly, for BPI-DNN, internal stack-
ing slightly increased its capacity to control the type-I error.
BCPI-RF— based on the conditional importance with Ran-
dom Forests— better controlled the type-I error compared
to BPI-DNN. Nevertheless, in the presence of strong cor-
relations, it did not fully reach the target rate. Additional
analyses suggested that the marginal approach failed in the
current setting, whereas on average, the DNN had higher
scores (R2 ∼ 0.95) than the Random Forest (R2 ∼ 0.8).
Additional analyses of performance in terms of power and
computation time of showed that BCPI-DNN, BPI-DNN,
BCPI-RF and Marginal showed favorable results compared
to other baselines and competing methods.

The AUC score, type-I error, power and computation
time for Experiment 4.2 are presented in Fig. 3. BCPI-
DNN with internal stacking performed similarly as the same
approach without stacking. Thus, both approaches showed
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comparable inferential behavior in identifying the signifi-
cant groups. Nevertheless, in terms of computation time,
the dimension reduction brought by stacking added signif-
icant benefits (around a factor of 2). In fact, in the impor-
tance block without stacking, all the variables of the remain-
ing groups are used to predict those of the group of inter-
est. Groups with high cardinality (of variables) are chal-
lenging in terms of memory resources and required com-
putation, suggesting that internal stacking can help to re-
duce computational burden. Real-world empirical applica-
tion of BCPI-DNN with internal stacking for age-prediction
from brain imaging and socio-demographic information are
summarized in Fig. 4. Results in (Degree of Significance)
ranked the groups according to their corresponding level
of significance. We choose a conservative significance level
of p = 0.001 (Dashed line at log10(0.0001) = 3). Us-
ing the stacking approach, we scored the heterogeneous
brain and social input variables regarding their predictive
importance. As expected, we found that the brain groups
- excluding Brain DMRI MD - were highly important for
age prediction. Interestingly, Lifestyle and Education were
among the top predictive variables, conditional on the brain
groups, suggesting the presence of complementary informa-
tion. To challenge the plausibility of the selected groups,
we investigated prediction performance after excluding non-
significant groups. We used 10-fold cross validation with
significance estimation and refitting the reduced model us-
ing the training set while scoring with the reduced model
on the testing set. The reduced model did not perform vis-
ibly worse than the full model (R2 = 0.8,MAE = 2.9),
suggesting that our procedure effectively selects predictive
groups. Of note the performance is in line with state-of-the
art benchmarks on the UKBB based on convolutional neu-
ral networks (MAE ∼ 2-3 years, e.g., Roibu et al. 2023;
Jonsson et al. 2019). Consequently, results suggest that the
proposed approach combined good prediction performance
with effective identification of relevant groups of variables.
For additional supporting results, see supplementary materi-
als2.

6 Discussion
In this work, we proposed BCPI, a novel and usable frame-
work for computing single- and group-level variable im-
portance. Our work provides statistical guarantees based
on results from Conditional Permutation Importance (CPI),
whereas our implementation supports arbitrary regression
and classification models consistent with the scikit-learn
API. We developed our approach beginning from the obser-
vation that standard Permutation Importance PI, represented
by the BPI-DNN approach, lacks the ability to control type-I
error (Williamson et al. 2021) with high correlated settings
in Fig. 2, despite the high AUC score (Mi et al. 2021). We
extended these results, theoretically and empirically, to the
group setting by proposing BCPI-DNN, which is built on top
of an expressive DNN model as a base learner. This recipe
led to high AUC scores while maintaining the control of
type-I error across different correlation scenarios (Fig. 2).

2https://arxiv.org/abs/2312.10858

Inspired by recent applications of model stacking for han-
dling multiple groups or input domains (Albu, Bocicor, and
Czibula 2023; Zhou et al. 2021; Engemann et al. 2020),
we proposed internal stacking which implements stacking
inside the DNN model, hence, avoids separate optimiza-
tion problems common for stacking pipelines. This was
achieved through extra sub-linear layers building linear sum-
maries for each group of variables. Our benchmarks sug-
gested that stacking maintained inferential performance of
the full model while bringing time benefits (at least up to a
factor of 2), especially for groups with high cardinality of
variables (Fig. 3). Moreover, additional analyses of calibra-
tion of BCPI-DNN versus BPI-DNN suggested that the p-
values for BCPI-DNN showed a slightly conservative profile
for BCPI-DNN. Instead, BPI-DNN showed poor calibration,
once more underlining the relevance of conditional permu-
tations.

Our empirical investigation of age prediction using the
UKBB dataset suggests that the proposed framework facili-
tates constructing strong predictions models alongside trust-
worthy insights on the important predictive inputs. While
prediction performance of our model was in line with state-
of-the art results for the UKBBRoibu et al. (2023); Jonsson
et al. (2019)), here, we provided a statistically grounded con-
firmation for the conclusions drawn in Dadi et al. 2021 who
used a less formal approach consistent with the LOGI ap-
proach.

Several limitations apply to our work. BCPI-DNN uti-
lizes a DNN model as the base estimator for its high predic-
tive accuracy. However, when the amount of training data
is limited, the network can potentially memorize the train-
ing examples instead of learning generalizable patterns and
a simpler base learner might be preferable, e.g. a Random
Forest. Additional analyses of computation time for BCPI-
DNN in situations of low (5) versus high (100) cardinality
showed that the benefit of internal stacking became more
pronounced with larger groups of variables. This is due to
the extra training of the added sub-linear layers. Our work
made use of predefined groups, which may not always be
available. Instead, statistically defined groups could be used
e.g. obtained from clustering. A possible issue might then be
that the groups mix heterogeneous variables, which makes
their interpretation challenging. Furthermore, it is impor-
tant to apply one-hot encoding of categorical variables after
clustering. On the flip side, reliance on predefined groups
may lead to poor inference if the group structure does not
track variable importance, e.g. if important variables are dis-
tributed in all groups. This topic deserves careful investi-
gation in the future. Moreover, here we only performed in-
ternal stacking by applying linear projection on the input
data. It will be interesting to better understand the potential
of non-linear projections.

Finally, additional possible future directions include
studying the impact of missing and low values on the ac-
curacy, also across different group definitions.
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