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Abstract

Domain generalization aims to learn a well-performed clas-
sifier on multiple source domains for unseen target domains
under domain shift. Domain-invariant representation (DIR)
is an intuitive approach and has been of great concern. In
practice, since the targets are variant and agnostic, only a
few sources are not sufficient to reflect the entire domain
population, leading to biased DIR. Derived from PAC-Bayes
framework, we provide a novel generalization bound involv-
ing the number of domains sampled from the environment
(N) and the radius of the Wasserstein ball centred on the tar-
get (r), which have rarely been considered before. Herein,
we can obtain two natural and significant findings: when N
increases, 1) the gap between the source and target sampling
environments can be gradually mitigated; 2) the target can
be better approximated within the Wasserstein ball. These
findings prompt us to collect adequate domains against do-
main shift. For seeking convenience, we design a novel yet
simple Extrapolation Domain strategy induced by the Mixup
scheme, namely EDM. Through a reverse Mixup scheme to
generate the extrapolated domains, combined with the inter-
polated domains, we expand the interpolation space spanned
by the sources, providing more abundant domains to increase
sampling intersections to shorten r. Moreover, EDM is easy
to implement and be plugged-and-played. In experiments,
EDM has been plugged into several methods in both closed
and open set settings, achieving up to 5.73% improvement.

Introduction
In conventional classification, the training set and test set
generally follow independent identical distribution (i.i.d.)
assumption. However, it is impractical in real-world applica-
tions due to domain shift (Li et al. 2022), including chang-
ing background, style, color, etc. To alleviate this issue, a
learning paradigm, namely Domain Generalization (DG),
has been presented and received increasing attention. DG
aims to induce a well-performed (meta-)classifier from a set
of given source domains so that it can generalize to unseen
but related target domains.

Up to now, abundant methods have been proposed for DG
(Wang et al. 2022). Domain-invariant representation (DIR)
(Lu et al. 2022), as one of the dominant approaches, has been
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Figure 1: The illustration of biased DIR on PACS dataset,
where (P) denotes Photo, (C) denotes Cartoon, (A) denotes
Art, and (S) denotes Sketch. The representations provided
from each domain are listed roughly in corresponding box.

widely studied, which can be divided into the following cat-
egories: causal inference (Arjovsky et al. 2019), informa-
tion bottleneck (Li et al. 2022), adversarial learning (Ganin
et al. 2016), and others (Ding et al. 2022). These approaches
aim to remove the impurity representations, that is domain
dependent representations, and to find common representa-
tions depending on the downstream task as much as possi-
ble. It seems reliable. In practice, since the target domains
are variant and agnostic, it is difficult to extract unbiased
DIR among domains from limited sample domains that are
insufficient to reflect the entire domain population. Taking
PACS dataset as a sample, shown in Fig. 1, we can observe
that the required representations are inconsistent between
the source and target domains. If the sketch domain is se-
lected as the target domain, shape and color will be provided
from the source domains, but only the shape is required. In
this case, the color is redundant on the entire domain popu-
lation, which may lead to poor generalization ability. What’s
more, (Zhu et al. 2022) has discovered that the domains can-
not be mixed and can be obviously observed within each
class. This phenomenon indicates that the impurity repre-
sentations remain to some extent and the discrepancy can-
not be completely eliminated, which further implies biased
DIR with limited domain sampling. Herein, a question arises
spontaneously: will the generalization ability be improved
as domain sampling increases? Going one step further, what
are the factors that influence the generalization ability?
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To answer this question, we first have to shift our per-
spective in DG. Almost previous works in DG, to the best of
our knowledge, can boil down to a task-oriented framework,
which pays attention to the divergence between pairwise do-
mains (Lu et al. 2023), leading to inflexibility in theory.
In essence, DG is an inductive learning paradigm on mul-
tiple related tasks, which follows a two-step sampling pro-
cess, namely an environment-task framework (Baxter 2000).
In analogy to the standard single-task learning where data
is sampled from an unknown distribution, tasks in DG are
sampled from an unknown task distribution, i.e., the envi-
ronment. Herein, these tasks are more commonly referred
to as domains in DG. In this way, the gap between envi-
ronments reflects the similarity between the domain popula-
tion learned from source domains and that of target domains.
And, the gap between tasks reflects the relationship between
observed tasks, such as the relationship between animal cat-
egorization in two environments. Therefore, compared to the
former, the environment-task perspective can be more flex-
ible and not limited to closed-set scenario, such as open-set
scenario (Shu et al. 2021).

Following this perspective, we provide a novel general-
ization bound for DG, derived from PAC-Bayes framework
(McAllester 1998), whose key is change of measure inequal-
ity. This bound involves the number of domains sampled
from the environment N and the radius of the Wasserstein
ball centred on the target, which have received little atten-
tion. Herein, we can obtain two natural and significant find-
ings: when N increases, 1) the gap between the source and
target sampling environments can be gradually reduced; 2)
the target can be better approximated within the Wasserstein
ball. These findings prompt us to collect adequate domains
against domain shift. Indeed, previous works have made ef-
forts to generate varied domain samples through data aug-
mentation. (Shankar et al. 2018) develop an adversarial strat-
egy by reversing the gradient of the domain classifier. (Xiao
et al. 2021) generate a new domain through an extra network
module. Obviously, these methods are inflexible and compu-
tationally expensive. Mixup (Zhang et al. 2017) is another
popular and widely used technique. However, the generated
samples are usually mixed from pairwise instances and lie
in the interpolation space spanned by those instances.

In this manuscript, in search of modeling convenience,
we design a novel yet simple Extrapolation Domain strat-
egy induced by the Mixup scheme, namely EDM. It is a
two-stage Dir-Mixup (Shu et al. 2021) strategy, i.e., ex-
trapolation followed by interpolation. In extrapolation stage,
the extrapolated domains are generated through a reverse
Mixup scheme. And then, in interpolation stage, the new do-
mains are generated by mixing the generated extrapolated
domains. Along this line, the interpolation space spanned
by the sources can be expanded, so that the domains can be
obtained not only inside but also outside this space, called
interpolation domains and extrapolation domains, respec-
tively. In this way, more abundant domains can be provided
with unrestricted of the interpolation space, and then the
intersections of sampled-domain sets are increased to pro-
vide a better target approximation. Moreover, EDM inherits
the lightweight and flexible characteristics of Mixup, so that

it can be easy to implement and be directly plugged-and-
played. To sum up, our contributions are listed as follows:

1. A novel generalization bound for DG is provided, which
is flexible for task settings and guides us to pay attention
to the number of domains from the environment sam-
pling perspective and the radius of the Wasserstein ball.

2. A two-stage Dir-Mixup strategy, namely EDM, is ini-
tially designed to provide more abundant domains, where
the extrapolation domains outside the interpolation space
can increase the sampling intersections.

3. In experiments, EDM has been plugged into several
methods in both closed and open set settings, achieving
up to 5.73% improvement.

Related Works
Mainstream Methods for Domain Generalization
DIR aims to find task-dependent but domain-independent
representations. Classic moment-based methods align the
statistics in representation space, such as MMD (Grub-
inger et al. 2015), CORAL (Sun and Saenko 2016). The
adversarial-based methods, e.g., DANN (Ganin et al. 2016),
make an attempt to confuse the domain classifier to remove
the domain-related representations, so that the task-related
representations can be retained. Unlike DANN, which adds
an extra network module, information bottleneck (Li et al.
2022) leverages the information entropy between input and
hidden representations and the one between hidden repre-
sentations and output. To avoid retaining spurious correla-
tions, causal inference has been introduced, where IRM (Al-
buquerque et al. 2019), a strategy with gradient penalty, is
one of the well-known methods. And, VRex (Krueger et al.
2021) provides a variance penalty regularization in loss to
obtain invariant representations. Meanwhile, (Sagawa et al.
2020) argue that due to minimizing average loss via empiri-
cal risk minimization, spurious correlations arise from typi-
cal examples, so that they regroup domains with underlying
correlation representations, e,g., background, to avoid learn-
ing models that rely on spurious correlations. RSC (Huang
et al. 2020) iteratively forces a CNN to activate features that
are less dominant in the training domain, but still correlated
with labels. In essence, almost of them, especially (Ding
et al. 2022), make the effort to remove impurities across do-
mains, which are domain-specific features. In recent years,
some researches imply that only a few source domains are
insufficient to reflect the entire domain population. For ex-
ample, (Zhu et al. 2022) discover that at local regions, the
domains cannot be mixed and are clustered.

Data augmentation, which is another hot topic in DG, is
one of the cheap and simple ways to increase the quality and
diversity of the training data. Mixup (Zhang et al. 2017) is
a popular technique to achieve this goal. In (Lu et al. 2023),
the samples mixed by the same class but different domains
are generated to enlarge the diversity, and the samples mixed
by the same domain but different classes are generated to re-
duce the influence of redundant domain information. Mean-
while, (Zhou et al. 2021) generate new samples by mixing
the statistical information of paired samples in multiple hid-
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den layers. (Mancini et al. 2020) advocate that mixing sam-
ples of both different domains and classes allows to obtain
samples that cannot be categorized in a single class and do-
main of the one available during training, so that they con-
struct some novel semantic-visual samples from triple tu-
ple samples to recognize unseen categories in unseen do-
mains. To further enlarge the diversity of the generated sam-
ple, (Shu et al. 2021) proposes a multi-sample mixing strat-
egy, namely Dir-Mixup, whose mixing coefficients sample
from Dirichlet distribution. Although the Mixup scheme is
flexible, all of them are limited by interpolation space, and
the domain distribution cannot be reflected due to the mixing
statistics from a single sample. In contrast, a min-max game
has been designed to generate new examples, such as Cross-
Grad (Shankar et al. 2018), which utilizes gradient ascent
to expand both class and domain space. (Xiao et al. 2021)
add a network module to sample a new domain with a meta-
learning learner. Nevertheless, high computational complex-
ity cannot be ignored and its flexibility is not well.

Generalization Bounds for Domain Generalization
In recent years, some generalization bounds for DG have
been emerged to demonstrate the effectiveness of corre-
sponding methods. (Albuquerque et al. 2019) provide a gen-
eralization bound w.r.t. the specific linear combination of
empirical errors from the source domains and the diver-
gence between the real target distribution and the approx-
imate fake target distribution within the space spanned by
the source domains. In analogy, (Dai et al. 2023) provide
a similar formulation, replacing H-divergence with Wasser-
stein distribution. And then, (Lu et al. 2023) explicitly pro-
vide an additional term, maximizing the divergence across
the sources domains, to further reduce loss caused by align-
ment. These bounds focus on the distribution divergence and
motivate DG methods based on DIR. Besides, based on ker-
nel mean embedding, the bound w.r.t. the marginal distribu-
tion is given in (Blanchard, Lee, and Scott 2011), which im-
plies that the generalization ability is related to the number
of sampled domains. Obviously, this bound is valid for the
domain shift depending on the marginal distributions and is
difficult to explain methods in deep network.

Methodology
In this section, we introduce our motivation, theoretical
framework, and proposed method EDM in detail.

Preliminaries
In DG, a common setting is to provide N domains under
domain shift. Let Dn denotes n-th observed domain, which
is a set of Mn independent samples from a space of ex-
amples Z , i.e., Dn = {zmn }Mn

m=1. Each sample is drawn
from an unknown distribution Dn, namely zmn ∼ Dn, and
zmn = (xm

n , ymn ), where xm
n denotes an input instance and

ymn denotes the corresponding label. Due to domain shift,
Dni ̸= Dnj , ∀ni ̸= nj. According to the environment-
task perspective discussed in Introduction, we argue that
these domains are generated i.i.d. from an unknown hyper-
distribution τ , i.e., distribution over distribution or Dn ∼ τ .

Let h ∈ H denotes a hypothesis h belongs to a hypothe-
sis space H. In analogy to the standard single-task learning
where a single hypothesis h is learned based on an observed
sampling set D, the selected hypothesis h is induced from
observed sampling sets (domains) {Dn}Nn=1. To select an
appropriate hypothesis, the PAC-Bayes framework, whose
starting point is model average, construct a probability dis-
tribution set over H, namely M (H). That is, h ∼ P , where
P ∈ M (H) denotes a probability measure in M (H), and
is described as the prior, which is data-dependent. Based on
the observed sampling set D and the prior P , the learner
output a posterior distribution Q over H when learning a
new task. Herein, the prior and posterior notations are uti-
lized to describe the relationship between the observed task
and the new task, without the need for a likelihood function
to connect them. Following the environment-task frame-
work, the above standard PAC-Bayes framework should be
extended to adapt to changes in the environment. To this
end, we assume a hyper-distribution over the distribution
measure space M (H), e.g., P ∈ M (P ), where P de-
notes a hyper-prior distribution. Q is similar and denotes a
hyper-posterior distribution. The expected error is denoted
as er (Q, τ) ≜ EQ∼Qer (Q, τ). Since er (Q, τ) is not com-
putable, we can evaluate its corresponding empirical error
êr (Q, τ) ≜ 1

N

∑N
n=1 EP∼Qêr (P,Dn).

Generalization Bound
Theorem 1 (Domain Generalization Generalization bound).
Giving a hypothesis space H, and N domains {Dn}Nn=1
sampled from τ , where each domain Dn consists of Mn sam-
ples. Let P denotes a hyper-prior distribution P ∈ M (P ),
where P ∈ M (H) and M (S) denotes the set of all proba-
bility over S . Then, for any δ ∈ (0, 1], the following inequal-
ity holds uniformly for all hyper-posterior distributions Q
with probablity at least 1− δ:

EQ∼Qer (Q, τ) ≤ 1
N

N∑
n=1

EP∼Qêr (P,Dn)

+
√

L0·W1(Q,P)+ln(N/δ)
2(N−1)

+ 1
N

N∑
n=i

√
Ln·W1(Q,Pn)+ln(NMn/δ)

2(Mn−1)

(1)
where W1 (·, ·) is the 1st order Wasserstein Distance, and L0

and Ln are the Lipschitz constants. Its corresponding proof
is provided in Appendix in detail.

From Theorem 1, we can find that the generalization error
of DG is bounded by the empirical error from the source do-
mains plus two complexity terms. The first complexity term
is a so-called environment-complexity term, which mea-
sures the gap between environments W1 (Q,P), where en-
vironments sample the source and target domains, respec-
tively. This gap is caused by observing only a finite num-
ber of tasks. Meanwhile, the second complexity term is an
average task complexity term, which measures the diver-
gence of tasks between target domain and each source do-
main W1 (Q,Pn). For a clearer explanation, due to the do-
mains following a hyper-distribution, we can further assume
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that the divergence between environments W1 (Q,P) can
be relaxed to the radius of the Wasserstein ball centred on
the target r, that is W1 (Q,P) ≤ r. To this end, upper
bound of generalization error is with respect to N , Mn, r
and W1 (Q,Pn). When each Mn approaches to infinity, the
task complexity term will converge to zero, and when N
approaches to infinity, both the task and environment com-
plexity term will converge to zero. These findings are very
natural and intuitive, prompting us to collect adequate ob-
served samples for each domain while collecting adequate
domains. In this way, the domain population learned from
the observed source domains can be a better approximation
of the entire population, ensuring good performance on a
novel task, i.e., the task of target domain. Moreover, accord-
ing to Theorem 3.4 in (Mohajerin Esfahani and Kuhn 2018),
the radius r will be inversely proportional to the number of
observed domains N , if the unknown distribution is light-
tailed in the sense. Therefore, through increasing sampling
domains, the target can be better represented on domain pop-
ulation, analogous to the situation with test examples on the
training distribution. In summary, increasing the sampling
domains is another way to improve the generalization ability
of DG, similar to increasing the sampling samples from each
domain. By the way, due to loose assumptions for tasks, our
generalization bound is very flexible and can explain mul-
tiple settings through the gap of tasks W1 (Q,Pn), such as
open-set setting.

Extrapolation Domain Induced by Mixup
We know that it’s unrealistic to collect an infinite number
of domains. As an alternative, we design a novel yet sim-
ple Extrapolation Domain strategy induced by the Mixup
scheme, namely EDM. Compared to previous methods
(Zhou et al. 2021; Shu et al. 2021; Lu et al. 2023), most of
which mix paired samples, EDM has two significant char-
acteristics: 1) mixing the statistics from multiple source do-
mains; 2) constructing an extrapolation space surrounding
the interpolation space spanned by source domains.

The reason behind the former is intuitive, that is, our aim
is to augment domains rather than samples. Moreover, the
mixing strategy in classic methods boils down to a linear in-
terpolation strategy, which only generates new domains be-
tween two domains (the lines between vertices as shown in
Fig. 2). This pairwise mixing strategy is obviously limited
by the lack of domains mixed from multiple domains, i.e.,
the whole blue area.

The reason behind the latter is that due to the finite ob-
served domains and the variant and agnostic target domain,
as shown in Fig. 2, the interpolation space or the envi-
ronment obtained from the source domains i.e., the blue
area, may be biased. To mitigate this issue, inspired by
W1 (Q,P) ≤ r, where r ∝ exp (1/N) if Pn follows a
light-tailed sampling, we would like to expand the interpo-
lation space to increase the intersections with the domains
sampling from the target environment, i.e. the green area,
in order to satisfy the sampling assumption as much as pos-
sible. In this way, not only more abundant domains can be
generated further, but also theoretical generalization ability
can be guaranteed to some extent.

Figure 2: The illustration of EDM. Through Mixup scheme,
each domain Dn is pushed outward to generate the extrapo-
lation space, represented by the light green region, based on
the corresponding new domain DE

n .

To realize EDM, similar to Dir-Mixup (Shu et al. 2021),
we formulate the foundation of EDM, i.e., the multiple do-
main mixing scheme, as follows:

Dλ =
N∑

n=1

λnDn, ∀λn ≥ 0 and
N∑

n=1

λn = 1 (2)

where λn denotes the mixing coefficient of n-th domain.
Unlike classic Mixup scheme, where the mixing coefficient
is sampled from Beta Distribution, λ are sampled from
Dirichlet Distribution parameterized by a parameter α, i.e.,
λ ∼ Dirichlet (α).

For a general case, we assume that Dn ≜ N
(
µn, σ

2
n

)
,

where N
(
µ, σ2

)
denotes a Gaussian Distribution with the

mean µ and the standard deviation σ. Therefore, Eq. (2) can
be reformulated as:

N
(
µλ, σ

2
λ

)
= N

(
N∑

n=1

λnµn,
N∑

n=1

λ2
nσ

2
n

)
(3)

And, each pair of parameters
(
µn, σ

2
n

)
can be calculated

based on the corresponding training data xm
n ∈ RC×H×W

in each batch, formulated as:

µn = 1
BnHW

∑Bn

m=1

∑H
h=1

∑W
w=1 (x

m
n )h,w

σ2
n = 1

BnHW

∑Bn

m=1

∑H
h=1

∑W
w=1

(
(xm

n )h,w − µn

)2
(4)

where Bn is the number of training data on n-th domain.
To avoid wasting information, a momentum strategy is

adopted, which utilizes historical information through a
moving average weight ρ. Then, we have

µt
n = ρµt−1

n + (1− ρ)µn, σ
t
n = ρσt−1

n + (1− ρ)σn (5)

where µt−1
n denotes the mean of n-th domain at (t− 1)-th

iteration, and σt−1
n is similar.

Combining Eq. (3) and Eq. (5), we can obtain the statistics
of a new domain. It is noted that these new domains only
lie in the interpolation space spanned by observed source
domains, which is not our intention.

To generate extrapolated domains, we reverse the above
multiple domain mixing scheme to obtain the corresponding
supported domains for the extrapolation space. For example,
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DE
1 is a supported domain corresponding to D1 in Fig. 2.

Specifically, each domain Dn can be regarded as an interpo-
lated domain through mixing the corresponding extrapolated
domain DE

n and the other source domains, respectively. In
other words, similar to Eq. (2), we have:

Dn = λnDE
n +

N∑
i=1,i̸=n

λiDi, ∀λi ≥ 0 and
N∑
i=1

λi = 1 (6)

In this way, DE
n can be reformulated as:

DE
n =

1

λn
Dn −

N∑
i=1,i̸=n

λi

λn
Di (7)

where λn has the same constraint as Eq. (6). And, its Gaus-
sian Distribution can be referred to as

N
((

µE
λ

)
n
,
((
σE
λ

)
n

)2)
= N

(
1
λn

µn −
N∑

i=1,i̸=n

λi

λn
µi,

1
λ2
n
σ2
n +

N∑
i=1,i̸=n

(
λi

λn

)2
σ2
i

)
(8)

Next, based on these supported domains outside the inter-
polation space, we once again employ the multiple domain
mixing scheme, similar to Eq. (3), to generate the new do-
mains, which will be located inside and outside the inter-
polation space spanned by the observed source domains
{Dn}Nn=1, as the green and blue areas in Fig. 2.

Note that this twice Mixup scheme, i.e., Eq. (8) followed
by Eq. (3) employed with the corresponding supported do-
mains, is one of the augmentation schemes to indirectly ob-
tain the extrapolation domains. We can also select more do-
mains with the positive coefficient in Eq. (7) to directly ob-
tain the extrapolation domains. Obviously, it is too complex
and difficult to control.

Finally, through AdaIN scheme (Zhou et al. 2021), the
samples sampling from new domains can be represented as:

xm
a =

xm
n − µn

σn
σa + µa (9)

where µa and σa denote the mean and standard deviation of
augmented domains through twice Mixup scheme, respec-
tively. These generated samples are directly fed to the train-
ing model along with the original samples. And, their class
labels are the same as the corresponding original samples,
and a new domain label will be assigned. Detailed Algo-
rithm is provided in Appendix.

Experiments
In this section, extensive experiments are constructed to
comprehensively evaluate the effectiveness of EDM on two
datasets both in closed and open set settings.

Datasets and Settings
For the architecture, we use ResNet-18 as backbone on three
datasets, i.e., PACS, Office-Home, and DomainNet datasets.
For both settings, we follow corresponding settings from the
previous methods, i.e., the same closed-set setting as (Lu

et al. 2022), and the same open-set setting as (Shu et al.
2021). In closed-set setting, we compare with twelve re-
cent strong comparison methods and two other representa-
tive methods. Except ERM, they can be divided into four
categories: 1) domain-invariant representation based meth-
ods DANN (Ganin et al. 2016), MMD (Grubinger et al.
2015), CORAL (Sun and Saenko 2016), VREx (Krueger
et al. 2021), DIFEX (Lu et al. 2022); 2) data augmenta-
tion based method Mixup (Zhang et al. 2017), CrossGrad
(Shankar et al. 2018), MixStyle (Zhou et al. 2021); 3) learn-
ing robust features based methods: GroupDRO (Sagawa
et al. 2020), RSC (Huang et al. 2020); 4) model optimiza-
tion based method ANDMask (Parascandolo et al. 2020),
SAGM (Wang et al. 2023). And in open-set setting, follow-
ing (Shu et al. 2021), we compare with seven other pop-
ular methods, which are divided into the following cate-
gories: 1) data augmentation based method CuMix (Mancini
et al. 2020); 2) learning robust features based methods PAR
(Wang et al. 2019), RSC (Huang et al. 2020); 3) heteroge-
neous method FC (Li et al. 2019b); 4) meta-learning based
methods MLDG (Li et al. 2018), Epi-FCR(Li et al. 2019a),
DAML (Shu et al. 2021). For more details on datasets, com-
parison methods, and settings, please refer to Appendix. The
code is available at https://github.com/Alrash/EDM.

Results and Analysis
Tab. 1 reports accuracy results in closed-set setting, and Tab.
2 reports accuracy and H-score (Fu et al. 2020) results in
open-set setting.

From Tab. 1, we can observe two key findings as follows:
1) compared with previous methods, the learner + EDM can
give the best results, achieving up to 5.73% improvement in
the sketch on PACS; 2) cross-compared with similar meth-
ods with high complexity, EDM has shown its lightweight
and flexible characteristics.

Specifically, the former key finding can be reflected in
the following aspects. First, on both datasets, the learner at-
taching EDM can achieve the best results on average. Sec-
ond, in each domain on both datasets, the best and sec-
ond results can almost be obtained through attaching EDM.
These phenomena can testify to the effectiveness of EDM.
Third, the learner + Inter, i.e., attaching augmented interpo-
lation domains, is usually slightly weaker than the learner
+ EDM, i.e., attaching both augmented interpolation and
extrapolation domains, but is better than the corresponding
basic learner. This fact indicates that domain augmentation
is beneficial and can improve the generalization ability for
DG. And, additional extrapolation space, which reflects the
more complete domain population combined with interpo-
lation space, can further improve the performance. Fourth,
different basic learners have received different gains in each
domain. The results in the sketch on PACS and in the clipart
on Office-Home have received significant improvement, es-
pecially for DANN + EDM, which achieves up to 5.73%
and 2.09%, respectively. And, the second improvements are
in cartoon and product, respectively. These phenomena fur-
ther indicate that EDM can simulate more severe drift and
make the learner perform well in scenarios with significant
domain shift. Fifth, compared with SAGM, there is no sig-
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PACS Office-Home DNet

Art-Painting Cartoon Photo Sketch Avg Art Clipart Product Real-World Avg Avg

ERM 81.10 77.94 95.03 76.94 82.75 57.77 50.63 71.30 74.45 63.54 40.10
DANN 82.86 78.33 96.11 76.99 83.57 57.60 48.52 71.16 72.99 62.57 40.20
Mixup 81.84 75.43 95.27 76.51 82.26 58.71 51.00 72.20 75.42 64.33 39.24
RSC 82.13 77.99 94.43 79.87 83.60 57.07 50.77 71.93 73.63 63.35 37.13
MMD 80.32 76.45 92.46 83.63 83.21 59.29 50.52 72.34 74.43 64.15 39.14
CORAL 79.39 77.90 91.98 82.03 82.83 59.29 50.15 72.25 74.20 63.97 39.16
GroupDRO 79.15 76.75 91.32 81.52 82.19 59.09 50.22 71.91 74.48 63.92 31.78
CrossGrad‡ 80.37 74.87 96.59 74.98 81.70 58.67 51.18 71.66 74.80 64.08 39.49
Mixstyle‡ 82.51 79.09 95.65 79.23 84.12 55.50 51.00 70.62 73.19 62.57 39.98
ANDMask 80.81 73.29 95.81 71.95 80.47 53.61 47.54 69.36 72.23 60.69 23.92
VREx 81.54 78.11 95.39 80.35 83.85 59.09 49.81 71.64 74.82 63.84 37.96
DIFEX-ori† 82.86 78.46 94.97 79.41 83.93 57.89 50.82 71.61 73.40 63.43 38.33
DIFEX-norm† 83.40 79.74 95.03 79.10 84.32 58.09 51.50 72.08 73.62 63.82 38.53
SAGM‡ 82.62 78.50 96.05 79.64 84.20 59.13 51.23 72.67 75.90 64.73 38.86

ERM + Inter 83.25 77.60 95.99 81.09 84.48 58.01 50.65 72.02 74.62 63.83 -
DANN + Inter 81.93 77.82 95.99 81.57 84.33 57.27 50.13 71.53 74.04 63.24 -
Mixup + Inter 83.01 76.32 96.65 78.04 83.50 59.46 52.30 72.88 75.60 65.06 -
SAGM + Inter 82.28 79.01 96.29 80.22 84.45 58.55 52.71 72.85 75.51 64.91 -

ERM + EDM 82.32 79.27 96.53 81.24 84.84 58.67 51.84 72.38 75.35 64.56 40.34
DANN + EDM 82.96 78.07 96.47 82.72 85.06 58.51 50.61 72.22 74.59 63.98 40.40
Mixup + EDM 83.50 79.14 96.59 81.04 85.07 59.33 51.94 73.15 75.97 65.10 40.04
SAGM + EDM 82.47 80.38 96.59 80.86 85.08 58.84 52.33 72.94 76.06 65.04 39.23

Table 1: Accuracy results on PACS, Office-Home and DNet (DomainNet) in closed-set settings. + Inter denotes that the method
attaches augmented interpolation domains. + EDM denotes that the method attaches augmented interpolation and extrapolation
domains. The bold and underline items are the best and the second-best results, respectively. ‡ denotes our reproduced results
on PACS and Office-Home, and † denotes our reproduced results on Office-Home. All results on DomainNet are reproduced.

PACS Office-Home

Acc H-score Acc H-score

ERM 55.17 44.78 50.43 47.41
MLDG 57.43 45.00 51.07 47.58
FC 58.13 46.69 51.03 48.02
Epi-FCR 60.64 48.47 50.25 48.48
PAR 56.56 44.95 51.26 49.03
RSC 58.92 45.05 49.56 47.89
CuMix 57.85 41.05 51.67 49.40
DAML 65.49 51.88 56.45 53.34

DAML + Inter 69.22 51.83 59.15 53.64
DAML + EDM 70.78 54.12 59.58 54.19

Table 2: Accuracy and H-score results both on PACS and
Office-Home datasets in open-set settings.

nificant improvement with SAGM + Inter or SAGM + EDM.
We think that the model perturbation mechanism can indi-
rectly simulate the drift between domains so that the effect
of EDM has been counteracted to some extent.

And, the latter key finding can be reflected in three as-
pects. First, Mixup + EDM can achieve better performance
than Mixup, the results of ERM + Inter and ERM + EDM
are almost better than Mixup while the gains on ERM and
Mixup are approximately similar. These facts imply that
domain augmentation and data augmentation can be paral-

lel to each other to improve the generalization ability, and
theoretical analysis can be empirically testified simultane-
ously. Second, compared with DIFEX-ori and DIFEX-norm,
as a representative of domain-invariant representation based
methods, DANN + EDM can be slightly better. Third, com-
pared with CrossGrad, which contains data augmentation
and domain augmentation, the results of ERM + EDM are
almost better, not to mention those of Mixup + EDM. These
phenomena demonstrate the convenience of EDM, which
does not require extra networks or tasks (regularizers).

From Tab. 2, we can observe the following findings. First,
although DAML is the SOTA in open-set setting, in which
augmented samples are utilized, its performance can also be
improved when augmented domains are attached. Second,
DAML + EDM achieves the best results. This fact indicates
that extrapolation domains should be considered and can fur-
ther improve performance. Third, significant improvement
in accuracy results both of DAML + Inter and DAML +
EDM can be observed, but their improvement in H-score re-
sults is a little bit inferior. The reason is that our proposed
domain augmentation strategy does not directly solve the is-
sue of unknown class detection in open-set setting. In fact,
new domains containing random classes are further gener-
ated through Inter or EDM. Therefore, the learner can cap-
ture more complete known category information to boost
performance through CE loss of mixup samples in DAML.
For more detailed experimental results and corresponding
analysis of Tab. 2, please refer to Appendix.
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ERM DANN Mixup SAGM

ERM + EDM DANN + EDM Mixup + EDM SAGM + EDM

Figure 3: Visualization of the t-SNE embeddings of learned representation spaces for PACS with different methods. Different
colors correspond to different classes and different shapes correspond to different domains. Note that the diamond with the grey
edge denote the target domain.

In our experiments, ablation study is equivalent to
whether adding new domains can improve the performance
of the corresponding method. These results can be found
both in Tab. 1 and Tab. 2, so we will no longer report them.
Overall, adding new domains can improve performance,
and combining interpolation and extrapolation domains can
achieve better performance. More details can be referred to
in the aforementioned analysis.

From Fig. 3, we can discover that the methods belonging
to different categories exhibit different phenomena. DANN,
as a domain-invariant representation based method, aims to
obtain a representation space in which the domains can be
confused in each class. However, the domains can be ob-
viously observed and each class cluster seems not tight.
In contrast, in DANN + EDM, the domains can be more
scattered within each class and each class cluster can be
tighter. These phenomena reveal that a few domains only
receive biased domain-invariant representations, which con-
tain undesired domain-dependent yet task-dependent repre-
sentations. Domain augmentation, which mixes domain in-
formation rather than class information, can alleviate this is-
sue to some extent. ERM and Mixup, as representative of
aggregation methods, have not paid too much attention to
domain information. Therefore, the domains exhibit a cer-
tain degree of clustering within each class. With EDM, the
discriminative ability of tasks has not been harmed, and the
classes in target domain prefer to classify the classes on a
more similar source domain, such as the photo. For exam-
ple, compared to ERM, the orange and the blue in ERM +
EDM are closed to the corresponding classes in the photo,

and the domains are more scattered within each class. These
phenomena also imply that domain augmentation can rich
domain information, and obtain more essential represen-
tations even on non-domain-invariant representation based
methods. Finally, compared to SAGM, a model optimization
based method, EDM as a data perturbation strategy does not
compromise the model perturbation mechanism. The tight-
ness of each class has ups and downs on both sides.

Conclusion
Domain generalization (DG) is regarded as an inductive
learning paradigm on multiple related tasks, which belongs
to an environment-task framework. Following this perspec-
tive, we give a novel generalization bound for DG, derived
from PAC-Bayes framework. In light of this bound, we ar-
gue that the factors that influence the generalization ability
involve four aspects. In this manuscript, we focus on two
factors: the number of observed domains and the gap be-
tween sampling environments, which have received little at-
tention in previous methods. After relaxing this gap to the
radius of a Wasserstein ball centred on the target, we dis-
cover once again that increasing the sampling domains can
improve the generalization ability. To this end, we design
a novel yet simple Extrapolation Domain strategy induced
by the Mixup scheme, namely EDM, which indirectly con-
structs an extrapolation space surrounding the interpolation
space spanned by source domains to provide more abundant
domains. In addition, EDM is easy to implement and can be
plugged and played. Finally, extensive experiments are con-
ducted to testify to the effectiveness of EDM.
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