
Kernelized Normalizing Constant Estimation:
Bridging Bayesian Quadrature and Bayesian Optimization

Xu Cai1, Jonathan Scarlett1,2
1 Department of Computer Science, National University of Singapore

2 Department of Mathematics, Institute of Data Science, National University of Singapore
caix@u.nus.edu, scarlett@comp.nus.edu.sg

Abstract

In this paper, we study the problem of estimating the
normalizing constant through queries to the black-box
function f, which is the integration of the exponential function
of f scaled by a problem parameter lambda. We assume
f belongs to a reproducing kernel Hilbert space (RKHS),
and show that to estimate the normalizing constant within
a small relative error, the level of difficulty depends on
the value of lambda: When lambda approaches zero, the
problem is similar to Bayesian quadrature (BQ), while
when lambda approaches infinity, the problem is similar to
Bayesian optimization (BO). More generally, the problem
varies between BQ and BO. We find that this pattern holds
true even when the function evaluations are noisy, bringing
new aspects to this topic. Our findings are supported by both
algorithm-independent lower bounds and algorithmic upper
bounds, as well as simulation studies conducted on a variety
of benchmark functions.

1 Introduction
The problem of normalizing constant (NC) estimation (also
known as (log-)partition function estimation) is of interest
in a variety fields, such as Bayesian statistics (Chen and
Shao 1997; Gelman and Meng 1998), machine learning
(Desjardins, Bengio, and Courville 2011), statistical
mechanics (Stoltz, Rousset et al. 2010), and other areas
involving the distribution of an energy function. Given
a distribution on a domain D with measure dx, the
normalizing constant is the integral Z =

R
D e

�f(x)
dx.

In many classical works, f is assumed to be (strongly)
convex, so that the distribution is (strongly) log-concave.
Asymptotic/non-asymptotic performance bounds for the
log-concave setting have been studied in detail; see for
example (Ge, Lee, and Lu 2020) and the references therein.
Although the first-order (gradient) information of f is

usually assumed to be available in the classical setting,
it is also of interest to estimate the normalizing constant
of non-convex black-box functions using only zeroth-
order bandit feedback. Following the rich literature on
Bayesian optimization (BO) and Bayesian quadrature
(BQ), it is particularly natural to consider functions
lying in a reproducing kernel Hilbert space (RKHS), for

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An illustration of estimating the normalizing
constant under small (0.1) and large (10) �.

which Gaussian process (GP) techniques can be used to
quantify uncertainty. The NC estimation problem brings
new challenges compared to BO (which seeks to find
argmaxx2D f(x)) and BQ (which seeks to approximateR
D f(x)dx), and in fact turns out to share features of both.
In this paper, we study the asymptotic limits of NC

estimation for functions in RKHS with bounded norm,
adopting Bayesian numerical analysis techniques. As is
commonly done, we consider an additional parameter
� in the estimation problem, i.e., we consider Z =R
D e

��f(x)
dx. The interpretation of � differs across

different subjects; for instance, it can represent the
reciprocal of the thermodynamic temperature of a system,
or it can be used to “temper” or “amplify” terms in Bayesian
statistics. Additionally, we consider the scenario where
observations may be corrupted by additive Gaussian noise
with variance �

2, and � and � may vary with the time
horizon T as T ! 1.
For d-dimensional Matérn-⌫ RKHS functions, our

findings reveal that, to estimate Z within a multiplicative
factor of 1±✏with constant probability (e.g., 0.99), the level
of difficulty generally exhibits the following behaviour (also
partially listed in Table 1):
• When � ! 0, the error bound of ✏ is similar to BQ. Our
lower bound is similar to the BQ lower bounds stated
in (Plaskota 1996; Cai, Lam, and Scarlett 2023), who
showed that the order-optimal average mean absolute
error of ✏ is ⇥(T�

⌫
d�1 + �T

�
1
2).

• When � ! 1, the problem becomes more similar to BO,
and the error bounds again reflect this. For instance, when
� = ⇥(T) and T ! 1, our noiseless ⌦(T�

⌫
d) lower

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11150

� = 0 (noiseless) � = ⇥(T�
1
4)

� ! 0 � ! 1 � ! 0 � ! 1

⇥(�T�
⌫
d�1) ⌦(�T�

⌫
d�1) O(�T�

⌫
d�

1
2) ⇥(�T�

3
4) (needs ⌫ �

d
2 when � ! 1)

� = ⇥(T�
1
2) � = ⇥(1) (constant)

� ! 0 � ! 1 � ! 0 � ! 1

⇥(�T�1) ⌦(�T�1) O
⇤
�
�T

�
4⌫+d
4⌫+2d

�
⇥(�T�

1
2) ⌦(�T�

1
2) O

⇤
�
�T

�
⌫

2⌫+d
�

Table 1: Selected results instantiated from Theorems 1, 2, 3 and 4 for NC.O⇤(·) hides poly(log T) terms.⇥(·)means the lower
and upper bounds match up to constant factors. For � ! 1, we treat � = ⇥(T c), c > 0 and T ! 1.

bound coincides with the noiseless BO lower bound
stated in (Bull 2011), who showed that the average simple
regret is ⇥(T�

⌫
d). For the noisy setting, the results and

their tightness vary depending on the noise level. When
� = ⇥(1) (i.e., constant noise), a simple sampling
strategy from the BO literature (Vakili et al. 2021) leads
toO⇤

�
�T

�
⌫

2⌫+d
�
regret,1 but the ⌦(�T�

1
2) lower bound

leaves open the possibility that a better algorithm might
exist. On the other hand, at lower noise levels there are
regimes where our upper and lower bounds match, as
exemplified by the case � = ⇥(T�

1
4) (and ⌫ �

d
2) with

regret ⇥(�T�
3
4).

• Depending on the precise scaling of �, the error bound
can vary between those of BQ and BO. For instance, in
the noiseless setting, we can control the rate of � going
to infinity as � = O(T

⌫
d), and obtain a ⌦(T�1) lower

bound.
The connections to BQ and BO can partially be understood
with the aid of the figures depicted in Figure 1. When � is
very small, estimating

R
D e

��f(x)
dx is almost the same as

estimating
R
D(1 � �f(x))dx, which is a shifted and scaled

version of
R
D f(x)dx. On the other hand, for large values

of �, the minimum value of f(x) stands out considerably
compared to the rest, as exemplified by the narrow bump in
the figure.
A more detailed discussion of our contributions is

deferred to the subsequent section on related work, where
we provide a detailed analysis of the advancements and
novel aspects of our research compared to existing works.

2 Related Work
Log-concave sampling. Over the years, a wide range of
methods have been developed for estimating the normalizing
constant of a probability distribution (Stoltz, Rousset et al.
2010), with a particular focus on algorithms that can
leverage the log-concavity of the normalizing constant based
on convex optimization (Lovász and Vempala 2006; Brosse,

1Monte-Carlo algorithms achieve O(1p
T
) when � = ⇥(1),

which is better than the mentioned O
⇤�
T

� ⌫
2⌫+d

�
regret, but to

our knowledge, its standard analysis is unable to capture the
dependence on � that might vary with T .

Durmus, and Moulines 2018; Dwivedi et al. 2018; Ge,
Lee, and Lu 2020). These algorithms have been shown
to have strong theoretical guarantees when provided with
access to rf(x), by building on specific and popular
bounds of Langevin-based sampling algorithms (Durmus
and Moulines 2016).

Non-log-concave Sampling. Relatively fewer studies
have explored the convergence rate for non-log-concave
distributions, with the most related one being (Holzmüller
and Bach 2023). Our results are generally not directly
comparable with theirs due to the consideration of a different
function class, leading to different algorithmic techniques
(e.g., piecewise constant approximation vs. Gaussian
process methods). In addition, one of our main goals is to
handle noise, whereas (Holzmüller and Bach 2023) focuses
on the noiseless setting. A more detailed comparison to
(Holzmüller and Bach 2023) can be found in Appendix C.

Other Non-log-concave Sampling Works. Other works
that consider non-convex energy functions appear to have
significantly less direct relevance to our study due to the
different modeling assumptions we adopt. However, it is
worth mentioning a few of them, and interested readers can
refer to the references provided in those papers for further
exploration. Some of these works specifically focus on the
analysis of local non-convexity within a small region, while
the functions exhibit strong convexity outside of that region
(Cheng et al. 2018; Ma et al. 2019). Additionally, there are
studies that analyze upper and lower bounds related to the
relative Fisher information by imposing restrictions on the
smoothness of rf (Balasubramanian et al. 2022; Chewi
et al. 2023).

Bayesian Optimization / GP Bandits. An important
distinction that sets us apart from previous literature is
that all of our results are rooted in the kernel-based
bandit framework, which leverages Gaussian processes and
Bayesian inference to approximate and optimize unknown
functions. Within this area, two prominent problems
are Bayesian quadrature (BQ) (Kanagawa and Hennig
2019; Wynne, Briol, and Girolami 2021; Cai, Lam, and
Scarlett 2023) for approximating integrals and Bayesian
optimization (BO) (Srinivas et al. 2010; Chowdhury and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11151

Gopalan 2017; Vakili et al. 2021) for finding the global
maximum of a black-box function. These methods have
gained popularity due to their wide range of applications
and favorable theoretical properties. While BO is understood
to be a more challenging problem than BQ in terms of
the sample complexity, it can still be applied to provide
sub-optimal BQ bounds (e.g., see (Cai, Lam, and Scarlett
2023)). In our case, it can similarly be utilized to obtain (sub-
optimal) bounds for NC, thanks in part to the tight noisy L1

upper bound and upper bound on information gain derived
by (Vakili et al. 2021; Vakili, Khezeli, and Picheny 2021).
We briefly note that various non-linear transformations of

black-box functions (e.g., e��f(x) or f(x)2) have appeared
in other contexts such as optimization and regression
(Flaxman, Teh, and Sejdinovic 2017; Astudillo and Frazier
2019; Marteau-Ferey, Bach, and Rudi 2020), but to our
knowledge none have studied the NC problem.

3 Problem Setup
Let f 2 H(B) be an RKHS function on the compact domain
D = [0, 1]d,2 where H(B) denotes the set of all functions
whose RKHS norm k·kH is upper bounded by some constant
B > 0. Here the RKHS norm k · kH depends on our choice
of the kernel k(x,x0), and we focus our attention on the
widely-adopted Matérn-⌫ kernel:

k(x,x0) =
21�⌫

�(⌫)

✓p
2⌫ kx� x0

k

l

◆⌫

J⌫

✓p
2⌫ kx� x0

k

l

◆
,

where J⌫ is the modified Bessel function, and � is the
gamma function. To make the dependence on ⌫ explicit, we
use H

⌫ to denote the Matérn RKHS, with its RKHS norm
being represented by k · kH⌫ . Given query access to f(x), at
time step t, the observations yt are modeled as follows:
• In the noiseless setting, we simply have yt = f(xt).
• In the noisy setting, we have yt = f(xt) + zt, where
zt ⇠ N (0,�2) is i.i.d. Gaussian noise.

Our goal is to approximate the normalizing constant,

Z(f) =

Z

D
e
��f(x)

dx, � > 0, (1)

leading to an estimate Ẑ(f), which we seek to be accurate
within a multiplicative factor of 1±✏. In other words, we are
interested in the quantity

✏ = sup
f2H⌫

���
Ẑ(f)

Z(f)
� 1

���. (2)

While the additive error (which would be |Ẑ�Z| in our case)
is commonly used for integration problems such as BQ, it is
less suitable here unless � ! 0 (yielding Z ! 1). This is
because as � grows large, Z may approach zero (in which
case |Ẑ � Z| ✏ may hold trivially) or infinity (in which
case |Ẑ � Z| ✏ may be an overly stringent requirement).
The relative error (2) serves to more naturally unify these

2Any rectangular domain can be reduced to [0, 1]d by suitable
shifting and scaling.

various cases. In a similar manner, (Holzmüller and Bach
2023) defines the error as ✏ =

�� log Ẑ � logZ
��, which is

essentially equivalent to (2) due to the fact that log(1 + ↵)
behaves as O(↵) when |↵| is strictly smaller than one (and
as ↵(1 + o(1)) when ↵ ! 0).

4 Lower Bounds
In this section, we provide algorithm-independent lower
bounds on ✏ (see (2)), i.e., impossibility/hardness results, for
both the noiseless and noisy settings.
Theorem 1. (Noiseless Lower Bound) Consider the
noiseless setting with f 2 H

⌫(B), ⌫ + d
2 � 1, and a

time horizon T ! 1. For any algorithm that estimates Z
and produces an estimate Ẑ satisfying (2), the worst-case
f 2 H

⌫(B) must have the following lower bound on (2)
with ⌦(1) probability:
• If � = ⇥(T c) with c

⌫
d + 1

2 , then ✏ = ⌦(T�
⌫
d�1+c).

• If � = ⇥(log T), then ✏ = ⌦(T�
⌫
d�1 log T).

The condition c ⌫
d+

1
2 comes from a technical condition

in the proof, and we believe it to be quite mild (and similarly
in other results below); in particular, we cover broad cases
of interest, some of which are given as follows:
• For c = 0, we have when � = ⇥(1), ✏ = ⌦(T�

⌫
d�1).

• For c = 1
2 , we have when � = ⇥(

p
T), ✏ = ⌦(T�

⌫
d�

1
2).

• For c = ⌫
d , we have when � = ⇥(T

⌫
d), ✏ = ⌦(T�1).

• For c = ⌫
d + 1

2 , when � = ⇥(T
⌫
d+ 1

2), ✏ = ⌦(T�
1
2).

• For c = 1 (which requires ⌫ �
d
2), we have when � =

⇥(T), ✏ = ⌦(T�
⌫
d).

Note that the noiseless BQ lower bound is known as ✏ =
⌦(T�

⌫
d�1) (see e.g. (Novak 2006; Cai, Lam, and Scarlett

2023)), and the noiseless BO lower bound is ✏ = ⌦(T�
⌫
d)

(Bull 2011). Thus, the above results indicate that when � =
⇥(1) or approaches 0, the lower bound matches that of BQ,
whereas when � = ⇥(T), the bound matches that of BO.
Although the above arguments compare additive error with
relative error, this is valid since our hard function class in
proving the lower bound has⇥(1) normalizing constant. See
Appendix A for further details.
Next, we turn our attention to the noisy setting.

Theorem 2. (Noisy Lower Bound) Consider the noisy
setting with f 2 H

⌫(B), ⌫+ d
2 � 1, a time horizon T ! 1,

and noise variance �
2 (possibly varying with T). For any

algorithm that estimates Z and produces an estimate Ẑ

satisfying (2), the worst-case f 2 H
⌫(B) must have the

following lower bound on (2) with ⌦(1) probability:

• If � = ⇥(T c) and � = ⇥(T a)with c min
�

⌫
d+

1
2 , (

1
2�

a) 2⌫+d
2⌫+2d

and a

1
2 , then ✏ = ⌦(T�

⌫
d�1+c+�T

�
1
2+c).

• If � = ⇥(log T) and � = ⇥(T a) with a <
1
2 , then

✏ = ⌦(T�
⌫
d�1 log T + �T

�
1
2 log T).

Since the noisy setting involves the variables a and c,
we will focus mainly on the most studied case where � =
⇥(1) (a = 0) for the sake of clarity. For constant noise

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11152

variance, the BQ noisy lower bound is known to be ⌦(T�
1
2)

(Plaskota 1996; Cai, Lam, and Scarlett 2023), and the BO
noisy lower bound is known as ✏ = ⌦(T�

⌫
2⌫+d) (Scarlett,

Bogunovic, and Cevher 2017; Cai and Scarlett 2021). To
compare against these, for the first dot point in Theorem 2,
we consider the following specific c values:

• For c = 0, we have when � = ⇥(1), ✏ = ⌦(T�
1
2), which

coincides with the noisy BQ lower bound.

• For c = d
4⌫+2d (needs ⌫ �

p
5�1
4 d, so that

d
4⌫+2d

2⌫+d
4⌫+4d), we have when � = ⇥(T

d
4⌫+2d), ✏ =

⌦(T�
⌫

2⌫+d), which coincides with the noisy BO lower
bound. Note that this particular choice of � is somewhat
artificial, but it highlights the fact that our result can lead
to BO-like results.

• For c = 1
3 (needs ⌫ �

d
2), we have when � = ⇥(T

1
3),

✏ = ⌦(T�
1
6).

• For c = 1
4 , we have when � = ⇥(T

1
4), ✏ = ⌦(T�

1
4).

• For c = 2⌫+d
4⌫+4d (the maximum allowed value), we have

when � = ⇥(T
2⌫+d
4⌫+4d), ✏ = ⌦(T�

d
4⌫+4d).

Further analysis of this lower bound can be found in
Appendix A; similar to the above results, we may end at BQ
or BO type of error bounds for different a and c values. To
illustrate an example, we recall the result shown in Table
1 when a = �

1
2 , where the lower bound is ⌦(�T�

1
2).

Substituting a = �
1
2 into Theorem 2, it can be seen that

the value of c lies in the range (�1,
2⌫+d
2⌫+2d]. By choosing

� = ⇥(T�
⌫
d), we obtain the BQ-like lower bound ⌦ =

⌦(T�
⌫
d�

1
2), whereas by choosing � = ⇥(T

2⌫+d
2⌫+2d), we

obtain the BO-like lower bound ⌦ = ⌦(T�
d

4⌫+4d).
In the following section, we will derive algorithmic upper

bounds that sometimes match the algorithm-indpeendent
lower bounds, though with gaps remaining in other cases.

5 Upper Bounds
We present a GP-based two-batch algorithm for estimating
the normalizing constant in Algorithm 1. Given a GP prior
model GP(0, k), after observing t samples, the posterior
distribution is also a GP with the following posterior mean
and variance:

µt(x) = kt(x)
T
�
Kt + ⇠It

��1
yt, (3)

�
2
t (x) = k(x,x)� kt(x)

T
�
Kt + ⇠It

��1
kt(x), (4)

where yt = [y1, . . . , yt]T , kt(x) =
⇥
k(xi,x)

⇤t
i=1

, Kt =⇥
k(xt,xt0)

⇤
t,t0

is the kernel matrix, It is the identity matrix
of dimension t, and ⇠ > 0 is a hyperparameter.
In Algorithm 1, we initially employ T

2 samples to
construct a GP approximation of f in a non-adaptive manner
(i.e., the selection of x1, . . . ,xT/2 occurs prior to observing
y1, . . . , yT/2). This gives us an estimate µT/2(·) of the entire
function, from which we can form an initial estimate Ẑ1

of Z. We then refine the estimate by using Monte Carlo

Algorithm 1: Two-batch normalizing constant estimation
algorithm

1: Input: Domain D, GP(0, k) prior, GP hyperparameter
⇠, time horizon T , noise standard deviation �.

2: for t = 1, . . . , T/2 do
3: Select xt = argmaxx2D �t�1(x).
4: Update �t using x1, . . . ,xt.
5: end for
6: Update µT/2(x) using {xt}

T/2
t=1 and {yt}

T/2
t=1 .

7: for t = T/2 + 1, . . . , T do
8: Sample xt ⇠

e
��µT/2(x)

R
D e

��µT/2(x)
dx

independently.

9: Receive yt = f(xt) + zt

10: end for
11: Compute the approximate integral Ẑ1 =R

D e
��µT/2(x)dx

12: Compute the residual R̂ =
2

Te�2�2/2

PT
t=T/2+1 e

�µT/2(xt)��yt

13: Output Ẑ = Ẑ1 · R̂

sampling to estimate a multiplicative “residual” term (with
estimate R̂), and the final estimate Ẑ is the product Ẑ1 · R̂.

The two-batch idea is most easily understood in the BQ
problem of integrating f : Roughly speaking, the error of
Monte Carlo decays as 1

p
T

but is also proportional to the
function scale itself, so by applying it to the residual, we get
the original error times 1

p
T
. The intuition in our NC problem

is generally similar, but the non-linearity of e��f leads us to
consider a multiplicative residual, and the analysis becomes
more complicated.
As discussed in Section 2, (Holzmüller and Bach 2023)

has utilized a similar algorithm by selecting grid points
and forming a piecewise constant approximation in the first
batch, which they find to be optimal for a different once-
differentiable function class, but is less suitable for our
setting (see Appendix C and Section 6). Simpler variants
of this idea have also been used in BQ; see (Cai, Lam, and
Scarlett 2023) and the references therein.
We summarize the error bounds of Algorithm 1 (as well

as the estimate resulting from the first batch alone) in the
following two theorems.
Theorem 3. (Noiseless Upper Bound) Consider our
problem setup with constant parameters (B, ⌫, d, l), and
time horizon T ! 1. With probability at least 1 � � (for
an arbitrary fixed � 2 (0, 1)), the relative error incurred by
Algorithm 1 with ⇠ = 0 has the following upper bounds on
(2):

• If � = ⇥(T c) with c
⌫
d , then ✏ = O

�
T

�
⌫
d�

1
2+c

�
.

• If � = ⇥(log T), then ✏ = O
�
T

�
⌫
d�

1
2 log T

�
.

Comparing to the noiseless lower bound obtained in
Theorem 1, there is a non-negligible gap of O(

p
T).

However, this difference is fairly insignificant when ⌫ � d.
Theorem 4. (Noisy Upper Bound) Consider our problem
setup with constant parameters (B, ⌫, d, l, ⇠), noise

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11153

Figure 2: Results for analytic functions.

standard deviation � that may scale with T (i.e.,
� = ⇥(T a)), and time horizon T ! 1. Then, the
following upper bounds on (2) hold with probability at least
1� � for any constant � > 0:
• If � = ⇥(T c) with a + c 0 and c <

⌫
2⌫+d , Algorithm

1 yields ✏ = O
�
T

�
⌫

2⌫+d�
1
2+c(log T)

⌫
2⌫+d + �T

�
1
2+c

�
.

• If � = ⇥(log T) with a 0, Algorithm 1 yields ✏ =

O
�
T

�
⌫

2⌫+d�
1
2 (log T)

3⌫+d
2⌫+d + �T

�
1
2 log T

�
.

In addition, the following upper bounds hold with
probability at least 1� 1

T↵ with ↵ being any fixed constant:
• If � = ⇥(T c) with a + c <

⌫
2⌫+d and c <

⌫
2⌫+d ,

the intermediate estimate Ẑ1 from Algorithm 1 yields ✏ =
O
�
T

�
⌫

2⌫+d+c(log T)
⌫

2⌫+d + �T
�

⌫
2⌫+d+c(log T)

4⌫+d
4⌫+2d

�
.

• If � = ⇥(log T) with a <
⌫

2⌫+d ,
the intermediate estimate Ẑ1 from Algorithm 1 yields
✏ = O

�
T

�
⌫

2⌫+d (log T)
3⌫+d
2⌫+d + �T

�
⌫

2⌫+d (log T)
8⌫+3d
4⌫+2d

�
.

The second part of the theorem helps to broaden the range
of allowed (a, c) pairs. However, when (a, c) is feasible for
the first part, it gives a stronger result than the second part,
improving by a O(1

p
T
) factor in the non-� term and by

O(d
4⌫+2d) in the � term. This highlights the benefit of using

both batches, at least in terms of upper bounds.
Comparing to the noisy lower bound obtained in Theorem

2, the convergence rate obtained in Theorem 4 is less
straightforward, but we give some analysis as follows:
• For the first dot points in Theorem 2 and Theorem 4,
the two results align under the high noise regime when
a � �

⌫
2⌫+d (this threshold on a is obtained by equating

the exponents �
⌫

2⌫+d �
1
2 + c and a �

1
2 + c from

Theorem 4). In this regime, the order of the error is
optimal as ⇥(�T�

1
2+c). This matches the order-optimal

bound for BQ (upon replacing c by zero, since � is absent

in BQ). As a specific example, as shown in Table 1,
when we assume a = �

1
4 and ⌫ �

d
2 (which ensures

�
1
4 � �

⌫
2⌫+d), the resulting upper bound is optimal at

⇥(T�
3
4+c).

• For an extreme low noise regime (a �
⌫
d �

1
2 , which

ensures that the first term in Theorem 2 dominates the
second term), the lower bound vs. the upper bound is
⌦(T�

⌫
d�1+c) vs. O(T�

⌫
2⌫+d�

1
2+c). Thus, the relative

gap is O(T
d

4⌫+2d+
⌫
d), which is around O(

p
T) if d � ⌫.

• Otherwise, if � ⌫
d �

1
2 < a < �

⌫
2⌫+d , the lower bound

vs. the upper bound is⌦(�T�
1
2+c) vs.O(T�

⌫
2⌫+d�

1
2+c).

The relative gap is now O(T�
⌫

2⌫+d�a), which primarily
depends on the value of a if d � ⌫. In this sense, the gap
ranges from O(T o(1)) to O(T). To illustrate an example
under this condition, see Table 1 with the choice a = �

1
2 .

• The last two bullet points in the theorem address the
remaining scenario when �� ! 1 (i.e., a + c >

0), and the term ⌫
2⌫+d in the exponent matches that

observed for simple regret in the BO literature (Scarlett,
Bogunovic, and Cevher 2017; Vakili et al. 2021), though
failing to match the upper bound for NC. Hence, the
aforementioned noisy upper bounds demonstrate that,
albeit with some gaps, when �� ! 0, the derived upper
bound shares similarities with BQ, whereas when �� !

1, the bound shares similarities with BO.

6 Experiments
In this section, we conduct simulation studies to investigate
Algorithm 1 and its intermediate estimate Ẑ1.

Setup
Sampling in the Second Batch. As shown in line 8
of Algorithm 1, the target distribution is proportional to

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11154

Figure 3: Results for MLP.

e
��µT/2(x), which can be challenging to sample exactly.
Fortunately, there is a vast literature on approximate
sampling methods that we can use. We choose to use the
method of Langevin dynamics defined by the following
stochastic differential equation (SDE) (Uhlenbeck and
Ornstein 1930):

dX(t) = �rg(X(t))dt+
p

2��1B(t), (5)

where � > 0 is interpreted as the inverse temperature,
and B(t) 2 Rd is the Brownian motion at time t. A
standard approach to solve (5) is to apply Euler-Maruyama
discretization, leading to the following Langevin Monte-
Carlo (LMC) updating rule:

xt+1 = xt � �rµT/2(xt) +
p

2���1✏t, (6)

where we have replaced g with µT/2, ✏t are i.i.d. standard
Gaussian random vectors in Rd, and � > 0 is the step size
of the discretization. Note that using this sampling strategy
incurs some approximation error that we do not attempt
to account for in our theory (analogous to how BO theory
assumes exact acquisition function optimization).

Hyperparameters. For all functions considered in this
section, we consider a time horizon of T = 256, � 2

{0.5, 5, 10}, � 2 {0, 0.01, 0.1} and ⌫ 2 {0.5, 1.5, 2.5}.
The total number of steps of (6) is set as 20, and the LMC
learning rate is � = 10�3. We adopt two learnable kernel
hyperparameters in (3), the lengthscale l and an additional
scale parameter (multiplying k), to permit functions with
varying ranges (while ⌫ remains fixed). Except for synthetic
functions where the true hyperparameters are known, these
two parameters are optimized by maximizing the data log-
likelihood (Rasmussen andWilliams 2006) using the built-in
SciPy optimizer based on L-BFGS-B, which is also used for
finding the maximum variance point in Algorithm 1.

Benchmarks. In addition to the commonly adopted Monte-
Carlo quadrature baseline, as discussed in Sections 2 and
5, the most closely related work by (Holzmüller and Bach
2023, Sec. 5.1) proposes the use of piecewise constant
approximation to estimate NC with grid inputs, which also
achieves improved theoretical convergence when combined
with an additional MC step. We adopt their shorthand
notations and refer to these two benchmarks as PC and PC-
MC, respectively.

Evaluation. We refer to the first batch of Algorithm 1
as maximum variance sampling (MVS),3 and the whole
Algorithm 1 as MVS-LMC. We evaluate the performance
using the mean absolute relative error, with the ground
truth value (and also Ẑ1 at Line 11 of Algorithm 1) being
determined by trapezoidal rule with 105 uniformly-spaced
grid points (without noise). Error bars in our plots indicate
±0.5 standard deviation with respect to the 100 trials.

Analytic Functions
In order to assess the empirical behaviour of MVS and
MVS-LMC, we first conduct experiments on the following
analytic functions for d 2 {1, 2, 3, 4}:
Synthetic functions. The synthetic functions are

constructed by sampling m = 30d points, x̂1 . . . x̂m,
uniformly on [0, 1]d, and â1 . . . âm uniformly on [�1, 1].
The function is then defined as f(x) =

Pm
i=1 âik(x̂i,x).

The length-scale and ⌫ are set to be fixed (no hyperparameter
learning) as 0.2 and 2.5 respectively.
Benchmark functions. Exact formulations of functions

including, Ackley, Alpine, Product-Peak, Zhou, etc., can be
found in (Bingham 2013). ⌫ is fixed as 3/2 for all of these
benchmark functions.

Multi-layer Perception (MLP)
For a more complex scenario, we consider an 8-dimensional
MLP function, with the structure being defined by

f(x) = f
4(Tanh(f3(Tanh(f2(Tanh(f1(x))))))),

where Tanh(·) : Rn
! [�1, 1]n is the Hyperbolic tangent

(tanh) activation function, and the dimension mapping from
layers f1 to f

4 is 8 ! 16 ! 32 ! 16 ! 1. We use Xavier
initialization to set and fix the weights of the MLP, and set
⌫ = 1/2 to model the potentially more erratic behavior.

Point Spread Function (PSF)
Beyond functions with analytic forms, we have also simulate
on a diffraction energy distribution characterised by an
intensity of wave-field (i.e., PSF). This idea leads to an
interesting class of functions for black-box problems, e.g.,
it has been previously evaluated in BQ tasks (Naslidnyk,
Gonzalez, and Mahsereci 2021). The PSF will be dependent

3More precisely, MVS corresponds to taking all T samples
based on the maximum variance rule, not just the first T/2.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11155

(a) PSF computed for the wavelength 2⇥ 10�6.

(b) PSF error plot.

(c) PSF error plot by shifting (+0.05,+0.05), so that the new
optimum is at (�0.05,�0.05).

Figure 4: Result for estimating PSF.

on the shape of the pupil (circle, rectangle, etc.), and on the
wavelength of the used light. In the case of a circular pupil,
the diffracted wave pattern is known as the Airy pattern,
where in our case, the logarithm of the energy intensity
is regarded as a 2-D black-box energy function. The Airy
pattern generated by light with wavelength 2 ⇥ 10�6 is
displayed in Figure 4a, and we perform NC estimation
within a quarter of the support, namely [0, 0.5]⇥[0, 0.5] (top-
right corner of Figure 4a). Additionally, Figure 4b displays
the error curves (plotted with ⌫ = 0.5, � = 0, and � = 1)
using a logarithmic scale to capture the behavior of all the
algorithms more effectively.

Discussion
As can be observed from the displayed figures, the
performance of MVS and MVS-LMC outperforms MC,
PC, and PC-MC by varying margins. We find that despite
the PC approach working well for higher query budgets
(Holzmüller and Bach 2023) (e.g., 105 or more), GP-
based methods tend to be superior at low budgets (e.g., a
few hundred). This is in alignment with the strong query

complexity properties of GPmethods observed in other tasks
(e.g., regression, optimization, etc.).
In particular, the number of dimensions can significantly

impact the performance of PC under a small budget, as
observations become more sparse in higher dimensions. For
example, in the Alpine1d plot, PC converges quickly, while
it converges slowly for Synthetic4d. On the other hand, in
the PSF experiment, PC suffers from a relative error around
3 due to consistently sampling from the (0, 0) point, which
has a significantly higher value than other locations. As seen
in Figure 4c, this can be improved by shifting f so that the
peak is away from (0, 0), but only to a limited extent.
When comparing MVS and MVS-LMC to MC on simple

analytic functions (see Figure 2), the empirical behavior
is consistent with our theory; that is, for a small inverse
temperature � and noise variance �2, both MVS and MVS-
LMC exhibit a substantial improvement over MC. However,
for larger values of � and �, the error of MVS-LMC
essentially reduces to O(T�

1
2), the same order as MC.

We observe that MVS-LMC works particularly well for
the MLP and PSF functions, whose results are shown in
Figures 3 and 4b. While the total samples are split half-by-
half in Algorithm 1 for simplicity, the performance of MVS-
LMC could be further improved in practice by choosing
a problem-dependent split size, similarly to BQ in (Cai,
Lam, and Scarlett 2023). We also note that MVS usually
also works well, indicating that the LMC component is not
always necessary, but the LMC component clearly helps in
some cases (specifically, for MLP and PSF).

Effect of Varying �

Our theoretical results indicate that the complexity of NC
increases with higher values of �. This trend is also observed
empirically, as demonstrated by the MLP plots in Figure 3.
See also Appendix D for additional results of this kind.

7 Conclusion
Our work contributes to the understanding of the estimation
of the normalizing constant for functions in an RKHS, and
provides insights into the relationship between the error
bound, the problem parameter �, and the noise variance
�
2. In general it is still an open question to what extent

our bounds can be improved. Our upper bounds on the
convergence were primarily established using L

1 bounds
in BO, which leads to an extra ⇥(

p
T) factor compared

to our lower bounds. Improvements may be possible if we
can instead build on L

2 function approximation bounds. It
would also be of interest to better understand the squared
exponential (SE) kernel, for which some of our techniques
become infeasible (e.g., the use of disjoint bump functions
in the lower bound).

Acknowledgments
This work was supported by the Singapore National
Research Foundation (NRF) under grant number A-
0008064-00-00.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11156

References
Astudillo, R.; and Frazier, P. 2019. Bayesian optimization
of composite functions. In International Conference on
Machine Learning.
Bakhvalov, N. S. 1959. On the approximate calculation of
multiple integrals. Vestnik MGU, Ser. Math. Mech. Astron.
Phys. Chem, 4: 3–18.
Balasubramanian, K.; Chewi, S.; Erdogdu, M. A.; Salim, A.;
and Zhang, S. 2022. Towards a theory of non-log-concave
sampling: first-order stationarity guarantees for langevin
monte carlo. In Conference on Learning Theory, 2896–
2923. PMLR.
Bingham, D. 2013. Virtual Library of Simulation
Experiments: Test Functions and Datasets. https://www.sfu.
ca/~ssurjano/index.html. Accessed: 2023-08-05.
Boucheron, S.; Lugosi, G.; and Bousquet, O. 2004.
Concentration inequalities. In Summer school on machine
learning, 208–240. Springer.
Brosse, N.; Durmus, A.; and Moulines, É. 2018.
Normalizing constants of log-concave densities. Electronic
Journal of Statistics, 12(1): 851 – 889.
Bull, A. D. 2011. Convergence rates of efficient global
optimization algorithms. Journal of Machine Learning
Research, 12(10).
Cai, X.; Lam, T.; and Scarlett, J. 2023. On average-case error
bounds for kernel-based Bayesian quadrature. Transactions
on Machine Learning Research.
Cai, X.; and Scarlett, J. 2021. On lower bounds for
standard and robust Gaussian process bandit optimization.
In International Conference on Machine Learning, 1216–
1226. PMLR.
Chen, M.-H.; and Shao, Q.-M. 1997. On Monte Carlo
methods for estimating ratios of normalizing constants. The
Annals of Statistics, 25(4): 1563–1594.
Cheng, X.; Chatterji, N. S.; Abbasi-Yadkori, Y.; Bartlett,
P. L.; and Jordan, M. I. 2018. Sharp convergence rates for
Langevin dynamics in the nonconvex setting. arXiv preprint
arXiv:1805.01648.
Chewi, S.; Gerber, P.; Lee, H.; and Lu, C. 2023. Fisher
information lower bounds for sampling. In International
Conference on Algorithmic Learning Theory, 375–410.
PMLR.
Chowdhury, S. R.; and Gopalan, A. 2017. On kernelized
multi-armed bandits. In International Conference on
Machine Learning, 844–853. PMLR.
Desjardins, G.; Bengio, Y.; and Courville, A. C. 2011.
On tracking the partition function. Advances in Neural
Information Processing Systems, 24.
Durmus, A.; and Moulines, É. 2016. High-dimensional
Bayesian inference via the unadjusted Langevin algorithm.
Bernoulli.
Dwivedi, R.; Chen, Y.; Wainwright, M. J.; and Yu, B. 2018.
Log-concave sampling: Metropolis-Hastings algorithms are
fast! In Conference on learning theory, 793–797. PMLR.

Flaxman, S.; Teh, Y. W.; and Sejdinovic, D. 2017.
Poisson intensity estimation with reproducing kernels. In
International Conference on Artificial Intelligence and
Statistics, 270–279. PMLR.
Ge, R.; Lee, H.; and Lu, J. 2020. Estimating normalizing
constants for log-concave distributions: Algorithms and
lower bounds. In ACM SIGACT Symposium on Theory of
Computing, 579–586.
Gelman, A.; and Meng, X.-L. 1998. Simulating normalizing
constants: From importance sampling to bridge sampling to
path sampling. Statistical science, 163–185.
Holzmüller, D.; and Bach, F. 2023. Convergence rates
for non-log-concave sampling and log-partition estimation.
arXiv preprint arXiv:2303.03237.
Kanagawa, M.; and Hennig, P. 2019. Convergence
guarantees for adaptive Bayesian quadrature methods.
Advances in Neural Information Processing Systems, 32.
Kanagawa, M.; Hennig, P.; Sejdinovic, D.; and
Sriperumbudur, B. K. 2018. Gaussian processes and
kernel methods: A review on connections and equivalences.
arXiv preprint arXiv:1807.02582.
Lovász, L.; and Vempala, S. 2006. Fast algorithms for
logconcave functions: Sampling, rounding, integration and
optimization. In IEEE Symposium on Foundations of
Computer Science (FOCS), 57–68. IEEE.
Ma, Y.-A.; Chen, Y.; Jin, C.; Flammarion, N.; and Jordan,
M. I. 2019. Sampling can be faster than optimization.
Proceedings of the National Academy of Sciences, 116(42):
20881–20885.
Marteau-Ferey, U.; Bach, F.; and Rudi, A. 2020. Non-
parametric models for non-negative functions. Advances in
Neural Information Processing Systems, 33: 12816–12826.
Naslidnyk, M.; Gonzalez, J.; and Mahsereci, M. 2021.
Invariant priors for Bayesian quadrature. arXiv preprint
arXiv:2112.01578.
Novak, E. 2006. Deterministic and stochastic error bounds
in numerical analysis, volume 1349. Springer.
Oates, C. J.; Girolami, M.; and Chopin, N. 2017. Control
functionals for Monte Carlo integration. Journal of the
Royal Statistical Society. Series B (Statistical Methodology),
695–718.
Plaskota, L. 1996. Worst case complexity of problems with
random information noise. Journal of Complexity, 12(4):
416–439.
Rasmussen, C. E.; and Williams, C. K. I. 2006. Gaussian
processes for machine learning. Adaptive computation and
machine learning. MIT Press.
Ripley, B. D. 2009. Stochastic simulation. John Wiley &
Sons.
Scarlett, J.; Bogunovic, I.; and Cevher, V. 2017. Lower
bounds on regret for noisy Gaussian process bandit
optimization. In Conference on Learning Theory, 1723–
1742. PMLR.
Srinivas, N.; Krause, A.; Kakade, S. M.; and Seeger,
M. 2010. Gaussian process optimization in the bandit

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11157

setting: no regret and experimental design. In International
Conference on Machine Learning.
Stoltz, G.; Rousset, M.; et al. 2010. Free energy
computations: A mathematical perspective. World
Scientific.
Uhlenbeck, G. E.; and Ornstein, L. S. 1930. On the theory
of the Brownian motion. Physical Review, 36(5): 823.
Vakili, S.; Bouziani, N.; Jalali, S.; Bernacchia, A.; and
Shiu, D.-s. 2021. Optimal order simple regret for Gaussian
process bandits. Advances in Neural Information Processing
Systems, 34: 21202–21215.
Vakili, S.; Khezeli, K.; and Picheny, V. 2021. On
information gain and regret bounds in Gaussian process
bandits. In International Conference on Artificial
Intelligence and Statistics, 82–90. PMLR.
Wendland, H.; and Rieger, C. 2005. Approximate
interpolation with applications to selecting smoothing
parameters. Numerische Mathematik, 101(4): 729–748.
Wynne, G.; Briol, F.-X.; and Girolami, M. 2021.
Convergence guarantees for Gaussian process means
with misspecified likelihoods and smoothness. Journal of
Machine Learning Research, 22.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11158

