TREE-G: Decision Trees Contesting Graph Neural Networks


  • Maya Bechler-Speicher Blavatnik School of Computer Science, Tel-Aviv University
  • Amir Globerson Blavatnik School of Computer Science, Tel-Aviv University
  • Ran Gilad-Bachrach Department of Bio-Medical Engineering and Edmond J. Safra Center for Bioinformatics,Tel-Aviv University



ML: Graph-based Machine Learning


When dealing with tabular data, models based on decision trees are a popular choice due to their high accuracy on these data types, their ease of application, and explainability properties. However, when it comes to graph-structured data, it is not clear how to apply them effectively, in a way that in- corporates the topological information with the tabular data available on the vertices of the graph. To address this challenge, we introduce TREE-G. TREE-G modifies standard decision trees, by introducing a novel split function that is specialized for graph data. Not only does this split function incorporate the node features and the topological information, but it also uses a novel pointer mechanism that allows split nodes to use information computed in previous splits. Therefore, the split function adapts to the predictive task and the graph at hand. We analyze the theoretical properties of TREE-G and demonstrate its benefits empirically on multiple graph and vertex prediction benchmarks. In these experiments, TREE-G consistently outperforms other tree-based models and often outperforms other graph-learning algorithms such as Graph Neural Networks (GNNs) and Graph Kernels, sometimes by large margins. Moreover, TREE-Gs models and their predic tions can be explained and visualized.



How to Cite

Bechler-Speicher, M., Globerson, A., & Gilad-Bachrach, R. (2024). TREE-G: Decision Trees Contesting Graph Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 38(10), 11032-11042.



AAAI Technical Track on Machine Learning I