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Abstract

Exploring biologically plausible algorithms as alternatives to
error backpropagation (BP) is a challenging research topic
in artificial intelligence. It also provides insights into the
brain’s learning methods. Recently, when combined with
well-designed feedback loss functions such as Local Differ-
ence Reconstruction Loss (LDRL) and through hierarchical
training of feedback pathway synaptic weights, Target Prop-
agation (TP) has achieved performance comparable to BP
in image classification tasks. However, with an increase in
the number of network layers, the tuning and training cost
of feedback weights escalates. Drawing inspiration from the
work of Ernoult et al., we propose a training method that
seeks the optimal solution for feedback weights. This method
enhances the efficiency of feedback training by analytically
minimizing feedback loss, allowing the feedback layer to skip
certain local training iterations. More specifically, we intro-
duce the Jacobian matching loss (JML) for feedback training.
We also proactively implement layers designed to derive an-
alytical solutions that minimize JML. Through experiments,
we have validated the effectiveness of this approach. Using
the CIFAR-10 dataset, our method showcases accuracy lev-
els comparable to state-of-the-art TP methods. Furthermore,
we have explored its effectiveness in more intricate network
architectures.

Introduction
Backpropagation (BP) (Rumelhart, Hinton, and Williams
1986) provides an efficient and feasible method for deep
learning to train complex neural network models and has
significantly contributed to the growth of the neural net-
work domain. However, BP has been criticized since its
widespread use as a biologically implausible algorithm be-
cause of its difficulty in making connections with the learn-
ing process of the human brain (Crick 1989; Roelfsema and
Ooyen 2005). An issue with BP is pointed out that it lacks
the utilization of local information (Lillicrap et al. 2020).
Developing biologically plausible algorithms is important,
not only to improve machine learning techniques but also to
enhance our understanding of how the brain functions.

Former studies (Lillicrap et al. 2016; Nøkland 2016) have
adjusted the backpropagation path, using a random matrix to
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Figure 1. Illustration of the proposed model architecture.
Minimizing JMLs provides G∗, the analytical feedback
function, thereby avoiding the need for training the feedback
network and enhancing the training efficiency of target prop-
agation. See Section for variable definitions.

propagate errors. These studies highlighted that a fixed ran-
dom matrix can indeed support learning in neural networks,
indicating that symmetric weight matrices in backpropaga-
tion might not be essential. However, follow-up studies (Bar-
tunov et al. 2018; Launay et al. 2020) have suggested that,
while this approach works for simpler tasks, it struggles
when applied to more complex ones.

Target propagation (TP) (LeCun 1986; Le Cun, Galland,
and Hinton 1988; Bengio 2014) is a biologically more plau-
sible feedback algorithm than the error backpropagation
which updates network parameters with layer-wise local
loss. Many studies have shown that TP and its variants are
effective for training deep neural networks (Bengio 2014;
Lee et al. 2015; Ororbia and Mali 2019; Meulemans et al.
2020; Ernoult et al. 2022; Manchev and Spratling 2020).
However, there is still room for improvement in the effi-
ciency of training feedback networks. Similar to a series of
work on Local Representation Alignment (LRA) (Ororbia
et al. 2018; Ororbia and Mali 2019; Ororbia et al. 2020),
the fixed-weight feedback network (Shibuya et al. 2023) that
omits feedback parameter updates is the most efficient TP
algorithm but it does not perform as well as BP.

In deep neural networks, a fundamental difficulty of feed-
back training is caused by the complexity of feedforward
architectures. For example, even with simple convolutional
networks such as VGGNet (Simonyan and Zisserman 2015)
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and ResNet (He et al. 2016), feedback training for convo-
lutional layers and pooling layers is not easy even with the
difference target propagation (Lee et al. 2015) because their
feedback architectures are nontrivial. Further, as the num-
ber of layers increases, feedback training with these layers
tends to become unstable. This makes it difficult to scale TP
algorithms.

In this paper, we propose a way to derive analytical so-
lutions for feedback functions for TP algorithms. The key
idea to improve efficiency is the use of the analytical solu-
tions to the minimization problem with Jacobian matching
losses (JMLs) to skip feedback training iterations. Our main
contributions are summarized as follows.
1. We introduce JMLs between the feedforward and feed-

back functions and Jacobian matching conditions (JMCs)
that help to analyze TP algorithms. The computational
flow of feedforward and feedback functions is illustrated
in Figure 1. We discuss the relation between JMLs/JMCs
and TP algorithms.

2. We derive the analytical solutions to the JML minimiza-
tion problems for commonly used layers such as convo-
lutional layers, fully-connected layers, LayerNorm, etc.

3. We conduct experiments with LeNet (LeCun et al. 1989),
Simplified-VGG (a simplified version of VGGNet (Si-
monyan and Zisserman 2015)), MLPMixer (Tolstikhin
et al. 2021) on MNIST, Fashion-MNIST and CIFAR-10
datasets. We show that our proposal improves training ef-
ficiency by using the analytical solution for the feedback
networks, avoiding the iterative training process. The ac-
curacy of our method is on par with the state-of-the-art
TP methods.

Related Work
Improving the biological plausibility of training algorithms
is a challenging and fundamental research direction in the
field of artificial intelligence and machine learning. In the
past decade, Target propagation (TP) algorithms have been
one of the most successful approaches from both biologi-
cal and practical perspectives with their applications to deep
neural networks.

The basic idea of TP that propagate targets was proposed
in 1980s (LeCun 1986; Rohwer 1989). To make TP work
with deep neural networks, difference target propagation
(DTP) (Lee et al. 2015) has been a breakthrough approach,
in which the difference correction mechanism is introduced
to resolve the interference of reconstruction errors with tar-
get updates. There have been many variants of DTP. For in-
stance, DTP-Sigma (Ororbia and Mali 2019), SDTP (Bar-
tunov et al. 2018), GaitProp (Ahmad, van Gerven, and Am-
brogioni 2020), DRL (Meulemans et al. 2020; Bengio 2020)
have been proposed; however, it remains a question whether
the feedback network can be properly learned.

Most recently, Ernoult et al. (2022) have shown that DTP
with local difference reconstruction loss (LDRL) performs
comparable with BP, achieving 89% in classification accu-
racy on the CIFAR-10 dataset with a VGG-like architecture.
However, feedback training is computationally expensive.
FWDTP (Shibuya et al. 2023) that fixes feedback weights

is an efficient counterpart but it does not perform as well as
BP in terms of image classification accuracy. In contrast to
these previous studies focusing on training algorithms, this
work mainly focuses on the feedback architectures that im-
prove the efficiency of DTP.

Target Propagation Algorithms
Given an input vector x, we define a feedforward architec-
ture F as follows:

F(x) = FN−1 ◦ FN−2 ◦ · · ·F0(x), (1)

where N is the number of layers and Fn : Rdn → Rdn+1

is the feedforward function at the nth layer. We denote
by θn ∈ Rpn , where θn is the flatten parameter vector
of Fn and pn is a number of the parameters. Feedforward
activations are inductively defined as follows:

hn =

{
x (n = 0)

Fn−1(hn−1) (n = 1, 2, · · · , N)
. (2)

Note that we have two Jacobian matrices1:

∂hn
Fn ∈ Rdn+1×dn , ∂θnFn ∈ Rdn+1×pn . (3)

This study considers supervised learning with a global
loss functionLN (hN , y) where y is the target (ground truth).
The goal is to find feedforward parameters θ = {θn}N−1

n=0
that minimize the global loss.

Target Propagation (Bengio 2014) For feedback propa-
gation, TP uses the following targets:

tn =

{
hN − β∂hN

L (n = N)

Gn(tn+1) (n = N − 1, · · · , 0) , (4)

where Gn : Rdn+1 → Rdn is a feedback function and β ∈ R
is a hyperparameter. We denote by ωn the flattened param-
eter vector of the function Gn. With TP, the feedforward
parameters θn are updated by minimizing the local mean
squared error (MSE) loss:

Ln(θn) =
1

2β
∥tn+1 − hn+1∥2, (5)

where the target tn+1 is treated as a constant when comput-
ing the gradient. The feedback parameters ωn are updated
by minimizing the local reconstruction loss (LRL):

L̂LRL
n,ϵ (ωn) =

1

2
∥rn,ϵ − hn,ϵ∥2, (6)

where hn,ϵ = hn + ϵ is a noisy activation, ϵ ∼ N (0, σ2I)
is a Gaussian noise, and rn,ϵ = Gn ◦ Fn(hn,ϵ) is the locally
reconstructed activation.

Difference Target Propagation (Lee et al. 2015) To sta-
bilize training with non-invertible feedforward functions,
DTP introduces difference correction by which targets are
propagated as follows:

tn =

{
hN − β∂hN

L (n = N)

G̃n(tn+1;hn) (n = N − 1, · · · , 0) , (7)

1∂hnFn indicates ∂
∂hn

Fn(hn).
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Algorithm 1: Local Difference Reconstruction Loss (LDRL)

1: for n = 1 to L do
2: Training feedback mapping of layer n
3: for i = 1 to N do
4: hn+1 = Fn(hn)
5: ϵ, η ∼ N (0, σ2I)
6: r̂n,ϵ = Gn(Fn(hn + ϵ ))−Gn ◦ Fn(hn) + hn

7: r̃n,η = Gn(Fn(hn) + η)−Gn ◦ Fn(hn) + hn

8: Update feedback weights by using L̂LDRL
n,ϵ,η .

9: end for
10: end for

where

G̃n(tn+1;hn) = Gn(tn+1) + hn −Gn ◦ Fn(hn) (8)

is the difference correction function. To update parameters,
the local losses in Eqs. (5, 6) are used in the same way as TP.

Fixed-Weight Difference Target Propagation (Shibuya
et al. 2023) Fixed-Weight Difference Target Propagation
(FWDTP) is defined as an algorithm that does not use re-
construction loss for updating feedback weights in DTP.
All feedback weights are first randomly initialized and then
kept constant during training. This research has shown that
FWDTP is effective in propagating target values and elimi-
nates the need for the feedback network training process.

Local Difference Reconstruction Loss (Ernoult et al.
2022) To bridge the gap between TP and BP, local differ-
ence reconstruction loss (LDRL) has been found helpful (see
Algorithm 1). It is defined by the sum of two loss functions:

L̂LDRL
n,ϵ,η = L̂IP

n,ϵ + L̂RR
n,η, (9)

where

L̂IP
n,ϵ(ωn) = −ϵ⊤ · (r̂n,ϵ − hn), (10)

L̂RR
n,η(ωn) =

1

2
∥r̃n,η − hn∥2. (11)

Note that LDRL is used with DTP targets in Eq. (7). Feed-
back parameters are updated to minimize the layer-wise
LDRL. Minimizing the LDRL ensures that the Jacobian of
the feedback network converges to the transposed Jacobian
of the feedforward network; thus, it approximates backprop-
agation gradients.

Although the LDRL algorithm shows an accuracy com-
parable to BP on the CIFAR-10 dataset, during the feedback
path training process, to ensure the correct relationship be-
tween the Jacobian matrix of forward and backpropagation,
the algorithm needs to traverse each layer multiple times.
This approach may increase training time and complexity of
parameter tuning.

Assigning Analytical Solution Instead of
Training the Feedback Parameters

In this section, we define Jacobian matching losses (JMLs)
between the feedforward function Fn and feedback function

Gn for feedback training. We also define Jacobian match-
ing conditions (JMCs) that help to analyze TP algorithms,
and show the relation between JMLs/JMCs and conventional
feedback loss functions we described in Section 3. Based
on the different JMLs defined below, to address the lengthy
training time of feedback path, we propose a method to up-
date the parameters of each layer using an analytical solu-
tion, thereby bypassing traditional training methods for the
feedback network.

Jacobian Matching Loss
Definition 1 (IJML) Suppose that Jacobian ∂hn

Fn is a
regular matrix. We define the inverse Jacobian matching loss
(IJML) as follows:

J I(Gn, Fn) ≜
∥∥∥∂hn+1

Gn − (∂hn
Fn)

−1
∥∥∥
F
, (12)

where ∥A∥F is the Frobenius norm of a matrix A. We say
that the feedback function Gn satisfies inverse Jacobian
matching condition (IJMC) w.r.t Fn iff J I(Gn, Fn) = 0.

Definition 2 (PJML) We define the pseudo-inverse Jaco-
bian matching loss (PJML) as follows:

J P (Gn, Fn) ≜
∥∥∥∂hn+1

Gn − (∂hn
Fn)

†
∥∥∥
F
, (13)

where A† is the Moore-Penrose inverse of A. We say that
Gn satisfies the pseudo-inverse Jacobian matching condi-
tion (PJMC) w.r.t Fn iff J P (Gn, Fn) = 0.

Definition 3 (TJML) We define the transposed Jacobian
matching loss (TJML) as follows:

J T (Gn, Fn) ≜
∥∥∥∂hn+1Gn − (∂hnFn)

⊤
∥∥∥
F
. (14)

We say that Gn satisfies the transposed Jacobian matching
condition (TJMC) w.r.t Fn iff J T (Gn, Fn) = 0.

The relation between JMCs and feedback losses used in TP
algorithms can be explained by the following propositions.
Note that Prop. 2 and Prop. 3 are inspired by the works
of DRL (Meulemans et al. 2020) and LDRL (Ernoult et al.
2022).

Proposition 1 Suppose that the constant terms of Fn and
Gn are zero. IJMC is satisfied iff LRL is zero, i.e.,

∀ϵ L̂RL
n,ϵ = 0 ⇐⇒ J I(Gn, Fn) = 0. (15)

Proposition 2 PJMC is satisfied iff the expectation of the
DRL converges to zero as the variance of noise approaches
zero, i.e.,

lim
σ→0

1

σ2
Eϵ,η

[
L̂DRL
n

]
= 0 ⇐⇒ J P

n (ωn) = 0, (16)

where ϵ ∼ N (0, σ2).

Proposition 3 TJMC is satisfied iff the expectation of the
LDRL converges to zero as the variance of noise approaches
zero, i.e.,

lim
σ→0

1

σ2
Eϵ,η

[
L̂LDRL
n

]
= 0 ⇐⇒ J T

n (ωn) = 0, (17)

where ϵ, η ∼ N (0, σ2).
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Algorithm 2: Analytical Feedback Function

Require: Learning Rate αf , Stepsize β, Loss L,
Parameters of feedforward function Wf

1: Compute all activations
2: for n = 1 to L do
3: hn+1 = Fn(hn)
4: end for
5: Solving analytical solution for feedback function
6: for n = L− 1 to 2 do
7: G∗

n = argmin
H

J ∗(H,Fn)

8: end for
9: Compute first target tL ← hL − β∇hL

L(hL, y)
10: for n = L− 1 to 1 do
11: tn ← G∗

n+1(tn+1) + hn −G∗
n+1(hn+1)

12: end for
13: Training feedforward function
14: for n = 1 to L do
15: L = ∥hn − tn∥22
16: Wf ←Wf − αf∇Wf

L
17: end for

Proposed Method
To improve the training efficiency of the feedback network,
the key idea lies in how to optimize the training process.
Specifically, we define a training rule that uses the analytical
feedback function G∗

n to update the feedback parameters, al-
lowing us to bypass certain training steps. This rule uses ana-
lytical solutions obtained by solving the minimization prob-
lem with JMLs. We define analytical feedback functions as
follows.

Definition 4 (Analytical feedback function) Given a feed-
forward function Fn, feedback function H , we define a feed-
back function that minimizes JMLs as follows:

G∗
n = argmin

H
J ∗(H,Fn), (18)

where ∗ ∈ {I, P, T} and J ∗ is JML (Definitions 1 to 3).
Algorithm 2 represents our proposed method. Our proce-

dure is divided into the following steps: Initially, we calcu-
late the activation for each layer. Subsequently, we establish
the feedback network that minimizes the JML as described
by the analytical feedback function in Eq. (18). Finally, we
compute the target for each layer and update the forward net-
work parameters. Since each layer of the feedback network
updates the parameters based on the solutions of Eq. (18),
we no longer need to compute feedback loss. Therefore, the
efficiency of network parameter training is greatly improved.
However, solving Eq. (18) is not always straightforward.

Limitations of Analytical Feedback Update
The time complexity of matrix inversion and the require-
ment of matrix invertibility will impose many constraints on
the architecture of the network.

Time Complexity Inverting large matrices is computa-
tionally expensive. PyTorch uses SVD for matrix inversion,
and the time complexity depends on the matrix size and the
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Figure 2. The relationship between the dimensions of the
input matrix and the calculation time for solving the corre-
sponding inverse, pseudo-inverse and transpose matrices.

algorithm used. When n is close to m in an m × n matrix,
the complexity can reach O(n3). IJMC and PJMC methods
involve frequent matrix inversions, significantly increasing
training time. Figure 2 shows the matrix dimension effects
on the inverse, pseudo-inverse, and transpose matrix calcu-
lations. Square matrices n× n (100 ≤ n ≤ 500) were used.
As can be seen, the transpose matrix calculation was fast,
while inverse and pseudo-inverse computation times grew
exponentially. This result highlights the time-consuming na-
ture of matrix inversion in PJMC and IJMC methods, which
use pseudo-inverse and inverse solutions, respectively.

Matrix Invertibility An invertible matrix must have a
non-zero determinant, which constrains the alignment of in-
put and output dimensions in neural networks. Networks
with matching dimensions are often suited for tasks like di-
mensionality reduction and restoration, potentially limiting
their ability to capture complex data patterns. Furthermore,
changing input and output dimensions poses challenges in
designing the feedback function. Therefore, our method ex-
clusively focuses on the TJMC case in subsequent sections.

Deriving Analytical Solutions for Feedback
Functions of TP

In this section, we explore the feedback network architec-
tures of common network layers under the TJMC for tar-
get propagation. We specifically choose LeNet (LeCun et al.
1989), Simplified-VGG, and MLPMixer (Tolstikhin et al.
2021) to verify the effectiveness of our newly introduced
method. The layers in these networks cover the most com-
mon layers used in image classification. Below, we indi-
vidually analyze the architecture of each network, as well
as the analytical solutions for their corresponding feedback
paths. Note that skip connection is omitted following previ-
ous studies of TP algorithms (Lee et al. 2015; Meulemans
et al. 2020; Ernoult et al. 2022) but we delve into an empiri-
cal analysis of them in the experiments.
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Analytical Solutions of Feedback Path for
Common Layers
Let x be the input to the network layer. The function of the
feedforward layer is denoted as F . Given an analytical so-
lution that satisfies TJMC, the corresponding feedback net-
work layer can be defined in G∗.

Convolution Layer The feedforward and feedback paths
of the convolution layer can be defined as follows:

FConv(x) = WConv ∗ x, (19)
G∗

Conv(x) = ROT(WConv) ∗ x, (20)

where ∗ represents the convolution operation, and ROT de-
notes the rotation of the convolution kernel by 180 degrees.
Note that when the number of input channels and the num-
ber of output channels are different, we need to rearrange the
relative positions of each channel of convolution kernels.

MaxPooling Layer Due to the different dimensions of the
feedforward and feedback Jacobian matrices, finding an an-
alytical solution for the weights of the feedback network is
not straightforward. To reduce the discrepancy between the
input matrix and its reconstructed counterpart following the
feedback function, we utilize the MaxUnpool function:

FMaxPool(x) = MaxPool(x), (21)
G∗

MaxPool(x) = MaxUnpool(x). (22)

The MaxUnpool function uses the output of MaxPool and
the index of the maximum value, to reconstruct the original
matrix (Badrinarayanan, Kendall, and Cipolla 2017).

Fully-connected Layer The feedforward and feedback
paths of fully-connected (FC) layer can be defined as

FFC(x) = Wx, (23)

G∗
FC(x) = W⊤x, (24)

where the parameters of the feedback network layer are de-
fined as the transpose of the parameters of the forward layer.

Activation Function The feedforward and feedback paths
of element-wise activation functions can be defined as

FAct(x) = σ(x), (25)
G∗

Act(x) = ς(x), (26)

where

ς(x) =

∫
σ′(σ−1(x))dx. (27)

LeakyReLU (Xu et al. 2015) is used as the default activa-
tion function because GELU (Hendrycks and Gimpel 2016),
used in the original MLP-Mixer, is not invertible.

Hadamard Product of Activation Function To enhance
stability, we modified the feedback process of the original
activation function in MLP-Mixer. We added an Hadamard
Product to achieve better performance in the feedback path:

FAct(x) = σ(x), (28)

G∗
Act(x) = σ(σ

′
(x)⊙ t), (29)

where t represents the target input for the feedback path, and
x denotes the input for the feedforward path.

LayerNorm Layer Here we formulate LayerNorm by de-
composing it into mean normalization FMean and standard-
deviation (SD) normalization FSD as follows:

FNorm(x) = FSD ◦ FMean(x). (30)

Mean normalization is defined as:

FMean(x) = Wx, W = I − 1

dn
1, (31)

where I is the identity matrix and 1 is the square matrix
with all elements equal to one. The feedback path of mean
normalization can be defined as:

G∗
Mean(x) = Wx. (32)

SD normalization is defined as:

FSD(x) =
1√
s
x, s =

1

d2
x⊤x. (33)

The feedback function for SD normalization is defined as:

G∗
SD(x; s) =

1√
s
x. (34)

Here, s is obtained from Eq. (33) and needs to be frozen;
that is, the standard deviation s is computed in the feedfor-
ward path and reused in the feedback path. This technique is
similar to difference correction (Lee et al. 2015) in Eq. (7).
Therefore, the feedback path of LayerNorm can be defined
as follows:

G∗
Norm(x) = G∗

Mean(x) ◦G∗
SD. (35)

Global Average Pooling The feedforward and feedback
paths of the global average pooling (GAP) layer can be de-
fined as follows:

FGAP(x) =
1

dn
1⊤x, (36)

GGAP(x) =
1

dn
1x, (37)

where 1 is the square matrix with all elements equal to one.

Skip Connection The feedforward and feedback paths of
the skip connection layer can be defined as follows:

FSkip(x) = f(x) + x (38)
G∗

Skip(x) = g∗(x) + x (39)

where f and g∗ satisfy the TJMC.

Composite Function Suppose the Composite Function in
the feedforward path can be written as follows:

FCom(x) = f2 ◦ f1(x), (40)

its corresponding feedback network can be written as fol-
lows:

G∗
Com(x) = g∗1 ◦ g∗2(x), (41)

where g∗1 and g∗2 satisfy TJMC w.r.t. f1 and f2 respectively.
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Block Architecture
In LeNet and Simplified-VGG, the basic block consists of
only two functions:

FBlock = FMaxPool ◦ FConv, (42)

where FConv represents the Convolution Layer, FMaxPool is
MaxPooling layer. Similarly, its corresponding feedback
block also consists of two functions:

G∗
Block = G∗

Conv ◦G∗
MaxPool, (43)

where G∗
Block serves as a fundamental unit for propagating

the target forward through the DTP algorithm.
In MLPMixer, the basic block comprises two parts: Chan-

nel MLP and Spatial MLP, each with its corresponding skip
connection. The skip connection also plays a fundamental
role within the DTP algorithm.

Channel MLP The block composed of Channel MLP
consists of four feedforward functions, and it can be defined
as follows:

FChannel(x) = FFC ◦ FAct ◦ FFC ◦ FNorm(x) + x, (44)

and its corresponding feedback block can be defined as fol-
lows:

G∗
Channel(x) = G∗

Norm ◦G∗
FC ◦G∗

Act ◦G∗
FC(x) + x. (45)

Spatial MLP In addition to the transpose operation, the
block composed of Spatial MLP consists of three feedfor-
ward functions, and it can be defined as follows:

FSpatial(x) = FAct ◦ FFC ◦ FNorm(x) + x, (46)

here the expression of transpose has been omitted. Its corre-
sponding feedback block can be defined as follows:

G∗
Spatial(x) = G∗

Norm ◦G∗
FC ◦G∗

Act(x) + x, (47)

where G∗
Channel and G∗

Spatial serve as two fundamental units
for propagating the target forward through the DTP algo-
rithm.

Experiments
In this section, we evaluate the effectiveness of our proposal
using the LeNet, Simplified-VGG, and MLPMixer models
on the MNIST, Fashion-MNIST (FMNIST), and CIFAR-10
datasets. In terms of training time, we plan to benchmark our
proposal against the LDRL method (Ernoult et al. 2022).

Network Architecture In the experiments, we used
LeNet, Simplified-VGG, and MLPMixer to validate our pro-
posal. In Section 5, we have introduced the fundamental
unit of the DTP algorithm for LeNet and Simplified-VGG.
This unit, crucial for delivering the target value, combines a
convolution layer with MaxPooling. The LeNet architecture
comprises two sets of fundamental units followed by fully
connected layers. The Simplified-VGG architecture com-
prises five groups of these basic units. For these architec-
tures, the convolution kernel size in LeNet is 5 × 5, while
in Simplified-VGG, it is 3× 3. The MLPMixer architecture
comprises an embedding layer, along with two fundamental
units and the mean layer.

Note that the mean layer in MLPMixer serves the same
function as the previously analyzed Global Average Pooling
(GAP) layer in Section 5. Thus, its feedforward and feed-
back functions align with those of GAP. Furthermore, the
Mean layer also acts as a fundamental unit for propagating
the target forward through the DTP algorithm. However, a
key distinction is the absence of learnable parameters in the
mean layer, allowing the training step to be skipped.

Comparison with SOTA on LeNet and Simplified-VGG
This experiment compares our method with state-of-the-art
TP algorithms, LDRL (Ernoult et al. 2022) and FWDTP
(Shibuya et al. 2023) on LeNet and Simplified-VGG. We
used MNIST, FMNIST, and CIFAR-10 datasets to report im-
age classification accuracy and speed-up ratio of feedback
training.

Tables 1 and 2 detail the performance metrics and ex-
perimental results of our proposal, respectively. When val-
idated with the LeNet, our proposal achieves accuracy on
par with and even surpasses the state-of-the-art TP meth-
ods, and reduces the training time of the network by approx-
imately 60% while achieving 93% on MNIST dataset. For
the results of Simplified-VGG, in Table 2, our proposal out-
performs LDRL in terms of training accuracy. The higher
training accuracy can be attributed to the analytical solution
of the feedback network we defined, which promotes faster
convergence. However, comparing the results with test accu-
racy, our method maintains a competitive performance, but
overfitting may have occurred. When compared with LDRL
in terms of training speed, our method greatly reduces the
training time by approximately 75%.

Comparison with SOTA on MLPMixer This experiment
compares our method with other TP algorithms on MLP-
Mixer. We used CIFAR-10 dataset to report image classifi-
cation accuracy and the speed-up ratio of feedback training.

In our experiments with the LDRL method, we utilized
the skip connection as the fundamental unit, as defined in
Section 5.4, for target propagation with DTP. We observed
that its accuracy was lower than the results presented in Ta-
ble 3. Therefore, exclusively in the LDRL method, we em-
ployed the feedback block as a unit for reverse target value
transfer, which comprises two skip connections.

The results presented in Table 3 also clearly verify the ef-
fectiveness of our proposal. In terms of accuracy, our method
outperforms other state-of-the-art target propagation meth-
ods with fast training speed, reducing the training time by
approximately 75%.

Conclusion and Discussion
In this study, our main goal is to improve the training effi-
ciency of target propagation feedback networks, i.e., to re-
duce the training duration while maintaining or surpassing
the performance of state-of-the-art target propagation algo-
rithms. To achieve this goal, we have presented a method to
update the parameters of the feedback network using the an-
alytical solution. We analyze the network layer by layer and
provide solutions for common layers. Our experiments ver-
ify that the proposed TJMC method satisfies these criteria.
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Method MNIST FMNIST CIFAR-10
Train Test Speed Train Test Speed Train Test Speed

LDRL (Ernoult 22) 100.0±0.00 99.3±0.0599.3±0.0599.3±0.05 ×1.00 100.0±0.00 90.7±0.26 ×1.00 98.2±2.48 74.7±0.60 ×1.00
FWDTP (Shibuya 23) 100.0±0.00 98.6±0.04 ×3.57 98.1±1.47 88.3±0.18 ×25.00 80.1±1.92 66.5±0.63 ×10.00
TJML-DTP (Ours) 100.0±0.00 99.3±0.0599.3±0.0599.3±0.05 ×3.45 100.0±0.00 91.4±0.0791.4±0.0791.4±0.07 ×14.29 100.0±0.00 76.7±0.2276.7±0.2276.7±0.22 ×3.45

Back Propagation 100.0±0.00 99.3±0.02 - 100.0±0.00 92.7±0.17 - 100.0±0.00 81.4±0.13 -

Table 1. Comparison on LeNet. Accuracies and relative training speed on MNIST, FMNIST and CIFAR-10 are reported. We
report results with LDRL (Ernoult et al. 2022), FWDTP (Shibuya et al. 2023) and our analytical feedback method (TJML-DTP).
All results are averaged over five different seeds.

Method Train Test Speed

LDRL (Ernoult 22) 98.7±0.65 89.5±0.5489.5±0.5489.5±0.54 ×1.00
FWDTP (Shibuya 23) 77.5±1.72 62.4±0.56 ×5.88
TJML-DTP (Ours) 100.0±0.00 85.2±0.21 ×5.00
Back Propagation 100.0±0.00 89.0±0.22 -

Table 2. Comparison on Simplified-VGG. Accuracies and
training speed on CIFAR-10 are reported. All results are av-
eraged over five different seeds.

Below, we summarize the effectiveness of our proposal as
well as other possible approaches and future work on speed-
ing up the feedback function.

Effectiveness of JMCs We demonstrate how our studies
relate to previous research, highlighting our method’s ef-
fectiveness. IJMC stems from TP’s basic definition, using
an ideally perfect inverse feedback network to inform its
design. PJMC, to a certain extent, references the research
conclusions of DRL. Meulemans et al. (Meulemans et al.
2020) noted that when utilizing DRL functions to train feed-
back networks and using DTP to transfer the target and train
the feedforward function parameters, the parameter update
can meet the Gauss-Newton optimization. PJMC synthe-
sized these conclusions. TJMC is drawn from the findings
of LDRL. Ernoult et al. (Ernoult et al. 2022) explored the
connection between TP and BP based on the work of Meule-
mans et al., and pointed out that LDRL is proposed to train
the feedback network parameters, ensuring that the Jacobian
of the feedforward function and the feedback function sat-
isfy the transposition relationship. When using DTP to trans-
fer the target and train the parameters of the feedforward
function, the parameter update is then linked to BP. TJMC
is derived from these conclusions and demonstrated the best
results.

Relation between TJMC and BP Backpropagation in-
volves a two-step process. It first obtains the output of the
network through feedforward function, then it uses this out-
put in the backpropagation step to calculate gradients and
subsequently update the parameters of each layer. On the
other hand, the rationale behind target propagation is to gen-
erate a target for each layer instead of directly computing the
gradient of each individual weight. But the weights of each

Method Train Test Speed

LDRL (Ernoult 22) 55.9±1.13 37.3±1.48 ×1.00
FWDTP (Shibuya 23) 81.6±1.30 56.1±0.35 ×4.17
TJML-DTP (Ours) 80.2±3.17 56.9±0.4956.9±0.4956.9±0.49 ×4.00
Back Propagation 81.8±0.71 69.1±0.52 -

Table 3. Comparison on MLPMixer. Accuracies and training
speed on CIFAR-10 are reported. All results are averaged
over five different seeds.

Method Test

Reversible Structure 42.8±0.18

TJML-DTP (Ours) 56.9±0.4956.9±0.4956.9±0.49

Table 4. Comparison with reversible structure. An MLP-
Mixer architecture is used. CIFAR-10 test accuracies are re-
ported.

layer are updated based on its corresponding target using
backpropagation so that the output of the layer is consistent
with that target. Our proposed TJMC method is designed to
bypass the training of the feedback function, thereby accel-
erating the overall training process. While the feedforward
and feedback function aligns with the TJMC, the resultant
activation updates might seem akin to those in the backprop-
agation process. However, at its core, it adheres to the fun-
damental principle of target propagation, which is to update
the weights according to the target value of each layer, rather
than directly computing the gradient of each weight.

Further exploration We have explored replacing the for-
ward pass with a reversible structure (Dinh, Krueger, and
Bengio 2014; Dinh, Sohl-Dickstein, and Bengio 2016;
Kingma and Dhariwal 2018) to skip feedback training. En-
suring the consistency of input and output dimensions within
this reversible structure is crucial. We conducted an exper-
iment using a network with four MLPMixer feedforward
blocks, transforming it into a reversible structure. The ex-
perimental results are shown in Table 4. The performance
has not reached the state of the art, but the use of reversible
structure with our method is an interesting future direction.
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