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Abstract

Federated learning has become a popular method to learn
from decentralized heterogeneous data. Federated semi-
supervised learning (FSSL) emerges to train models from a
small fraction of labeled data due to label scarcity on decen-
tralized clients. Existing FSSL methods assume independent
and identically distributed (IID) labeled data across clients
and consistent class distribution between labeled and unla-
beled data within a client. This work studies a more practi-
cal and challenging scenario of FSSL, where data distribu-
tion is different not only across clients but also within a client
between labeled and unlabeled data. To address this chal-
lenge, we propose a novel FSSL framework with dual reg-
ulators, FedDure. FedDure lifts the previous assumption with
a coarse-grained regulator (C-reg) and a fine-grained regula-
tor (F-reg): C-reg regularizes the updating of the local model
by tracking the learning effect on labeled data distribution;
F-reg learns an adaptive weighting scheme tailored for unla-
beled instances in each client. We further formulate the client
model training as bi-level optimization that adaptively opti-
mizes the model in the client with two regulators. Theoreti-
cally, we show the convergence guarantee of the dual regula-
tors. Empirically, we demonstrate that FedDure is superior to
the existing methods across a wide range of settings, notably
by more than 11% on CIFAR-10 and CINIC-10 datasets.

Introduction
Federated learning (FL) is an emerging privacy-preserving
machine learning technique (McMahan et al. 2017), where
multiple clients collaboratively learn a model under the co-
ordination of a central server without exchanging private
data. It has empowered a wide range of applications, includ-
ing healthcare (Kaissis et al. 2020; Li et al. 2019), consumer
products (Hard et al. 2018; Niu et al. 2020), and etc.
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Figure 1: Existing federated semi-supervised learning
(FSSL) methods cannot address heterogeneity between la-
beled and unlabeled data within a client (internal imbalance)
and heterogeneous data across clients (external imbalance);
some of them are even worse than supervised FL using 10%
data (green line, which is FedAvg* in Table 1). Our proposed
FedDure significantly outperforms existing methods. These
experiments are based on three runs on CIFAR-10 and we
provide more description in Section Experiments.

The majority of existing FL works (McMahan et al. 2017;
Wang et al. 2020; Li, He, and Song 2021) assume that the
private data in clients are fully labeled, but the assump-
tion is unrealistic in real-world federated applications as an-
notating data is time-consuming, laborious, and expensive.
To remedy these issues, federated semi-supervised learn-
ing (FSSL) is proposed to improve model performance with
limited labeled and abundant unlabeled data on each client
(Jin et al. 2020a). In particular, prior works (Jeong et al.
2021; Liu et al. 2021) have achieved competitive perfor-
mance by exploring inter-client mutual knowledge. How-
ever, they usually focus on mitigating heterogeneous data
distribution across clients (external imbalance) while as-
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suming that labeled and unlabeled training data are drawn
from the same independent and identical distribution. These
assumptions enforce strict requirements of data annotation
and would not be practical in many real-world applications.
A general case is that labeled and unlabeled data are drawn
from different distributions (internal imbalance). For ex-
ample, photo gallery on mobile phones contains many more
irrelevantly unlabeled images than the ones that are labeled
manually for classification task (Yang et al. 2011).

Existing FSSL methods perform even worse than training
with only a small portion of labeled data, under this real-
istic and challenging FSSL scenario with external and in-
ternal imbalances, as shown in Figure 1. The main reasons
of performance degradation are two-fold: 1) internal imbal-
ance leads to intra-client skewed data distribution, resulting
in heterogeneous local training; 2) external imbalance leads
to inter-client skewed data distribution, resulting in client
drift (Charles and Konečnỳ 2021; Karimireddy et al. 2020).
The co-occurrence of internal and external data imbalances
amplifies the impact of client drifts and local inconsistency,
leading to performance degradation.

To address the above issues, we propose a new federated
semi-supervised learning framework termed FedDure. Fed-
Dure explores two adaptive regulators, a coarse-grained reg-
ulator (C-reg) and a fine-grained regulator (F-reg), to flex-
ibly update the local model according to the learning pro-
cess and outcome of the client’s data distributions. Firstly,
C-reg regularizes the updating of the local model by track-
ing the learning effect on labeled data. By utilizing the
real-time feedback from C-reg, FedDure rectifies inaccurate
model predictions and mitigates the adverse impact of inter-
nal imbalance. Secondly, F-reg learns an adaptive weight-
ing scheme tailored for each client; it automatically equips a
soft weight for each unlabeled instance to measure its con-
tribution. This scheme automatically adjusts the instance-
level weights to strengthen (or weaken) its confidence ac-
cording to the feedback of F-reg on the labeled data to fur-
ther address the internal imbalance. Besides, FedDure miti-
gates the client drifts caused by external imbalance by lever-
aging the global server model to provide guidance knowl-
edge for C-reg. During the training process, FedDure uti-
lizes the bi-level optimization strategy to alternately update
the local model and dual regulators in local training. Fig-
ure 1 shows that FedDure significantly outperforms existing
methods and its performance is even close to fully super-
vised learning (orange line) under internal and external im-
balance. To the end, the main contributions are three-fold:

• We are the first work that investigates a more practical
and challenging scenario of FSSL, where data distribu-
tion differs not only across clients (external imbalance)
but between labeled and unlabeled data within a client
(internal imbalance).

• We propose FedDure, a new FSSL framework that de-
signs dual regulators to adaptively update the local model
according to the unique learning processes and outcomes
of each client.

• We theoretically analyze the convergence of dual regu-
lators and empirically demonstrate that FedDure is supe-

rior to the state-of-the-art FSSL approaches across multi-
ple benchmarks and data settings, improving accuracy by
12.17% on CIFAR10 and by 11.16% on CINIC-10 under
internal and external imbalances.

Related Work
Federated Learning (FL) is an emerging distributed train-
ing technique that trains models on decentralized clients and
aggregates model updates in a central server (Yang et al.
2019). FedAvg (McMahan et al. 2017) is a pioneering work
that aggregates local models updated by weighted averag-
ing. Statistical heterogeneity is an important challenge of
FL in real-world scenarios, where the data distribution is in-
consistent among clients (Li et al. 2020a), which can result
in drift apart between global and local model, i.e., client-
drift (Charles and Konečnỳ 2021). A plethora of works have
been proposed to address this challenge with approaches like
extra data sharing, regularization, new aggregation mecha-
nisms, and personalization (Zhao et al. 2018; Li et al. 2022a,
2021b; Xu et al. 2021). These approaches commonly con-
sider only supervised learning settings and may not be sim-
ply applied to scenarios where only a small portion of data
is labeled. Moreover, some work studies un/self-supervised
learning settings (Zhuang, Wen, and Zhang 2022; Wang
et al. 2021; Li et al. 2021a) to learn generic representations
with purely unlabeled data on clients, and these methods
require IID labeled data for fine-tuning the representations
for downstream tasks (Li et al. 2022b; Bai et al. 2021). Our
work primarily focuses on federated semi-supervised learn-
ing, where a small fraction of data has labels in each client.

Semi-Supervised Learning aims to utilize unlabeled
data for performance improvements and is usually divided
into two popular branches pseudo labeling and consistency
regularization. Pseudo-labeling methods (Lee et al. 2013;
Zou et al. 2022; Pham et al. 2021; Chen et al. 2022) usu-
ally generate artificial labels of unlabeled data from the
model trained by labeled data and apply the filtered high-
confidence labels as supervised signals for unlabeled data
training. MPL (Pham et al. 2021) extends the knowledge dis-
tillation to SSL by optimizing the teacher model with feed-
back from the student model. Consistency regularization ap-
proaches (Lee et al. 2022; Tarvainen and Valpola 2017) reg-
ularize the outputs of different perturbed versions of the
same input to be consistent. Many works (Sohn et al. 2020;
Zhang et al. 2021a; Lee et al. 2022) apply data augmentation
as a perturbed strategy for pursuing outcome consistency.

Federated Semi-Supervised Learning (FSSL) consid-
ers learning models from decentralized clients where a small
amount of labeled data resides on either clients or the server
(Jin et al. 2020b). FSSL scenarios can be classified into three
categories: (1) Labels-at-Server assumes that clients have
purely unlabeled data and the server contains some labeled
data (Lin et al. 2021; He et al. 2021; Zhang et al. 2021b;
Diao, Ding, and Tarokh 2021); (2) Labels-at-Clients consid-
ers each client has mostly unlabeled data and a small amount
of labeled data (Jeong et al. 2021); (3) Labels-at-Partial-
Clients assumes that the majority of clients contain fully un-
labeled data while numerous clients have fully labeled data
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Figure 2: Illustration of Federated Semi-Supervised Learning Framework with Dual Regulator (FedDure). FedDure contains
a coarse-grained regulator (C-reg) and a fine-grained regulator (F-reg) to adaptively guide local updates in each client: C-reg
dynamically regulates the importance of local training on the unlabeled data by reflecting the overall learning effect on labeled
data; F-reg regulates the performance contribution of each unlabeled sample.

(Lin et al. 2021; Liang et al. 2022). Labels-at-Clients has
been largely overlooked; prior work (Jeong et al. 2021) pro-
poses inter-client consistency loss, but it shares extra infor-
mation among clients and bypasses the internal class imbal-
ance issue. This work introduces dual regulators to address
the issue, without extra information shared among clients.

Method
This section first defines the problem and introduces a novel
framework with dual regulators (FedDure). Using dual regu-
lators, we then build a bi-level optimization strategy for fed-
erated semi-supervised learning.

Problem Definition
We focus on Federated Semi-Supervised Learning (FSSL)
with external and internal imbalance problems. Specifi-
cally, we assume that there are K clients, denoted as
{C1, ..., CK}. Federated learning aims to train a general-
ized global model fg with parameter θg . It coordinates
decentralized clients to train their local models Fl =
{fl,1, ..., fl,K} with parameters {θl,1, ..., θl,K}, where each
client is only allowed to access its own local private dataset.
In the standard semi-supervised setting, the dataset con-
tains a labeled set Ds = {xi, yi}N

s

i=1 and an unlabeled set
Du = {ui}N

u

i=1, where Ns ≪ Nu. Under FSSL, the pri-
vate dataset Dk of each client Ck contains Ns

k labeled in-
stances Ds

k = {xi,k, yi,k}
Ns

k
i=1 and Nu

k unlabeled instances

Du
k = {ui,k}

Nu
k

i=1. The internal imbalance means that the
distribution of Ds

k and Du
k are different; the external imbal-

ance refers to different distributions between Dk in different
clients k. We provide a detailed description in Subsection
Data Heterogeneity.

In this work, we primarily focus on image datasets. For
an unlabeled image uk in client Ck, we compute the corre-

sponding pseudo label ŷk with the following equation:

ŷk = argmax(fl,k(Tw(uk);θθθl,k)), (1)

where Tw(uk) is the weakly-augmented version of uk and
the pseudo labeling dataset in the client Ck is denoted as
Du

k = {ui,k, ŷi,k}
Nu

k
i=1. We omit the client index k in the pa-

rameters later for simplicity of notation.

Dual Regulators
In this section, we present federated semi-supervised learn-
ing with dual regulator, termed FedDure. It dynamically ad-
justs gradient updates in each client according to the class
distribution characteristics with two regulators, a coarse-
grained regulator (C-reg) and a fine-grained regulator (F-
reg). Figure 2 depicts the optimization process with these
two regulators. We introduce the regulators and present the
optimization process in the following subsections.

Coarse-grained Regulator (C-reg). Existing FSSL
methods decompose the optimization on the labeled and un-
labeled data, leading to heterogeneous local training. C-reg
remedies the challenge with a collaborative training man-
ner. Intuitively, the parameters of the local model can be
rectified according to the feedback from C-reg, which dy-
namically regulates the importance of local training on all
unlabeled data by quantifying the overall learning effect us-
ing labeled data. It contributes to counteracting the adverse
impact introduced by internal imbalance and preventing cor-
rupted pseudo-labels (Chen et al. 2022). Meanwhile, C-reg
acquires global knowledge by initializing with the received
server model parameters at the beginning of each round of
local training, which can provide global guidance to the lo-
cal model to mitigate external imbalance (client-drift).

We define C-reg as fd with parameters ϕϕϕ. At training it-
eration t, C-reg searches its optimal parameter ϕϕϕ∗ by mini-
mizing the cross-entropy loss on unlabeled data with pseudo
labels. Actually, the optimal parameter ϕϕϕ∗ is related to the
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local model’s parameter θθθl via the generated pseudo label,
and we denote the relationship as ϕϕϕ∗(θθθl). Since it requires
heavy computational costs to explore the optimal parame-
ter ϕϕϕ∗, we approximate ϕϕϕ∗ by performing one gradient step
ϕϕϕt+1 at training iteration t (i.e., ϕϕϕt).

Practically, we introduce the updated fine-grained regula-
tor (F-reg) to measure the scalar weight for each unlabeled
instance for updating C-reg. The formulation to optimize C-
reg is as follows:

ϕϕϕt+1=ϕϕϕt−ηs∇ϕϕϕtEuuuH(wwwt+1;ϕϕϕt)Lce

(
ŷ, fd

(
Ts(u);ϕϕϕt

))
,

(2)

where H(wwwt+1;ϕϕϕt) = fw
(
fd (Ts(u);ϕϕϕt) ;wwwt+1

)
, fw is the

fine-grained regulator (F-reg), andwwwt+1 is the parameters of
F-reg updated by Eqn. 5, which is detailed in the following
subsection. Ts(u) is the strongly-augmented unlabeled im-
age u and fd(Ts(u);ϕϕϕt) is the output vector of fd to evaluate
the quality of pseudo labels from the local model.

Next, we quantify the learning effect of the local model
with the C-reg using labeled samples by computing the
cross-entropy difference dt+1 of C-reg between training it-
erations t and t+ 1:

dt+1=Ex,y
[
Lce(y, fd(x;ϕϕϕt))−Lce(y, fd(x;ϕϕϕt+1))

]
. (3)

The quantized learning effect is further used as the reward
information to optimize the local model by regulating the
importance of local training on unlabeled data. In particular,
the cross-entropy differences dt+1 signify the generalization
gap for the C-reg updated by the pseudo labels from the local
model.

Fine-grained Regulator (F-reg). Previous SSL meth-
ods usually utilize a fixed threshold to filter noisy pseudo
labels (Sohn et al. 2020), but they are substantially hindered
by corrupted labels or class imbalance on unlabeled data. In-
ternal and external imbalances in FSSL could amplify these
problems, leading to performance degradation. To tackle the
challenge, F-reg regulates the importance of each unlabeled
instance in local training for mitigating the learning bias
caused by internal imbalance. It learns an adaptive weight-
ing scheme tailored for each client according to unlabeled
data distribution. A unique weight is generated for each un-
labeled image to measure the contribution of the image to
overall performance. We construct F-reg fw parameterized
by www1. Before updating F-reg, we perform one gradient step
update of C-reg ϕϕϕ to associate F-reg and C-reg:

ϕϕϕ−=ϕϕϕt−ηs∇ϕϕϕtEuuuH(wwwt;ϕϕϕt)Lce

(
ŷ, fd

(
Ts(u);ϕϕϕt

))
, (4)

where one gradient step of C-reg ϕϕϕ− depends on the F-reg
wwwt and regards the others as fixed parameters. Next, we op-
timize F-reg in local training iteration t, where the optimal
parameter www∗ is approximated by one gradient step of F-reg
(i.e., wwwt+1). The optimization of F-reg is formulated as:

wwwt+1 = wwwt − ηw∇wwwtEx,yLce

(
y, fd(x;ϕ−ϕ−ϕ−(wwwt)

)
, (5)

1F-reg is a MLP architecture with one fully connected layer
with 128 filters and a Sigmoid function.

where fd(x;ϕϕϕ−(wwwt)) is the output of fd on labeled data.
We then introduce a re-weighting scheme that calculates a
unique weight mmmi for i-th unlabeled sample:

mmmi = fw(fl(Ts(ui), θθθ
t
l),www

t+1). (6)

Note that mmmi is a scalar to re-weight the importance of the
corresponding unlabeled image.

Bi-level Optimization
In this section, we present optimization processes for the
dual regulators and local model θ. We alternatively train two
regulators, which approximate a gradient-based bi-level op-
timization procedure (Finn, Abbeel, and Levine 2017; Liu,
Simonyan, and Yang 2018). Then, we update the local model
with fixed C-reg and F-reg.

Update F-reg. Firstly, we obtain one gradient step update
of C-reg ϕϕϕ− using Eqn. 4. After that, the supervised loss
Lce (y, fd(x;ϕϕϕ−(wwwt)) guides the update of the F-reg with
Eqn. 5. Sincewwwt is explicitly beyond the supervised loss, the
updating of F-reg can be achieved by standard backpropaga-
tion using the chain rule.

Update C-reg. After updating the parameters of F-reg, we
update C-reg by Eqn. 2, regarding local model θlθlθlt as fixed
parameters.

Update Local Model with F-reg. We use the updated F-
reg wwwt+1 to calculate a unique weight mmmi for i-th unlabeled
sample with Eqn. 6. The gradient optimization is formulated
as:

gggtu = Eu

[
∇θθθt

l
Lce

(
ŷ, fl

(
Ts(u);θθθtl

))
·mmm

]
. (7)

Update Local Model with C-reg. We then use C-reg to
calculate entropy difference dt+1 in Eqn. 3. The entropy dif-
ference dt+1 is adopted as a reward coefficient to adjust the
gradient update of the local model on unlabeled data. The
formulation is as follows:

gggtd = dt+1 · ∇θθθt
l
EuLce

(
ŷ, fl

(
Ts(u);θθθtl

))
, (8)

where this learning process is derived from a meta-learning
strategy, provided in supplementary materials about the
proof for analysis.

Update Local Model with Supervised Loss. Besides, we
compute the gradient local model on labeled data as:

gggts = ∇θθθt
l
Ex,yLce

(
y, fl

(
x;θθθtl

))
. (9)

On this basis, we update the local model’s parameter with
the above gradient computation in Eqn. 7, 8 and 9, which is
defined as:

θθθt+1
l = θθθtl − η

(
gggts + gggtu + gggtd

)
, (10)

where η denotes the learning rate of the local model. Fi-
nally, after T local epochs, the local model is returned to
the central server. The server updates global model θgθgθgr+1

by weighted averaging the parameters from these received
local models in the current round, and r+1-th round is con-
ducted by sending θgθgθg

r+1 to the randomly selected clients
as initialization. We present the pipeline of the overall op-
timization process in the supplementary material about the
proof for analysis.
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Convergence of Optimization Process
In this section, we further analyze the convergence of our op-
timizations. When updating F-reg in Eqn. 5, wwwt is explicitly
beyond the supervised loss, the optimization of F-reg can be
easily implemented by automatic backpropagation using the
chain rule. We only discuss the convergence of the bi-level
optimizations using the meta-learning process.
Update Local Model with C-reg. The local model tries
to update its parameters on the feedback from the updated
coarse-grained regulator (C-reg), which adjusts the learning
effect via the meta-learning process. The cross-entropy loss
on labeled data Lce(y, fd(x;ϕϕϕt+1(θθθtl)) is applied to charac-
terize the quality of learning effect from the local model.
The CE loss function is related to θθθtl .

Theorem 1 Suppose that supervised loss function
Lce(y, fd(x;ϕϕϕt+1(θθθtl)) is L-Lipschitz and has ρ-bounded
gradients. The Lce (ŷ, fd (Ts(u);ϕϕϕt)) has ρ-bounded gradi-
ents and twice differential with Hessian bounded by B. Let
the learning rate ηs = min{1, e

T } for constant e > 0, and

η = min{ 1
L ,

c√
T
} for some c > 0, such that

√
T
c ≥ L. Thus,

the optimization of the local model using coarse-grained
regulator can achieve:

min
0≤t≤T

E[∥∇θlLce(y, fd(x;ϕϕϕt+1(θθθtl))∥22] ≤ O(
c√
T
). (11)

Update C-reg. We introduce updated F-reg to measure the
contributions of each instance for updating C-reg in Eqn.
2, where H(wwwt+1;ϕϕϕt) is related to ϕϕϕt. The updated F-reg
adjusts the learning contributions on each unlabeled instance
for regulating the optimization of C-reg. We conclude that
our C-reg can always achieve convergence when introducing
the feedback from F-reg.

Theorem 2 Suppose supervised and unsupervised loss
functions are Lipschitz-smooth with constant L and have ρ-
bounded gradient. The H(·) is differential with a ϵ-bounded
gradient and twice differential with its Hessian bounded by
B. Let learning rate ηs satisfies ηs = min{1, k

T } for con-
stant k > 0, such that k

T < 1. ηw = min{ 1
L ,

c√
T
} for

constant c > 0 such that
√
T
c ≥ L. The optimization of the

coarse-grained regulator can achieve:

lim
t→∞

E[∥∇ϕH(wwwt+1;ϕϕϕt)Lce

(
ŷ, fd

(
Ts(u);ϕϕϕt

))
∥22] = 0.

(12)

Experiments
In this section, we demonstrate the effectiveness and robust-
ness of our method through comprehensive experiments in
three benchmark datasets under multiple data settings.

Experimental Setup
Datasets. We conduct comprehensive experiments on three
datasets, including CIFAR-10 (Krizhevsky, Hinton et al.
2009), Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017)
and CINIC-10 (Darlow et al. 2018). All datasets are split
according to official guidelines; we provide more dataset de-
scriptions and split strategies in the supplementary material.

Data Heterogeneity. We construct three data heterogene-
ity settings with different data distributions. We denote each
setting as (A, B), where A and B are data distribution of
labeled and unlabeled data, respectively. The settings are as
follows: (1) (IID, IID) means both labeled and unlabeled
data are IID. By default, we use 5 instances per class to
build the labeled dataset for each client. The remaining in-
stances of each class are divided into K clients evenly to
build an unlabeled dataset. (2) (IID, DIR) means labeled
data is the same as (IID, IID), but the unlabeled data is con-
structed with Dirichlet distribution to simulate data hetero-
geneity, where each client could only contain a subset of
classes. (3) (DIR, DIR) constructs both labeled and unla-
beled data with Dirichlet distribution. It simulates external
and internal class imbalance, where the class distributions
across clients and within a client are different. We allocate
500 labeled data per class to 100 clients using the Dirich-
let process. The rest instances are divided into each client
with another Dirichlet distribution. Figure 3 compares the
data distribution of FedMatch (Batch NonIID) (Jeong et al.
2021) and ours. Our (DIR, DIR) setting presents class imbal-
ance across clients (external imbalance) and between labeled
and unlabeled data within a client (internal imbalance).

Implementation Details. We use the Adam optimizer
with momentum = 0.9, batch size = 10 and learning rates =
0.0005 for ηs, η and ηw. If there is no specified description,
our default settings also include local iterations T = 1, the
selected clients in each round S = 5, and the number of
clients K = 100. For the DIR data configuration, we use a
Dirichlet distribution Dir(γ) to generate the DIR data for
all clients, where γ = 0.5 for all three datasets. We adopt
the ResNet-9 network as the default backbone architecture
for local models and the coarse-grained regulator, while an
MLP is utilized for the fine-grained regulator.

Baselines. We compare the following methods in exper-
iments. FedAvg* denotes FedAvg (McMahan et al. 2017)
only trained on labeled samples in FSSL (about 10% data).
FedAvg-SL and FedProx-SL are fully supervised training
using FedAvg (McMahan et al. 2017) and FedProx (Li
et al. 2020b), respectively. FedAvg+UDA, FedProx+UDA,
FedAvg+Fixmatch, and FedProx+Fixmatch: a naive com-
bination between semi-supervised methods (UDA (Xie et al.
2020) and Fixmatch (Sohn et al. 2020)) and FL algo-
rithms. They use labeled and unlabeled data, but need to
specify a predefined threshold on pseudo labels. FedMatch
(Jeong et al. 2021) adopts inter-consistency loss, and disjoint
loss for model training which is the state-of-the-art FSSL
method. Note that we use the same hyper-parameters for
FedDure and other methods in all experiments.

Performance Comparison
Table 1 reports the overall results of FedDure and other
state-of-the-art methods on the three datasets. These results
are averaged over 3 independent runs. Our FedDure achieves
state-of-the-art FSSL performances on all datasets and data
settings. (IID, IID) setting: compared with the naive com-
bination of FSSL methods and FedMatch, our FedDure sig-
nificantly outperforms them on all three datasets. Specifi-
cally, when evaluated on CINIC-10, which is a more diffi-
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Methods CIFAR10 Fashion-MNIST CINIC-10
(IID, IID) (IID, DIR) (DIR, DIR) (IID, IID) (IID, DIR) (DIR, DIR) (IID, IID) (IID, DIR) (DIR, DIR)

FedAvg* 45.68 43.83 40.34 85.56 84.84 82.24 40.73 39.00 28.09
FedAvg-SL 75.47 66.70 58.38 89.87 88.60 86.95 67.97 57.72 46.21
FedProx-SL 74.67 66.78 59.55 89.53 88.35 87.32 68.13 58.67 52.09

FedAvg+UDA 47.47 43.89 35.52 86.20 85.35 81.07 42.25 39.93 29.27
FedProx+UDA 46.49 42.82 37.38 84.78 84.50 82.94 41.81 39.40 33.26

FedAvg+Fixmatch 46.71 45.58 39.95 86.46 85.42 81.07 40.40 39.66 31.99
FedProx+Fixmatch 47.60 43,39 41.85 86.31 85.18 83.68 41.46 40.02 32.21

FedMatch 51.52 51.59 45.56 85.71 85.55 85.13 43.73 41.82 35.27
FedDure (Ours) 67.69 66.85 57.73 88.69 88.21 86.96 56.36 55.10 46.43

Table 1: Performance comparison of our proposed FedDure with state-of-the-art methods on three different data heterogeneity
settings. FedDure outperforms all other methods in all settings.
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Figure 3: Comparison of data distribution between FedMatch (Jeong et al. 2021) and our (DIR, DIR) setting: (a) and (b) are
labeled and unlabeled data distribution used in FedMatch, respectively; our data distribution in (c) and (d) present external
imbalance across clients and internal imbalance between labeled and unlabeled data inside a client.
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Figure 4: Impact of different Dirichlet coefficients under
(IID, DIR) and (DIR, DIR) settings on CIFAR10 dataset.

cult dataset with a larger amount of unlabeled samples, other
methods suffer from the performance bottleneck and are in-
ferior on CIFAR-10 with fewer unlabeled samples. These
results show that FedDure effectively alleviates the nega-
tive influence of mass unlabeled data by regulating the local
model’s optimization on unlabeled data through knowledge
feedback from labeled data using F-reg and C-reg. (IID,
DIR) setting: our FedDure is slightly affected by weak class

mismatch on unlabeled data, but it significantly outperforms
by FedMatch 15.26% on CIFAR10 dataset. Also, compet-
itive performance is achieved compared to the supervised
method FedAvg-SL on Fashion-MNIST. (DIR, DIR) set-
ting: Under this more challenging and realistic setting, our
FedDure significantly outperforms others by at least 11%
on CIFAR-10 and CINIC-10 datasets. In particular, the per-
formance of other methods drops dramatically, and in CI-
FAR10 and Fashion-MNIST datasets, some semi-supervised
algorithms are even worse than FedAvg*. It means that un-
labeled data might hurt performance due to the distribution
mismatch between labeled and unlabeled data.

Ablation Study
Effectiveness of Components. To measure the importance
of proposed components in our FedDure, we conduct ab-
lation studies with the following variants in Table 2. (1)
Baseline: the naive combination of FedAvg (McMahan
et al. 2017) and Fixmatch (Sohn et al. 2020). (2) Base-
line+MAML: an adaptive optimization for baseline based
on vanilla meta-learning. The performance improvement
over the baseline verifies the insights and the effectiveness
of adopting client-specific optimization strategies via meta-
learning. (3) Ours w F-reg: this variant denotes our FedDure
removes the C-reg (i.e. gd in Eqn.10) and updates F-reg with
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Figure 5: Analysis of the impacts of the number of labeled data and selected clients. (a) and (b) illustrate that FedDure con-
sistently outperforms FedMatch and Baseline (FedAvg-Fixmatch) using different percentages of labeled data. (c) and (d) show
that FedDure scales with increasing numbers of selected clients on CIFAR-10 and Fashion-MNIST datasets.

Ablated components CIFAR-10
(DIR, DIR) (IID, DIR) (IID, IID)

Baseline 39.95 46.67 47.60
Baseline+MAML 47.69 56.05 59.78

F-reg 54.79 64.98 65.41
Avg F-reg 50.08 58.26 59.13

C-reg 56.46 65.92 66.54
Avg C-reg 52.32 60.07 62.07
FedDure 57.73 66.85 67.69

Table 2: Quantitative analysis of components of FedDure on
CIFAR-10 and Fashion-MNIST datasets.

the local model. (4) Ours w C-reg: this variant indicates our
FedDure replaces the dynamic weight (i.e. gu in Eqn.10) and
uses a fixed threshold to filter low-confidence pseudo labels.
The performance advantage over Baseline+MAML shows
that the two components are both more effective for FSSL
scenarios. Moreover, C-reg can further make a performance
boost under almost all data sets on CIFAR-10. This is be-
cause C-reg has targeted overall knowledge in local train-
ing, but there is no significant difference between the two
components. (5) Avg C-reg and Avg F-reg: we set F-reg and
C-reg to the average of corresponding regulators in previous
rounds. Compared with F-reg and C-reg, the decrease in per-
formance suggests the importance of online client-specific
adaptive optimization in dual regulators.

Impacts of Data Heterogeneity. To demonstrate the ro-
bustness of our method against data imbalance, we charac-
terize different levels of imbalances by Dirichlet distribu-
tion with different coefficients {0.3, 0.5, 0.7, 1.0} and eval-
uate multiple methods. As illustrated in Figure 4(a) and
4(b), our FedDure consistently showcases substantial perfor-
mance improvements across different levels of data imbal-
ances. However, FedMatch and baseline (FedAvg-Fixmatch)
suffer from rapid performance degradation when confronted
with the higher data heterogeneous (small coefficient)

Number of Label Data per Client. We evaluate FedDure
under the different percentages of labeled instances in each

client in {2%, 4%, 10%, 15%, 20%}. As illustrated in Figure
5(a) and 5(b), FedDure gains steady performance improve-
ments with the number of labeled data increases in two data
settings. In contrast, the baseline’s performance remains rel-
atively stagnant across both scenarios. As for FedMatch, a
noticeable decline becomes obvious when the labeling ra-
tio exceeds 4% in the (DIR, DIR) setting. These insightful
findings underscore the efficacy of our dual regulators.

Number of Selected Clients per Round. Lastly, we in-
vestigate the performance on the impact of the number of
selected clients varied in {2, 5, 10, 20}. As shown in Figure
5(c) and 5(d), significant improvements can be achieved by
increasing the selected clients. Nevertheless, performance
gains plateau as the chosen clients surpass a certain thresh-
old. Our contention is that while the number of selected
clients does exhibit a positive correlation with overall per-
formance, our method delves into the intrinsic knowledge
of each client to enhance the central server’s overall perfor-
mance. In scenarios where there are ample clients, our ap-
proach assimilates comprehensive knowledge, resulting in
saturated performance.

Conclusion
In this paper, we introduce a more practical and challeng-
ing scenario of FSSL, data distribution is different across
clients (external imbalance) and within a client (internal im-
balance). We then design a new federated semi-supervised
learning framework with dual regulators, FedDure, to ad-
dress the challenge. Particularly, we propose a coarse-
grained regulator (C-reg) to regularize the gradient update
in client model training and present a fine-grained regulator
(F-reg) to learn an adaptive weighting scheme for unlabeled
instances for gradient update. Furthermore, we formulate the
learning process in each client as bi-level optimization that
optimizes the local model in the client adaptively and dy-
namically with these two regulators. Theoretically, we show
the convergence guarantee of the regulators. Empirically, ex-
tensive experiments demonstrate the significance and effec-
tiveness of FedDure.
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