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Abstract

As Federated Learning (FL) gains prominence in distributed
machine learning applications, achieving fairness without
compromising predictive performance becomes paramount.
The data being gathered from distributed clients in an FL en-
vironment often leads to class imbalance. In such scenarios,
balanced accuracy rather than accuracy is the true represen-
tation of model performance. However, most state-of-the-art
fair FL methods report accuracy as the measure of perfor-
mance, which can lead to misguided interpretations of the
model’s effectiveness to mitigate discrimination. To the best
of our knowledge, this work presents the first attempt towards
achieving Pareto-optimal trade-offs between balanced accu-
racy and fairness in a federated environment (FairTrade). By
utilizing multi-objective optimization, the framework nego-
tiates the intricate balance between model’s balanced accu-
racy and fairness. The framework’s agnostic design adeptly
accommodates both statistical and causal fairness notions, en-
suring its adaptability across diverse FL contexts. We pro-
vide empirical evidence of our framework’s efficacy through
extensive experiments on five real-world datasets and com-
parisons with six baselines. The empirical results underscore
the potential of our framework in improving the trade-off be-
tween fairness and balanced accuracy in FL applications.

Introduction
Federated learning (FL) has emerged as a transformative
strategy for distributed machine learning (ML) systems. By
allowing local data storage and global model improvements
without compromising data privacy, it presents a sustainable
approach for model training and evaluation (Kairouz et al.
2021; Fisichella, Lax, and Russo 2022). However, one crit-
ical challenge that often goes unaddressed in such setups
is ensuring fair and accurate model outcomes (Emelianov,
Gast, and Gummadi 2022).

While there exists several methods in the literature to en-
hance fairness of ML models in a traditional centralized
setup (Mehrabi et al. 2021), they cannot be directly deployed
to FL settings owing to its distributed nature. Recently, few
methods (Konečnỳ et al. 2016; Du et al. 2021; Cui 2021;
Ezzeldin et al. 2023; Zeng, Chen, and Lee 2021) have been
proposed to address the issue of fairness in FL. However,
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most of these methods ignore the presence of class imbal-
ance in the data (Younis and Fisichella 2022), which can be
a crucial source of bias (Dullerud et al. 2021). Moreover,
in a decentralized set-up as in FL where the training data
spans diverse clients, class imbalance is commonplace (Ra-
maswamy et al. 2019; Wang et al. 2021). Consequently, the
performance measured in terms of accuracy as reported by
these methods, is not representative of the true performance.
As an illustrative example, consider a dataset with 80% pos-
itive samples and 20% negative samples. Each sample (x)
is associated with a sensitive attribute S ∈ M,F . Con-
sider a classifier f which always predicts a positive class
i.e., f(x) = 1. For such a classifier, accuracy is 0.80 and
discrimination measured in terms of the difference in proba-
bility of being assigned the positive class (aka demographic
parity) is 0 as f always predicts 1 irrespective of the sensi-
tive attribute. In fact, the low discrimination score achieved
here is not at all reflective of the model’s discrimination
mitigation capability. The true performance of a classifier
in such a scenario is revealed through balanced accuracy,
which for the classifier in the above example is 0.5. Our ex-
periments on several real-world datasets show that the state-
of-the-art (SoTA) discrimination mitigation methods in FL
can achieve a balanced accuracy as low as 0.5 rendering the
low discrimination score achieved in those cases inconse-
quential. To address this, we propose FairTrade which uti-
lizes multi-objective optimization (MOO) to jointly maxi-
mize balanced accuracy and minimize discrimination. Given
these objectives need not necessarily be differentiable or
expensive to compute, we further utilize Bayesian opti-
mization to achieve our goal. Experiments on a range of
real-world datasets show that FairTrade achieves the best
performance-fairness tradeoff. We also find our method to be
more efficient, achieving convergence in fewer communica-
tion rounds compared to the baseline methods. Our model
also seamlessly adapts to other notions of fairness (e.g.,
causal fairness) demonstrating its generalizability.
To summarize the key contributions, we highlight the impor-
tance of evaluating discrimination mitigation methods using
balanced accuracy rather than accuracy alone. We further in-
troduce a metric-agnostic design that accommodates a vari-
ety of fairness notions, ensuring applicability across differ-
ent FL contexts. Notably, FairTrade guarantees zero privacy
leakage, as global and local updates are exchanged between
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Figure 1: FairTrade: Federated framework with fairness-
constrained multi-objective optimization.

server and client models through a secure aggregation pro-
cess. Our method is rigorously evaluated across a wide range
of benchmark datasets and SoTA fairness aware FL meth-
ods, demonstrating its efficacy across these settings. For re-
producibility, all resources associated with our research, in-
cluding code and data, are publicly accessible at the pro-
vided repository link 1.

Preliminaries
We commence with an overview of the conventional FL
framework (FedAvg) as per (McMahan and et al 2017), sub-
sequently, we delineate key concepts central to FairTrade.

Federated Learning Setup
Consider we have n local clients (C1, C2, ....Cn) in an FL
environment and a global server G. Each client has its own
local dataset Dk with feature space X and output space Y.
We consider a binary classification problem, i.e., Y ϵ {0, 1}.
Each client Ck’s dataset Dk has mk instances where each
instance is defined as Ikj = {xj , yj}, j ϵ [1,mk]. The global
server G learns the predictive function f(x) = y through the
collaborative training of the local clients (C1, C2, ....Cn).
The server aggregates and averages local model updates,
weighting them according to the size of each client’s dataset.
Precisely, the objective is to find parameter vector (ψ) that
minimizes the weighted average of the loss across all clients,
as presented in Equation (1).

min
ψ
f(ψ) = w

n∑
k=1

Lk(ψ) (1)

FedAvg ensures security, scalability, and performance, yet
its predictions can exhibit demographic biases in datasets.
While there exists several notions of fairness, in this paper
we consider two, namely (i) statistical group fairness and
(ii) causal group fairness. Note that our method could also
be deployed in conjunction with other fairness notions.

Fairness Notions
Discrimination refers to the unfair treatment or bias towards
certain groups or individuals based on specific characteris-
tics, such as race, gender, or socioeconomic status. These
characteristics are often referred to as sensitive attributes.

1https://github.com/badarm/FairTrade

We assume that the datasets used to train and test the pro-
posed model have a single sensitive attribute S (e.g. “gen-
der”) with binary values: s0 for the protected group (e.g.,
“female”) and s1 for the non-protected (e.g., “male”).
Statistical Group Fairness Notion: We gauge the discrim-
inating behavior of the proposed method by demographic
parity (DP) (Equation 2) (Verma and Rubin 2018) which is
a statistical group fairness notion.

DP = P (f(x) = y+ | S = s1)−P (f(x) = y+ | S = s0) (2)

Essentially, it represents the difference in mean positive out-
comes of protected and non-protected group. DP = 0 de-
notes a perfectly fair classifier, whereas DP = 1 or −1 sig-
nifies complete unfairness.
Causal Group Fairness Notion: Despite the simplicity and
popularity of statistical fairness methods, they might over-
correct, struggle with paradox resolution, and be vulnera-
ble to shifts in data distributions (Makhlouf, Zhioua, and
Palamidessi 2020). On the other hand, causal fairness con-
siders underlying causal structures, decoupling predictions
from sensitive attributes and providing a deeper insight into
data biases. We have utilized the causal group fairness no-
tion average treatment effect (ATE/FACE) (Khademi et al.
2019) to gauge the discrimination embedded in the predic-
tions of the proposed framework as presented in Equation
(3). We modified FACE to consider predicted outcomes.

FACE = E(|Y s1pot − Y s1pred| − |Y s0pot − Y s0pred|)

=
1

n

n∑
i=1

|Y s1pot i − Y s1pred i| − |Y s0pot i − Y s0pred i|
(3)

Here Y s1
pot and Y s1

pred represent the potential and predicted
outcomes when S = s1. FACE quantifies the difference
in the true positive outcomes (observed and potential) be-
tween the protected (treated) and non-protected groups (non-
treated). FACE = 1, −1 indicates complete unfairness,
whereas FACE = 0 signifies a perfectly fair classifier.

Fairness and Balanced Accuracy for FL
The fairness notions given in Equation (2) and Equation (3)
can be employed in any centralized fairness aware learn-
ing framework. However, in the context of FL, the non-
Independent Identically Distributed (non-IID) data distribu-
tion across clients necessitates a distinction between client-
side fairness and server-side fairness.
The client-side fairness can be defined using Equation (2)
and Equation (3). For example, DP for client k with local
dataset Dk can be defined as:

disc scorek = P (f(x) = y+ | S = s1,D = Dk)

−P (f(x) = y+ | S = s0,D = Dk).
(4)

However, the server-side fairness (disc scoreg) considers
the complete dataset Dg =

⋃
k∈K Dk. If the data distribu-

tion among clients is IID then client-side fairness and server-
side fairness are identical. For a classifier f(x), the server-
side DP can be specified as:

disc scoreg = P (f(x) = y+ | S = s1,D = Dg)

−P (f(x) = y+ | S = s0,D = Dg).
(5)
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The main challenge is computing server-side fairness with-
out access to client data stores. Server-side fairness can be
computed through the secure aggregation of client-side fair-
ness measures (Knott et al. 2021). IfDP is the fairness met-
ric then server-side fairness can be quantified as:

disc scoreg =

K∑
k=1

wk(P (f(x) = y+ | S = s1,D = Dk)

−P (f(x) = y+ | S = s0,D = Dk)).

(6)

where wk is the proportion of data points at client k relative
to total data points across all clients i.e., wk = |Dk|∑

j |Dj | . A
similar server-side fairness measure, when the selected fair-
ness metric is FACE is provided in the Appendix.
The server-side balanced accuracy (BAg) is computed as:

BAg =

K∑
k=1

wkBAk, (7)

In fairness-aware FL, the decentralized nature amplifies
challenges in finding the optimal trade-off between the two
conflicting objectives i.e., balanced accuracy and fairness.
By integrating Multi-Objective Optimization (MOO) with
Bayesian optimization (BO) we effectively address these
challenges. While MOO concurrently optimizes for bal-
anced accuracy and fairness, BO further sharpens this by
probabilistically targeting the vast solution space, expedit-
ing convergence to the Pareto optimal trade-offs.

Multi-objective Optimization (MOO)
In multi-objective optimization (MOO), we aim to op-
timize a vector-valued objective θ(u) : Md → RN

with θ(u) = θ(1)(u), ..., θ(N)(u) over a bounded set of
inputs U ⊂ Rd. The functions θ(j) are computation-
ally expensive to evaluate black-box functions. The MOO
paradigm aims to find a set of Pareto optimal solutions,
where improving one objective compromises another, with
the overall goal of maximizing all objectives. A solution
θ(u) dominates another solution θ(u′) i.e., θ(u) ≻ θ(u′)
if θ(n)(u) ≥ θ(n)(u′) for n = 1, ..., N and ∃ n ∈
{1, ..., N} s.t. θ(n)(u) > θ(n)(u′). The set of Pareto fron-
tier solutions and Pareto frontier inputs can be represented
as P∗ = {θ(u) s.t. ∄ u′ ∈ U : θ(u′) > θ(u)} and U =
{u ∈ U s.t. θ(u) ∈ P∗} respectively. Pareto frontiers are an
infinite set of points; the goal is to find a finite approximate
frontier. Provided with the approximate Pareto frontiers, the
decision maker can select a Pareto optimal trade-off between
conflicting objectives according to her preferences.

Bayesian Optimization (BO)
Bayesian optimization (BO) (Jones, Schonlau, and Welch
1998) serves as a robust approach for the optimization of
black-box functions that are computationally expensive to
evaluate. Utilizing a probabilistic surrogate model, a Gaus-
sian Process (GP) (Rasmussen 2003) and the observed data
D = {(ui, yi)|i = 1, ...,m}, BO provides a posterior dis-
tribution P(f |D) over true function values f . An acquisi-
tion function α ∈ U 7→ R employs this surrogate model

(GP) to assign utility to a set of candidate inputs U =
{ui|i = 1, ..., q} for evaluation on the actual function f. This
surrogate based acquisition function is much less computa-
tionally expensive than the true function f .

Counterfactual Outcomes
To incorporate causal fairness, we calculate potential out-
comes using a matching technique. The objective is to com-
pute the potential outcomes by finding the matched neigh-
bors from the opposite group. For instance, in loan approval,
the counterfactual outcome for a female xk as if she were
a male is based on similar males’ observed outcomes. To
determine similarity between individuals xj and xk, we use
Propensity Score Matching (PSM). PSM is aimed at estimat-
ing the effect of a treatment by accounting for the covariates
that predict receiving the treatment. The propensity score
(e(xk)) is the probability of receiving the treatment given
observed covariates. For loan approval example, Sk = 1 de-
notes the individual k who received the treatment i.e., the
individual is female and Sk = 0 otherwise. Propensity score
of xk derived from observed covariates Ck is:

e(xk) = P(Sk = 1|Ck) (8)

The similarity between individuals xj and xk is determined
through their propensity score difference. The logit version
of this difference helps in reducing bias (Stuart 2010):

Diff(j, k) = |logit (e(xj))− logit (e(xk)) |. (9)

We match treated (protected) and control (non-protected)
individuals using nearest neighbor matching with replace-
ment, based on aforementioned similarity metric.

FairTrade: Fairness constrained MOO
framework

This section presents our FL framework that integrates
fairness-constrained optimization at the client side and
MOO at the server side. Figure 1 represents the concep-
tual model underpinning FairTrade. Our base learner is a
deep neural network with three fully connected layers in-
terspersed with ReLU activation functions, ending with a
Sigmoid activation. In every communication round, each
client trains a local learner, detects discrimination, and uses
fairness constrained optimization for discrimination mitiga-
tion. Subsequently, clients send their weights along with lo-
cal balanced accuracy (BAk) and local discrimination score
(disc scorek) values to the global server, which applies
MOO to optimize the fairness constraint regularization pa-
rameter (ζ) and learning rate (lr) to guarantee Pareto optimal
trade-offs between balanced accuracy (BA) and discrimina-
tion score (disc score). Details follow in later sections.

Client Side: Fairness Constrained Optimization
In our framework, FairTrade, we employ fairness-
constrained optimization at each client (Agarwal et al.
2018) to achieve client-side fairness as detailed in the
section “Preliminaries”.
Each client possesses a local dataset (Dk) with underlying
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demographic biases. The optimization task is to train a pre-
dictive model that satisfies specific fairness constraints. The
optimization problem at the client side for a local classifier
f parameterized by ψ can be formulated as follows:

minimize
ψ

J(ψ) + ζ ∗ F (ψ) s.t. g(ψ) ≤ e (10)

where J(ψ) is the local predictive loss function, F (ψ) rep-
resents the fairness penalty, ζ is a regularization constraint
parameter (which will be optimized through MOO at server-
side), g(ψ) is selected fairness metric, and e is the fairness
budget. For each fairness notion, a set of linear constraints
of the following form can be generated:

Qη(f) ≤ e, (11)

where Q is a matrix R|Z|×|V| and e is a vector R|Z| that
represents the fairness budget allocated for each value of the
sensitive attribute (e.g. male and female), and η(f) denotes
a vector consisting of conditional moments, given by:

ηv(f) = E[hv(X,S, Y, f(X))|φv] for v ∈ V, (12)

where V = S∪{X\S}, hv : X×S×{0, 1}×{0, 1} → [0, 1]
captures how the prediction f(X) varies for different sub-
sets of the data (defined by v and conditioned on φv), while
considering the true labels Y , input data X , and sensitive
attributes S. φv conditions the data based on a specific crite-
rion; for instance, in the loan approval use case φ might be
”the applicant is female”. Now we define constraints for the
fairness notion demographic parity (DP).
Constraint for Demographic Parity: Assuming a binary

classification task and a binary sensitive attribute, DP can
be expressed as a set of two equality constraints of the form:

E[f(X)|S = si] = E(f(X)), si ∈ {s0, s1} (13)

Let hv(X,S, Y, f(X)) = f(X) for all v, φS = {S = si},
and φ{X\S} = {True} the equality constraints men-
tioned above can be represented as ηS(f) = η{X\S}(f).
Each equality constraint can be formulated as a pair of
positive (∆+ := ηS(f) − η{X\S}(f) ≤ 0) and nega-
tive (∆− := −ηS(f) + η{X\S}(f) ≤ 0) inequality con-
straints. DP can be expressed as Equation (11), where Z =
|S| × number of inequality constraints. The elements
of Q are initialized to form a set of linear constraints:

Q(s,∆+),s′ =

{
1 if s′ = s

−1 otherwise
, Q(s,∆−),s′ =

{
−1 if s′ = s

1 otherwise

While computing the fairness loss, we emphasize more on
larger errors by taking the L2-norm (Gradshteyn and Ryzhik
2000) of the constraint as follows:

F (ψ) = ζ ∗ ||(ReLU(Qη(f)))− e||2, (14)

A similar fairness constraint derivation for the metric
FACE is provided in the Appendix. Moreover, the algo-
rithmic detail of the fairness constrained learning process on
the client side is also provided in the Appendix.

Server Side: Multiobjective Bayesian Optimization
Server-side fine-tunes the constraint parameter (ζ) and learn-
ing rate (lr) through MOO based on Differentiable Ex-
pected q-Hypervolume Improvement (qEHV I) (Daulton

Algorithm 1: FairTrade server side algorithm

Require: Optimization rounds (no), Communication
rounds (nc), Initial learning rate (lr′), Initial fairness
constraint regularization parameter ζ ′.

Ensure: Optimized parameters ψl+1
g w.r.t. disc scoreg and

BAg

1: ψ1
g = init()

2: global model.initialize(ψl
g, lr

′)
3: for round = 1 to nc do
4: ψl+1

g = sec agg
({
ψl
k

}N

k=1

)
5: disc scoreg, BAg =

sec agg
({
client metrics(k, ψl+1

g )
}N

k=1

)
6: y = {−disc scoreg, BAg} ▷ initial objectives
7: U =

{
lr′, ζ ′

}
▷ initial inputs

8: GP.initialize(U, y)
9: for i = 1 to no do

10: αqEHV I .init(GP,U, y)
11: Unew[lri, ζi] = SAA optimize(αqEHV I)
12: ynew =

sec agg
{
client metrics(k, ψl+1

g , lri, ζi)
}N

k=1
13: U = U ∪ Unew, y = y ∪ ynew
14: GP.update(U, y)
15: end for
16: lr′ = lrno and ζ ′ = ζno

17: send global updates(ψl+1
g , lr′, ζ ′)

18: end for

2020) approach that is exact upto the Monte Carlo (MC)
integration error (Robert et al. 1999). This approach outper-
forms SoTA MOO methods at a fraction of their wall time.
Algorithm 1 details this module of FairTrade.
The algorithm initiates with the Kaiming Uniform initial-
ization (He et al. 2015) of global model parameters fol-
lowed by the initialization of global model with these pa-
rameters (Algorithm 1: lines 1 to 2). In every communica-
tion round, the algorithm computes the new global model
parameters ψl+1

g , global discrimination score (disc scoreg:
see Equation (6)), and global balanced accuracy (BAg: see
Equation (7)) through secure multi party aggregation and
averaging (Knott et al. 2021) of local models’ parameters
ψl
k, local disc scorek, and local balanced accuracy values

(BAk) from all the clients (Algorithm 1: lines 3 to 5). Next,
we initialize a list of GP surrogate models with initial ob-
jectives (−disc scoreg , BAg) and inputs (lr, ζ) (Algorithm
1: lines 6 to 8). We aim to maximize BA and minimize
disc score. However, the Multi-objective Bayesian Opti-
mization (MOBO) method employed here aims at maximiz-
ing the conflicting objectives. To fit into this maximization
framework, we consider the negative of the discrimination
score as our objective. After initializing two GP models for
the two objectives, we utilize MOBO to find Pareto opti-
mal trade-offs betweenBA and disc score. MOBO initiates
with the initialization of the acquisition function (αqEHV I )
using the surrogate models (GP), initial inputs, and objec-
tives (Algorithm 1: lines 9 to 10). After computing the ac-
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quisition function, we optimize it using the Sample Aver-
age Approximation (SAA) method (Balandat et al. 2020)
to compute new candidate inputs (Unew) (Algorithm 1: line
11). This optimization leverages auto-differentiation to cal-
culate the precise gradient of the MC estimator of qEHV I ,
ensuring faster convergence rates. The new inputs (Unew =
lri, ζi) are sent to all the clients and new objectives (ynew)
are computed through secure aggregation and averaging of
BAk and −disc scorek from respective clients (Algorithm
1: line 12). The surrogate GP models are updated to include
the new objectives and inputs and the next MOBO round
starts (Algorithm 1: lines 13 to 14). At the end of MOBO
rounds, the global updates including the global model pa-
rameters, learning rate and ζ are sent to all the clients for the
next communication round (Algorithm 1: lines 17 to 18).
Having detailed the server-side algorithm, the rest of this
section elucidates the underlying mathematical framework
that guides the trade-offs between balanced accuracy and
fairness in our optimization strategy. Essentially, we demon-
strate how the acquisition function (αqEHV I ) is defined for
MOBO and how it can be computed efficiently.
The Pareto front represents the set of optimal trade-offs be-
tween the two objectives (BA, disc score): each point on
the Pareto front signifies a unique balance between the bal-
anced accuracy and fairness. Some points may have high
fairness but lower balanced accuracy, and others may have
high balanced accuracy but lower fairness.
Hypervolume (HV) is a metric that quantifies the cover-
age of the ”fairness-balanced accuracy” space by the Pareto
front with the aim to maximize this coverage. HV is calcu-
lated by measuring the volume of the region in our dual-
objective space—balanced accuracy and fairness—that is
dominated by the Pareto front (P∗), with the reference point
r = (BAmin,−disc scoremax) as the lower bound:

HV (P∗, r) = λN (∪|P∗|
j=1 [r, yj ]). (15)

HV is the N-dimensional Lebesgue measure λN (·) (Bartle
2014) of the region dominated by the Pareto front. [r, yj ] de-
notes the hyper rectangle which is bounded by vertices yj
and r, while yj is the jth solution in the Pareto set.
Hypervolume Improvement (HV I) is the difference in
HV before and after a new set of candidate solutions (Y :
{y1, ..., yq}) is considered as shown in Equation (16). For
our case the new set of candidate solutions corresponds to
potential solutions offering varying trade-offs between BA
and (−disc score). HV I indicates the enhanced trade-off
between fairness and balanced accuracy that the new set of
solutions provides.

HV I(Y,P∗, r) = HV (P∗ ∪ Y, r)−HV (P∗, r) (16)

The non-rectangular shape of the region P∗ ∪ Y necessitates
its division into hyper-rectangles to calculate HV I .
Expected Hypervolume Improvement (EHV I) serves as
the acquisition function for MOBO specifically tailored for
our dual objectives: balanced accuracy and fairness. EHV I
guides the selection of solutions offering potential trade-offs
between BA and −disc score. It is quantified as the ex-
pectation of HV I computed by the posterior distribution

(θ(U) = P(f |D)) provided by the surrogate models (GP):

αqEHV I(U) = E[HV I(θ(U))] =

∫ +∞

−∞
HV I(θ(U))dθ, (17)

where U is the candidate input set, each member of
which signifies a potential trade-off between the BA and
−disc score in the objective space and q denotes the num-
ber of candidate points considered. For our case, U :=
{lr, ζ} where lr is the learning rate and ζ is the regular-
ization parameter of fairness constraints as discussed in the
above section . The integral sign in the Equation (17) denotes
the expectation operation, computing the averageHV I over
all possible outcomes of θ(U). The limit of the integral de-
pends on the range of the two objectives i.e., [0, 1] for BA
and [−1, 1] for −disc score.
Next, we explain how to compute this integral through MC
sampling. The high level idea is to sum the HV of all
the partitions of the non-dominated objective space. Each
partition {A}Ww=1 is a disjoint hyper-rectangle bounded
by a lower bound vertex lw ∈ RN and an upper
bound vertex tw ∈ RN ∪ {∞}. The acquisition func-
tion αqEHV I in Equation (17) is estimated using MC in-
tegration given the posterior distribution {θr(uj)}qj=1 ∼
P(θ(u1), ..., θ(uq)|D), r = 1, ...,M obtained by the sur-
rogate GP model. Equation (18) depicts the formulation
for computation of acquisition function of qEHV I , where
znw,Ui,r

:= min[tw,minu′∈Uj
θr(u

′)], Ui ⊂ U , W is the
number of hyper-rectangles, and M is the number of MC
samples (the number of samples drawn from θr(U)).

αMqEHV I(U) =
1

M

M∑
r=1

HV I(θr(U))

=
1

M

M∑
r=1

W∑
w=1

q∑
i=1

∑
Ui∈Ui

(−1)i+1
N∏
n=1

[z
(n)
r,Ui,r

− lw(n)]+

(18)

Comprehensive insights on this MOBO approach are avail-
able in the original paper and the attached Appendix.

Experimental Setup
Benchmark Datasets
We evaluate FairTrade with five real-world datasets: (1)
Bank (Bache and Lichman 2013), (2) Default (Bache and
Lichman 2013), (3) Adult (Bache and Lichman 2013), (4)
Law (Wightman 1998), and (5) KDD (Bache and Lichman
2013). The datasets vary in their number of attributes, num-
ber of instances, sensitive attribute and class imbalance ratio.
Specifically, the positive to negative class ratios for Adult,
KDD, Bank, Default, and Law are 1 : 3.0, 1 : 15.11,
1 : 7.87, 1 : 3.52, 1 : 3.50 respectively. Further details
about the datasets are available in the Appendix. To mimic
FL setup, each dataset is distributed among a specified set of
clients - (i) randomly or (ii) based on specific attributes (age
for Bank, Default, Adult, and KDD; income for Law) to mir-
ror more realistic scenarios. Note that the baseline methods
also deploy some of these datasets but ignore the class im-
balance and report accuracy as the measure of performance.
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Dataset FedAvg FF-SMOTE Agnostic-Fair FCFL FedFB FairFed FairTrade
Acc BA DP Acc BA DP Acc BA DP Acc BA DP Acc BA DP Acc BA DP Acc BA DP

Adult 0.77 0.79 0.409 0.82 0.67 0.07 0.77 0.58 0.067 0.80 0.62 -0.092 0.76 0.50 0.0005 0.76 0.50 0.0008 0.76 0.77 0.001
Bank 0.87 0.79 0.076 0.87 0.51 -0.0006 0.86 0.53 0.064 0.88 0.55 -0.003 0.89 0.56 0.0006 0.88 0.56 0.030 0.88 0.78 0.019
Default 0.78 0.69 0.053 0.80 0.63 0.043 0.78 0.52 0.006 0.80 0.57 0.089 0.80 0.58 0.008 0.79 0.58 0.026 0.77 0.69 -0.010
Law 0.88 0.72 0.037 0.90 0.61 0.051 0.93 0.50 0.001 0.91 0.61 -0.029 0.91 0.57 0.004 0.91 0.59 0.021 0.88 0.68 -0.008
KDD 0.94 0.59 0.012 0.91 0.48 0.055 0.93 0.50 0 0.93 0.52 0.003 0.93 0.50 0 0.93 0.50 0 0.87 0.82 0.002

Table 1: Acc, BA, and DP achieved by FairTrade and competitors across all datasets with R3C data split.

Figure 2: Comparison betweenBA andDP values achieved
by FairTrade, FCFL, and FairFed for KDD dataset with R3C
and Attr3C data split over different communication rounds.

Benchmark Baselines
In this section, we introduce the baseline methods that we
employ to compare the performance of FairTrade. For fur-
ther details, see section: “Related Work”.
FedAvg (Konečnỳ et al. 2016) is the conventional FL frame-
work without fairness interventions.
FF-SMOTE debiases predictions locally at each client us-
ing Fair-SMOTE (Chakraborty and Majumder 2021).
Agnostic-Fair (Du et al. 2021) removes discrimination by
adding regularization terms to reweight the training samples.
FCFL (Cui 2021) is a gradient-based approach that provides
consistent Pareto utility (accuracy and fairness) distribution
across all clients.
FairFed (Ezzeldin et al. 2023) is a discrimination-aware
weights aggregation method in an FL setup.
FedFB (Zeng, Chen, and Lee 2021) debiases predictions lo-
cally at each client using Fair-Batch. (Roh et al. 2021).
FairTrade is the proposed MOO based FL framework.

Experimental Evaluation and Discussion
The evaluation of FairTrade is performed across three dif-
ferent facets - (i) comparison with existing baselines across
different datasets, (ii) generalizability across metrics and ap-
plication scenarios and (iii) sensitivity to hyperparameters.

Comparison with Benchmark Baselines:
We compare FairTrade with six baseline methods across five
datasets. For fair comparison, we follow the experimental
setup proposed in (Ezzeldin et al. 2023). We consider de-
mographic parity (DP) as the fairness metric and randomly
distribute the data among 3 clients. The results in Table 1
show that FairTrade reports the best trade-off between bal-
anced accuracy (BA) and DP compared to the baselines.
FairTrade’s BA marginally declines compared to that ob-
tained by FedAvg (FL without fairness interventions) for

Dataset R3C Attr3C
BA DP FACE BA DP FACE

Adult 0.7945 0.0913 -0.0094 0.744 0.0636 0.0035
Bank 0.806 0.0314 0.009 0.8055 0.0167 0.0117
Default 0.6981 0.0227 0.0117 0.68 -0.008 0.0138
Law 0.7467 0.0333 0.01 0.7266 -0.0033 -0.0194
KDD 0.8196 0.0558 0.011 0.796 0.0408 0.0024

Table 2: Causal fairness (FACE) and BA achieved by Fair-
Trade for all datasets with R3C and Attr3C data splits.

some datasets. However, this slight degradation in BA is a
calculated trade-off, which allows for a much-needed reduc-
tion in disc score. While some baselines may offer slightly
better Accuracy (Acc) on some datasets, they often lag in
BA which is crucial for skewed datasets. Notably, fairness-
aware SoTA FL methods, Agnostic-Fair, FCFL, FedFB, and
FairFed show high Acc with the corresponding BA val-
ues nearing ∼ 0.5 and DP scores close to 0. Such low
BA values categorize these FL models as random classi-
fiers, rendering their low DP scores insignificant. In con-
trast, FairTrade achieved significantly lower DP with re-
markably higher BA for all datasets. Figure 2 shows a com-
parison between BA and DP values achieved by FairTrade,
FCFL, and FairFed across KDD dataset over 50 communica-
tion rounds. The figure attests to the efficacy of FairTrade in
achieving fairness without compromising the model’s BA.

Generalizability
We now demonstrate FairTrade’s generalizability by incor-
porating a different fairness notion and deploying it in set-
tings with attribute-based client data distributions.

Causal fairness notions: Table 2 shows FairTrade’s BA,
DP , and FACE results for all datasets with random and
attribute-based distribution among 3 clients. The table shows
that FairTrade consistently maintains high BA values while
achieving low FACE scores across all datasets. This suggests
that FairTrade is agnostic with respect to the chosen fairness
metric. Furthermore, the table highlights an intriguing obser-
vation: even as we optimize FairTrade to minimize FACE,
the resulting DP values remain notably low. This indicates
that DP and FACE are not conflicting fairness notions.

Attribute-based Data Distribution: In real-world FL en-
vironments, data may often be partitioned based on inher-
ent attributes rather than being distributed randomly across
clients. For example, in a hospital network, each health-
care facility collects patients’ data based on local demo-
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Split FedAvg FF-SMOTE Agnostic-Fair FCFL FedFB FairFed FairTrade
BA DP BA DP BA DP BA DP BA DP BA DP BA DP

Attr3C 0.744 0.2686 0.6 -0.013 0.5 0 0.507 0.0422 0.499 0.0006 0.5 0.0006 0.748 0.0054
R3C 0.794 0.4096 0.675 0.07 0.58 0.067 0.626 -0.0928 0.501 0.0005 0.5006 0.0008 0.776 0.0012
R5C 0.788 0.4349 0.57 0.021 0.59 0.047 0.545 -0.0056 0.500 0.0008 0.501 0.0008 0.779 0.0167
R10C 0.785 0.4284 0.621 0.0389 0.58 0.061 0.541 -0.0026 0.501 0.0009 0.502 0.0007 0.781 0.0141
R15C 0.780 0.4122 0.622 0.106 0.58 0.08 0.576 -0.06 0.501 0.0011 0.502 0.0006 0.775 -0.0044

Table 3:BA andDP obtained by FairTrade and competitors for the Adult dataset with random and attribute-based distribution.
Note that RnC/AttrnC denotes random/attribute-based distribution of data among n clients.

graphics rather than a random assortment of patients from
across the region. To replicate such scenarios, we employ
an attribute-based splitting of data among the clients. The
details about data splits can be found in the section “Bench-
mark Datasets”. Table 3 (row: Attr3C) provides a detailed
comparison of FairTrade’s performance with other base-
lines for Adult dataset with attribute based data distribution
among 3 clients. The BA values of competing baselines
degrade with Attr3C distribution compared to what they
achieved with random distributions. FairTrade efficiently
manages such distribution complexities, ensuring fairness
and high predictive performance in real-world scenarios.

Sensitivity
To gain a deeper understanding of our proposed method, we
also perform a set of sensitivity experiments.

Number of clients: We systematically vary the number of
clients to investigate the robustness of FairTrade under dif-
ferent client settings. The performance of FairTrade remains
remarkably consistent across the variations, as presented in
Table 3. Competing fairness-aware FL methods show low
DP along with very low BA values, indicating that they
achieve fairness at the expense of predictive performance.
While FCFL reports the best BA among the baselines, its
performance drops with more clients, showing its limited
adaptability. In contrast, the consistent superior predictive
and fairness performance of FairTrade proves its adaptabil-
ity and effectiveness regardless of the client count.

Number of Communication rounds: We also examine
the performance of FairTrade by varying the number of com-
munication rounds. Figure 2 presents the BA and DP val-
ues achieved by FairTrade over 50 communication rounds
across KDD dataset with R3C and Attr3C data distribution.
The figure shows that FairTrade achieves an optimal trade-
off between BA and DP within the initial 10 rounds and
maintains this, whereas competitors consistently post a BA
near 50% (akin to a random classifier) with DP close to 0
(similar trend is observed for other datasets). These obser-
vations further highlight FairTrade’s efficiency in achieving
and sustaining optimal trade-offs between BA and DP.

Related Work
Fairness-aware Learning: In recent years, ML methods
that aim at detecting and then mitigating bias have received
a great deal of attention (refer to (Mehrabi et al. 2021) for

a detailed survey). These techniques can be broadly classi-
fied into three categories: Pre-processing, In-processing and
Post-processing. Pre-processing methods tailor the training
data to make it bias-free before feeding it to the learner, such
as (Iosifidis and Ntoutsi 2018). Fair-SMOTE (Chakraborty
and Majumder 2021) is another SoTA method which deals
with discrimination. In-processing methods adapt the clas-
sification model itself to generate fair outcomes. Some ex-
amples include adaptation of optimization objective (Padala
and Gujar 2020) and adaptive reweighting (Iosifidis and et al
2019). Post-processing methods modify the classifier deci-
sions to mitigate bias, such as (Hajian and et al 2015).

Fairness-aware Federated Learning: Recently, there
have been a few attempts at developing bias mitigation meth-
ods in an FL setting. Agnostic-Fair (Du et al. 2021) is
an adaptive instance re-weighting based fairness aware FL
framework. FedFB (Zeng, Chen, and Lee 2021) is another
FL framework where each client locally debiases its predic-
tions using Fair-Batch (Roh et al. 2021). In (Ezzeldin et al.
2023) the authors introduce a discrimination-aware weights
aggregation method in an FL setup (FairFed) where the lo-
cal fairness of each client dictates the weight assigned to
its contribution in the global parameter aggregation, sub-
sequently promoting global fairness. A gradient-based ap-
proach, FCFL, is presented by (Cui 2021) that provides
consistent Pareto utility (accuracy and fairness) distribution
across all clients. (Badar, Nejdl, and Fisichella 2023) is an-
other data augmentation based method for fairness aware FL
in a streaming environment. These methods overlook the key
issue of class imbalance in discrimination-aware FL.

Conclusion
We proposed a novel Federated learning (FL) framework,
FairTrade, aimed at achieving a Pareto-optimal trade-off be-
tween balanced accuracy and fairness in FL applications.
Our methodology, employing multi-objective optimization,
presents a major leap forward from traditional SoTA frame-
works that primarily focus on accuracy. Merely focusing on
accuracy creates a misleading impression about the classi-
fier’s ability to mitigate discrimination. The efficacy of Fair-
Trade is further demonstrated through experiments across
several benchmark datasets and fair FL methods, with Fair-
Trade consistently achieving better fairness-balanced accu-
racy trade-off. It is agnostic to the fairness metric and ef-
fectively generalizes to diverse client data distributions and
varying numbers of clients.
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