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Abstract

Spiking neural networks (SNNs) have garnered significant at-
tention for their low power consumption when deployed on
neuromorphic hardware that operates in orders of magnitude
lower power than general-purpose hardware. Direct training
methods for SNNs come with an inherent latency for which
the SNNs are optimized, and in general, the higher the la-
tency, the better the predictive powers of the models, but
at the same time, the higher the energy consumption dur-
ing training and inference. Furthermore, an SNN model op-
timized for one particular latency does not necessarily per-
form well in lower latencies, which becomes relevant in sce-
narios where it is necessary to switch to a lower latency be-
cause of the depletion of onboard energy or other operational
requirements. In this work, we propose Stochastic Latency
Training (SLT), a direct training method for SNNs that op-
timizes the model for the given latency but simultaneously
offers a minimum reduction of predictive accuracy when
shifted to lower inference latencies. We provide heuristics
for our approach with partial theoretical justification and ex-
perimental evidence showing the state-of-the-art performance
of our models on datasets such as CIFAR-10, DVS-CIFAR-
10, CIFAR-100, and DVS-Gesture. Our code is available at
https://github.com/srinuvaasu/SLT

Introduction
Spiking neural networks (SNNs) have attracted significant
attention as the next-generation neural network, thanks to
their bio-inspired, event-driven, and low-power computa-
tional capabilities, supported by specialized neuromorphic
hardware such as Loihi (Davies et al. 2018), TrueNorth
(DeBole et al. 2019), and Spinnaker (Furber et al. 2014).
In a typical artificial neural network (ANN), neurons re-
ceive input activation values from the previous layer neu-
rons and compute output activation values as a function of
the weighted input activation computed as the inner prod-
uct between input activations and network weights. In con-
trast, the SNN neurons send the activation spike to the next
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layer only when their membrane potential exceeds a pre-
determined membrane threshold, making the spiking activ-
ity event-driven and asynchronous. The neuromorphic hard-
ware allows for a simple accumulation of network weights
activated by incoming spikes, eliminating the need for com-
putationally intensive floating-point inner products. Over-
all, this results in significantly lower energy consumption in
neuromorphic hardware compared to their standard counter-
parts, particularly when spiking activity in SNN neurons is
sparse.

While the binary spikes produced by the Heaviside acti-
vation offer several benefits, they pose a unique challenge
for direct training of SNNs. As the gradient of the Heavi-
side function is almost always zero and non-differentiable at
the transition, the standard back-propagation algorithm does
not propagate any gradients backwards when used as it is.
To circumvent this issue, surrogate training methods (Wu
et al. 2018; Zheng et al. 2021) replace the non-differentiable
Heaviside activation function with differentiable surrogate
functions such as Sigmoid. Recently, (Mukhoty et al. 2023)
have shown applying zeroth-order gradients on the Heavi-
side, on expectation, is equivalent to choosing different sur-
rogates for the Heaviside.

The temporal dimension of the network adds further chal-
lenges to the training algorithm. The temporal dimension in-
creases the training time proportionally and creates a longer
path for the back-propagation algorithm, introducing van-
ishing gradients. The direct training method using surrogate
functions involves training many parameters in the state-
of-the-art SNNs, which is accomplished with the help of
GPUs. These SNNs can then be deployed on neuromorphic
hardware for energy-efficient inference. In contrast, standard
ANNs are trained on GPUs and may require CPU or GPU
support during inference, depending on the specific applica-
tion requirements.

The energy efficiency of SNN models has attracted real-
world applications that require predictions from a standalone
model based on a finite energy budget. For example, in
robotic control, tasks such as localization, motor control,
navigation, etc., require frequent decision-making by a neu-
ral network deployed onboard with a limited energy source
(Gutierrez-Galan et al. 2020; Strohmer, Manoonpong, and
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Larsen 2020; Yamazaki et al. 2022). In case the onboard en-
ergy source gets depleted, to continue operation, it can be-
come imminent for the model to shift to a lower inference
latency to save energy. Additionally, a model might require
shifting between different latencies depending on the ex-
ternal throughput requirements. However, the present SNN
models are dedicatedly trained for a particular latency and
suffer a loss of accuracy when tested at a lower inference
latency. Further, maintaining different models for different
latencies can be wasteful in terms of memory and become a
system bottleneck.

We propose the Stochastic Latency Training (SLT)
method, which chooses the latency for a gradient update uni-
formly from the entire range of latencies. Thus, SLT finds
a single SNN model that offers minimum loss of accuracy
when operated on a lower latency. We summarise our con-
tribution as below:
• We propose the SLT method that provides flexibility re-

garding inference latency. The model offers minimal loss
of accuracy when evaluated at lower latencies.

• The SLT method offers significantly faster training time
compared to the state-of-the-art methods, as the expected
latency used in training with SLT is approximately half
compared to the maximum training latency of the model.

• We analyse the loss surface of the model trained using
SLT, which shows that we achieve a flatter minimum
compared to the models without SLT, explaining better
generalizability of the models trained using SLT.

• We benchmark the proposed method on standard
datasets, demonstrating that SLT is comparable or bet-
ter than the state-of-the-art methods at maximum train-
ing latency and better when evaluated at lower inference
latencies.

Related Work
In recent years, the performance of SNN models has
improved significantly on both static and neuromorphic
datasets, benefiting majorly from two approaches: ANN-to-
SNN conversion and direct training of SNN models.

ANN-to-SNN Conversion: In ANN-to-SNN conversion,
an already trained ANN model with ReLU activation (Diehl
et al. 2015; Cao, Chen, and Khosla 2015; Rueckauer et al.
2017) or a tailored ANN model (Bu et al. 2021; Deng and Gu
2021) with a new activation function, is converted to SNN
model by copying the weights of ANN to SNN and replac-
ing the non-linear activation function with IF neuron (see
section ) The performance of the converted SNN model is
generally less than the parent ANN model due to the conver-
sion loss. The conversion loss generally reduces with higher
latency values to reach the corresponding ANN model accu-
racy.

Direct Training: It is the most popular method for train-
ing SNNs from scratch based on back-propagation through
time (BPTT) (Werbos 1990) that treats SNN as a recur-
rent neural network. However, the SNNs provide two unique
challenges for the BPTT algorithm. The first is due to the
Heaviside function responsible for generating spikes, which
has zero gradient almost everywhere, except at transition,

where it is non-differentiable. Secondly, as the chain length
for back-propagation increases proportionally with the train-
ing latency, the vanishing gradient problem sets in. The
STBP (Wu et al. 2018) method, based on BPTT, solves the
first challenge with the help of surrogate functions. The sur-
rogate method introduces a differentiable function (e.g., sig-
moid) as an approximation of the Heaviside, which replaces
the Dirac function during back-propagation. The batch nor-
malization (BN) technique (Krizhevsky, Hinton et al. 2009)
partially solves the vanishing gradient problem and enables
training of deep networks through smoothing of the loss
landscape (Santurkar et al. 2018). The tdBN method (Zheng
et al. 2021) introduces a threshold-dependent batch normal-
ization that harnesses this technique by including the tempo-
ral dimensions under normalization. In contrast, the BNTT
(Kim and Panda 2021) method performs BN separately for
the entire time dimension. The TEBN method (Duan et al.
2022) introduces a trade-off between the two by reducing
the number of trainable parameters.

Though direct training can perform well for specific laten-
cies, they are not supposed to generalize well for a latency
range. Due to their fine-tuning to a particular latency, the
generalization performance suffers. Moreover, the training
time of the method increasing proportionally with latency
poses a significant challenge.

Preliminaries
The LIF (Leaky Integrate and Fire) neurons used in SNN are
governed by differential equations which, after discretiza-
tion, can be represented by a recurrent relation as given in
Eqn. 1. The membrane potential of neuron i at the layer l
at the time step t is represented by u

(l)
i [t], while x

(l)
i [t] de-

notes the corresponding output spike which is generated by
the Heaviside function h whenever the membrane potential
exceeds a fixed membrane threshold uth. The membrane po-
tential recursively depends upon its value at a previous time-
step scaled by the constant β < 1 and the weighted input
spikes accumulated from the previous layer neurons. Fol-
lowing a spike, the membrane potential is either reduced by
the magnitude of uth called soft rest or reset to zero, known
as hard reset. In this work, we follow the latter:

u
(l)
i [t] = βu

(l)
i [t− 1] +

∑
j

wijx
(l−1)
j [t] (1)

x
(l)
i [t] = h(u

(l)
i [t]− uth) =

{
1 if u(l)

i [t] > uth

0 otherwise,
(2)

u
(l)
i [t] = u

(l)
i [t](1− x

(l)
i [t]) (3)

With slight abuse of notation, denote input to the SNN
model as x(0)

i [t] that represents any real value, while for lay-
ers l > 0, we have x

(l)
i [t] ∈ {0, 1}. This work considers

LIF neurons for which the constants β and uth are set to
0.5 and 1.0, respectively, following the convention in (Deng
et al. 2022) for comparison. In contrast, an IF neuron used
in ANN-to-SNN conversion retains the full membrane po-
tential from the last time-step by having β = 1.
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Proposed Method
The main question that we consider in this paper is how to
train an SNN for some fixed latency, say T , but in such
a way that it generalizes well for all the lower latencies
t ∈ {1, . . . , T}? First, let us recall that a standard way to
make predictions in SNNs is through averaging input mem-
brane potentials in the output layer, i.e., the output neurons
do not spike but instead record the input membrane poten-
tials over time. More precisely, at each time step, we record
the pre-synaptic input in this layer as O[t] ∈ RY , and the
predicted class corresponds to argmaxy∈Y

1
T

∑T
t=1 O[t],

with Y being the set of output labels. We adopt this expres-
sion as it is prevailing in the recent SNN literature and also
referred to as standard direct training (SDT) (Zheng et al.
2021; Deng et al. 2022),

LSDT(T ) = LCE(
1

T

T∑
t=1

O(t), y), (4)

where LCE is the standard cross-entropy loss applied to the
input arguments after normalizing via the soft-max function.
Another popular method to compute the loss that has shown
superior performance comes from (Deng et al. 2022), which
first computes the cross-entropy loss with respect to O(t) at
each time step and then takes the average. We refer to it as
TET:

LTET(T ) =
1

T

T∑
t=1

LCE(O(t), y) (5)

Observe membrane potential of the LIF neuron requires a
few time steps to stabilize after initialization, as can be seen
in Figure 1 where the distribution of membrane potential of
a neuron is found to evolve with time (Mukhoty et al. 2023).
As the loss in SDT is computed with respect to the aver-
age membrane potential obtained after the last time step, the
weights trained to work with a stable membrane potential do
not work well with membrane potential just after initializa-
tion. Thus, the weights trained for fixed T in SDT do not
work well with a lower t < T used during inference.

TET intends to address this problem by first computing
the loss at each time step and then taking the average of all
time steps. However, the TET training is still biased towards
the fixed latency T, as the average loss has components from
the entire latency range. To see it from another point of view,
consider the gradients of the loss with respect to the weights
of the penultimate layer, l.

∂LTET(T )

∂W
=

1

T

T∑
t=1

∂LCE(O(t), y)

∂O(t)
· ∂O(t)

∂ul(t)
· ∂u

l(t)

∂W
(6)

The gradient∂LTET(T )
∂wij

of the parameter wij with respect to
loss LTET(T ) can be given as,

∂LTET(T )

∂wij
=

1

T

T∑
t=1

∂LCE(O(t), y)

∂O(t)
· ∂O(t)

∂ul
i(t)
· ∂u

l
i(t)

∂wij
(7)
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Figure 1: Fixing a neuron, we plot the distribution of mem-
brane potential for different inputs at time steps t=1 and t=4.

Using the recurrence in Equation 1, the term ∂ul
i(t)

∂wij
, can

be expanded as :

∂ul
i(t)

∂wij
=

t∑
k=0

βt−kx
(l−1)
j [k] (8)

If we analyse the Equation 7 and 8, the gradient∂LTET(T )
∂wij

can

be seen as a weighted sum of the gradients ∂LTET(T )
∂O(t)

∂O(t)

∂ul
i(t)

computed at different latencies, where, the term ∂ul
i(t)

∂wij
is

treated as weight. Heuristically, the weight for a higher la-
tency is probably greater than the weight for a lower latency,
as during a longer time, more spikes will be collected in (8).
The resulting implicitly weighted gradients cause the model
parameter to be biased towards losses at higher latencies.

The SLT Method
To improve the performance of the model at a lower latency,
the gradient update needs to be unbiased towards losses
computed at lower latency. An unbiased gradient update can
be achieved by suppressing or nullifying the gradient from
the loss at higher latencies. We propose a simple but efficient
algorithm (see Algorithm 1) to find a balance between nul-
lifying the gradient from the loss at higher latency without
affecting the performance. At every batch, we sample the
latency t from the set {1, 2, · · · , T}, compute the loss, and
then update the model parameters. It ensures when a lower
latency value is sampled, the influence of loss from a higher
latency is entirely void.

Let us denote a particular loss function L(t) computed
over a batch with a maximum latency t. Let us denote the
vector of losses as: L̂ = [L(1),L(2) · · · ,L(T )] ∈ RT .
Given a batch, the SLT method randomly chooses a latency
and evaluates the loss:

LSLT = ⟨L̂, et⟩ t ∼ [1, 2, .., T ] (9)

where, et ∈ {0, 1}T denotes the standard basis vectors of
RT , which determines the loss corresponding to the chosen
latency. If the sampled latency for a gradient update is t, the
loss LSLT simplifies to L(t). Thus, on expectation over the
randomness in choosing et, SLT minimizes the following
loss:

Et[LSLT] = Et[⟨L̂, et⟩] =
1

T

T∑
t=1

L(t) (10)
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Now, let us use the TET loss, LTET, as the particular loss
function used in the SLT method to perform the gradient
updates. So that,

Et[LTET
SLT ] =

1

T

T∑
t=1

LTET(t) =
1

T

T∑
t=1

1

t

t∑
s=1

LCE(O(s), y)

=
T∑

t=1

c(t)LCE(O(t), y)

(11)

where, after collecting the terms, we have,

c(t) =
1

T

T∑
i=t

1

i
. (12)

The last expression is the weight assigned on expectation
over the loss at each time step. A closer look at the expres-
sion c(t) will reveal that weights are much higher for lower
latencies than uniform weights assigned by the TET loss.
Next, we may consider applying SLT method on the SDT
loss:

Et[LSDT
SLT ] =

1

T

T∑
t=1

LSDT(t) =
1

T

T∑
t=1

LCE(
1

t

t∑
s=1

O(s), y)

(13)
Lemma 1. SLT-TET loss upper bounds the SLT-SDT loss on
expectation.

Proof. From Lemma 4.1 (Deng et al. 2022), we have, for all
t, LTET(t) ≥ LSDT(t), hence,

E[LTET
SLT ] =

1

T

T∑
t=1

LTET(t) ≥
1

T

T∑
t=1

LSDT(t) = Et[LSDT
SLT ]

(14)
We implement the LSLT loss using the procedure de-

scribed in Algorithm 1, where for each batch, we sample
a latency value, t, from a predefined range {1, 2, · · · , T}.
We process the batch using the SNN model with latency t,
compute the cross-entropy loss using the predicted values
and the true class labels, and utilize the surrogate gradients
method to back-propagate the loss and update the model pa-
rameters.

Experiments
The generalization performance of our method is presented
in two parts. First, we demonstrate the generalization per-
formance of the SLT method by combining it with two
standard techniques, namely, tdBN (Zheng et al. 2021) and
TET (Deng et al. 2022), which we refer to as SLT-tdBN
and SLT-TET, respectively. For comparison, following the
recent trend (Deng et al. 2022), we chose Resnet19 (Zheng
et al. 2021) architecture for the datasets CIFAR-10 and
CIFAR-100, and VGGSNN (Deng et al. 2022) architecture
for DVS-CIFAR10 and DVS-Gesture dataset. For the first
part, instead of training the baselines, we take the accura-
cies as reported in the respective publications. Secondly, we

Algorithm 1: SLT: Stochastic Latency Training

Require: maximum latency T , training dataset (X,Y )
1: m← number of training examples
2: for i = 1 to num epochs do
3: for j = 1 to m

batch size do
4: Xbatch, Ybatch ← get batch(X,Y, batch size, j)
5: t ∼ {1, 2, · · · , T} {sampling latency t uni-

formly}
6: ypred = SNN(Xbatch, t) {predictions are

made using SNN model with latency t}
7: L = loss(ypred, Ybatch)
8: θ ← step(θ, L)
9: end for

10: end for
11: return θ

CIFAR-10 (100) DVS-CIFAR-10
Input Neurons 32× 32 48× 48
No. of classes 10(100) 10
No. of epochs 300 300
Mini batch size 256 64
LIF: β 0.5 0.5
LIF: u0 0 0
LIF: uth 1 1
λTET 0.05 0.0001
Optimiser Adam Adam
Learning Rate 0.01 0.001
Adam: Betas (0.9; 0.999) (0.9; 0.999)
Rate Scheduler CosineAnn. CosineAnn.

Table 1: Hyper-parameter settings for comparison

evaluate the accuracy of the methods on a range of latencies,
where both SLT and the baselines are trained on a fixed la-
tency.

Datasets
CIFAR CIFAR-10 (Krizhevsky, Hinton et al. 2009) is a stan-
dard dataset with static images of 10 classes, each repre-
sented by 5000 train images and 1000 test images. CIFAR-
100 is a more challenging dataset with 100 classes with 500
train images and 100 test images per class (Krizhevsky, Hin-
ton et al. 2009). They are supplied to the SNN network us-
ing constant encoding with cutout augmentation for the fair
comparison with TET (Deng et al. 2022). For training using
SLT, the maximum latency was set to T=8, while the model
is evaluated at T=6, T=4, and T=2. For SLT-TET method,
we use the regularization parameter λ = 0.05, as prescribed
in TET. The learning rate and batch size are set to 0.01
and 256, respectively, for both datasets. Table 1 provides
the detailed hyper-parameter settings for training different
datasets.
DVS-CIFAR-10 (Li et al. 2017) is a neuromorphic dataset
consisting of events that record the change in pixel intensity,
with time-stamp and location. One thousand images from
each class of CIFAR-10 are converted to event-based tempo-
ral data that records pixel locations for intensity change with
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Dataset Methods Architecture Simulation Length Accuracy

A2S-RMP (Han, Srinivasan, and Roy 2020) ResNet20 2048 91.36
A2S-Opt (Deng and Gu 2021) ResNet20 128 93.56
A2S-QCFS (Bu et al. 2021) ResNet20 64 92.35

CIFAR10 Hybrid training (Rathi et al. 2020) ResNet-20 250 92.22
Diet-SNN (Rathi and Roy 2020) ResNet-20 10 92.54

STBP (Wu et al. 2018) CIFARNet 12 89.83
STBP NeuNorm (Wu et al. 2019) CIFARNet 12 90.53
TSSL-BP (Zhang and Li 2020) CIFARNet 5 91.41

GLIF (Yao et al. 2022) ResNet19 4 94.85
DSpike (Li et al. 2021) ResNet18 4 93.66

tdBN (Zheng et al. 2021) ResNet-19 6 93.16
4 92.92
2 92.34

SLT-tdBN ResNet-19 6 94.66
4 94.44
2 94.31

TET (Deng et al. 2022) ResNet-19 6 94.50
4 94.44
2 94.16

SLT-TET ResNet-19 6 95.26
4 95.18
2 94.96

A2S-RMP (Han, Srinivasan, and Roy 2020) ResNet20 2048 67.82
A2S-Opt (Deng and Gu 2021) ResNet20 512 72.34
A2S-QCFS (Bu et al. 2021) ResNet20 128 70.55

CIFAR100 Diet-SNN (Rathi and Roy 2020) ResNet-20 5 64.07
DSpike (Li et al. 2021) ResNet18 4 73.35

tdBN (Zheng et al. 2021) ResNet-19 6 71.12
4 70.86
2 69.41

SLT-tdBN ResNet-19 6 71.34
4 70.98
2 68.87

TET (Deng et al. 2022) ResNet-19 6 74.72
4 74.47
2 72.87

SLT-TET ResNet-19 6 74.87
4 75.01
2 73.77

DVS-CIFAR10 tdBN (Zheng et al. 2021) ResNet-19 10 67.8
Streaming Rollout (Kugele et al. 2020) DenseNet 10 66.8

Conv3D (Wu et al. 2021) LIAF-Net 10 71.70
LIAF (Wu et al. 2021) LIAF-Net 10 70.40
GLIF (Yao et al. 2022) 7B-WideNet 16 78.10
DSpike (Li et al. 2021) ResNet18 10 75.90
TET (Deng et al. 2022) VGGSNN 10 81.56

SLT-tdBN VGGSNN 10 79.27
SLT-TET VGGSNN 10 81.46

Table 2: Comparison of existing results with the proposed SLT method shows improvement in generalization performance.
A2S denotes ANN2SNN conversion methods.
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the help of a dynamic vision sensor. These events are col-
lated into several frames to feed the data to a neural network,
where the maximum training latency determines the number
of frames. For the direct training methods considered here,
the number of frames for DVS datasets is set to 10, and each
frame is resized from (128× 128) to (48× 48). Under data
augmentation, the frames are further processed with trans-
forms such as Random Horizontal Flip and Random Crop.
For DVS-CIFAR-10, the exact pre-processing step used in
the TET method is obscure, so we re-compute the results
with data augmentation as per (Duan et al. 2022).
DVS-Gesture (Amir et al. 2017) is another neuromorphic
dataset for gesture recognition with eleven classes with a
pre-processing step similar to DVS-CIFAR-10.

Standard Generalization Performance
Table 2 summarises the results on CIFAR-10, CIFAR-100,
and DVS-CIFAR-10 datasets. For the CIFAR-10 dataset
at T = 2, our approach, when combined with the tdBN
method, gives 1.97% improvement in the test accuracy. For
both T = 4, 6 SLT-tdBN shows a similar improvement in
the test accuracy compared to tdBN. Similarly, when our ap-
proach is combined with TET, the SLT-TET method consis-
tently improves the test accuracy across all the latencies. For
the CIFAR-100 dataset, the SLT-TET method shows a con-
siderable improvement compared to the TET method. For
the DVS-CIFAR-10 dataset, SLT-tdBN showed a 8% jump
in performance compared to tdBN. This demonstrates the ef-
fectiveness of the proposed approach and its impact on neu-
romorphic datasets. For DVS-CIFAR-10 dataset, Table 2 re-
ports all the accuracies from the respective publications, ex-
cept for the TET method, where we report results obtained
by ourselves due to difficulty in reproduction.

Generalization Across Latency Range
To compare test accuracies on a range of latencies, we train
the TET and tdBN methods on fixed T and measure their
performance on a latency range [1 : 16]. Table 3 shows
such a comparison on a shorter latency range [1 : 10]. The
SLT models used in Table3 are taken directly from Table 2,
so that CIFAR datasets have the maximum training latency
T = 8, while for DVS datasets it is T = 10.

Comparing tdBN and SLT-tdBN at T = 1, we find
1.85%, 8.24%, 28.12% and 14.07% increase in accuracy for
CIFAR-10, CIFAR-100, DVS-CIFAR-10 and DVS-Gesture
respectively. Comparison of other latencies also shows a
similar improvement in accuracy for SLT-tdBN over tdBN
for all the datasets. Comparing SLT-TET and TET, we also
find improvement across most latencies and datasets. For
CIFAR-10, SLT-TET provides better accuracies irrespective
of the latency chosen for inference. For DVS-Gesture, we
can find that the performance of SLT-TET is much better
than TET for all latency except at T = 1.

Figure 2 shows a visual comparison of accuracy with
the baselines for the complete latency range for CIFAR-
10, CIFAR-100 and DVS-CIFAR-10 datasets. It is evident
that, despite being trained on fixed maximum latency, SLT-
TET generalizes well across the latency range, and the result
mostly holds across the datasets.

CIFAR-10
1 2 4 6 8 10

TET 93.99 94.58 95 94.96 95.02 94.98
SLT-TET 94.53 94.96 95.18 95.26 95.3 95.29

tdBN 91.5 93.49 94.33 94.52 94.49 94.6
SLT-tdBN 93.35 94.31 94.44 94.66 94.66 94.75

CIFAR-100
1 2 4 6 8 10

TET 70.08 72.79 74.41 74.78 75 75.03
SLT-TET 71 73.77 75.01 74.87 74.99 75.01

tdBN 56.65 64.79 67.79 68.69 69.09 69.4
SLT-tdBN 64.89 68.87 70.98 71.34 71.72 71.81

DVS-CIFAR10
1 2 4 6 8 10

TET 69.17 74.58 79.38 79.90 80.94 81.56
SLT-TET 70.73 76.98 78.96 80.31 80.73 81.46

tdBN 36.56 58.75 72.81 76.04 76.35 77.60
SLT-tdBN 64.69 72.71 77.19 78.54 79.69 79.27

DVS-Gesture
1 2 4 6 8 10

TET 88.60 93.35 95.70 96.87 97.26 98.43
SLT-TET 87.50 94.14 96.87 97.65 98.04 98.43

tdBN 64.06 77.34 90.63 91.01 92.18 93.75
SLT-tdBN 78.13 88.67 94.92 94.53 94.92 96.09

Table 3: Evaluating model accuracy at different inference la-
tencies while trained on a fixed maximum latency(CIFAR:
T=8, DVS: T=10) demonstrates that SLT outperforms its
competitors for most inference latencies.

Efficiency in Training Time
Figure 3 compares the time taken by each epoch of the SLT
method with their baseline. After 100 epochs, the average
time per epoch for tdBN is 139.7 sec., while 82.9 sec for
SLT-tdBN. Thus, SLT-tdBN provides a 1.69 times speed up
by choosing a shorter inference latency on expectation. Sim-
ilarly, the respective averages for TET and SLT-TET are
at 137.4 sec. and 82.3 sec., which amounts to 1.67 times
speedup in training time.

Analysis of Loss Landscape
We compare the 1D loss landscape (Li et al. 2018) of SLT
models with their counterparts. The plots are generated us-
ing the loss function of the respective model at the respective
approximate saddle points as found at the end of the train-
ing process. Our objective here is to provide an explanation
for the superior generalization capability of the SLT mod-
els. We consider the models from Table 2 for the CIFAR-10
dataset, trained with maximum latency T = 8.

Figure 4(a) illustrates the loss landscapes of the models
trained using the tdBN and the corresponding SLT-tdBN
method. The loss function employed to generate the loss sur-
faces in Figure 4(a) is given earlier in Equation 4. We plotted
two 1D loss surfaces for each method: one with the original
latency value of T = 8 and another with a reduced latency
of T = 1. Our observations indicate that the loss curves of
the proposed method exhibit a flatter profile compared to the
direct loss method, thereby indicating the superior general-
ization capability of our proposed approach in contrast to
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Figure 2: Comparison of the test accuracies across the latency range with models trained on maximum latency T = 8 for
CIFAR and T = 10 for DVS-CIFAR-10. SLT-TET shown to outperform TET for CIFAR-10, while it is comparable or better
for CIFAR-100 and DVS-CIFAR-10. SLT-tdBN outperforms tdBN at all the latencies in all three datasets.
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Figure 3: We plot the time taken per epoch of training
by tdBN and SLT-tdBN for 100 epochs on the CIFAR-10
dataset. The average for tdBN is 139.7 sec, while for SLT-
tdBN, it is 82.9 sec, equivalent to 1.69 times speed up in
training time. Similarly, we compare TET with SLT-TET,
where the respective averages are 137.4 and 82.3 sec, giving
us a 1.67 times speedup.
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Figure 4: For the CIFAR-10 dataset, models trained using
the SLT method exhibit flatter 1D loss landscapes compared
to their respective baselines.

the model trained without the SLT method. Further, Figure
4(b) depicts the loss landscapes of the models trained using
the TET and SLT-TET methods. We employed the TET loss
function for both models. Notably, our approach SLT-TET
yielded flatter minima compared to the model trained with
the TET method, resulting in improved generalization capa-
bility of the proposed approach.

Estimation of Energy Requirements
To estimate the energy efficiency of our models, we followed
the methodology discussed in (Rathi and Roy 2020) to com-
pute synaptic operations (SOP) and use the energy value
77fJ/SOP reported in (Qiao et al. 2015). For the neuromor-
phic dataset DVS-Gesture, during inference at lower laten-
cies, T = 1, 2, 3, 4, the SLT-TET model requires 0.03mJ,
0.07mJ, 0.12mJ, 0.17mJ energy respectively. Interestingly,
the energy required for TET is the same as SLT-TET. Thus,
the proposed method not only reduces the training time but
also maintains a similar energy requirement during inference
with similar or better test accuracy. To compare with tdBN,
which has test accuracy of 93.75 at T = 10 and requires
0.34mJ per inference, SLT-tDBN achieves a similar accu-
racy of 94.92 at latency T = 4, which only requires 0.16mJ
of energy.

Conclusion
We propose an efficient training method for direct training
of SNNs. The proposed algorithm considers gradient up-
dates that are not tailored to any specific inference latency.
Though the state-of-the-art methods achieve good general-
ization performance at the target latency, they show a drop
in accuracy when the latency is switched to lower values.
Through experiments, we demonstrate that the proposed
method is flexible in inference latency and offers the least
drop in accuracy. We also demonstrate the efficiency of our
algorithm in terms of training time, offering a significant
speed-up, along with the fact that the stochasticity in latency
brings the model to flatter minima.
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