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Abstract

We consider the problem of multi-objective optimization
(MOO) of expensive black-box functions with the goal of dis-
covering high-quality and diverse Pareto fronts where we are
allowed to evaluate a batch of inputs. This problem arises in
many real-world applications including penicillin production
where diversity of solutions is critical. We solve this problem
in the framework of Bayesian optimization (BO) and propose
a novel approach referred to as Pareto front-Diverse Batch
Multi-Objective BO (PDBO). PDBO tackles two important
challenges: 1) How to automatically select the best acquisi-
tion function in each BO iteration, and 2) How to select a
diverse batch of inputs by considering multiple objectives. We
propose principled solutions to address these two challenges.
First, PDBO employs a multi-armed bandit approach to select
one acquisition function from a given library. We solve a cheap
MOO problem by assigning the selected acquisition function
for each expensive objective function to obtain a candidate
set of inputs for evaluation. Second, it utilizes Determinantal
Point Processes (DPPs) to choose a Pareto-front-diverse batch
of inputs for evaluation from the candidate set obtained from
the first step. The key parameters for the methods behind these
two steps are updated after each round of function evaluations.
Experiments on multiple MOO benchmarks demonstrate that
PDBO outperforms prior methods in terms of both the quality
and diversity of Pareto solutions.

1 Introduction
A wide range of science and engineering applications, in-
cluding materials design (Ashby 2000), biological sequence
design (Taneda 2015), and drug/vaccine design (Nicolaou
and Brown 2013) involves optimizing multiple expensive-
to-evaluate objective functions. For example, in nanoporous
materials design (Deshwal, Simon, and Doppa 2021), the
goal is to optimize the adsorption property and cost of synthe-
sis guided by physical lab experiments. Since the experiments
are expensive in terms of the consumed resources, our goal is
to approximate the optimal Pareto set of solutions. In many
of the aforementioned applications, there are two important
considerations. First, we can perform multiple parallel exper-
iments which should be leveraged to accelerate the discovery
of high-quality solutions. Second, practitioners care about
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diversity in solutions and their outcomes. For example, in
penicillin production application, diverse solutions for objec-
tives including penicillin production, the time to ferment, and
the CO2 byproduct (Birol, Ündey, and Cinar 2002).

We consider the problem of multi-objective optimization
(MOO) over expensive-to-evaluate functions to find high-
quality and diverse Pareto fronts when we are allowed to
perform a batch of experiments. We solve this problem using
Bayesian optimization (BO) (Shahriari et al. 2015) which
has been shown to be highly effective for such problems.
The key idea behind BO is to learn a surrogate model (e.g.,
Gaussian process)from past experiments and use it to intel-
ligently select the sequence of experiments guided by an
acquisition function (e.g., expected improvement). There is
prior BO work on selecting a batch of experiments to find
diverse high-performing solutions for single-objective opti-
mization. However, there is very limited work on batch BO
for MOO problems and to produce diverse MOO solutions.
A key drawback of the existing BO methods for MOO is that
they evaluate diversity in terms of input space, which is not
appropriate for MOO (diversity in input space ⇏ diversity in
output space). To overcome this drawback and to measure the
diversity of MOO solution in the output space, we define a
new metric referred to as Diversity of the Pareto Front (DPF).

We propose a novel approach referred to as Pareto front-
Diverse Batch Multi-Objective BO (PDBO). PDBO selects a
batch B of inputs for evaluations in each iteration using two
main steps. First, it employs a principled multi-arm bandit
strategy to dynamically select one acquisition function (AF)
from a given library of AFs within the single-objective BO
literature. A cheap MOO problem is solved by assigning the
selected AF for each expensive objective function to obtain a
Pareto set. Second, a principled configuration of determinan-
tal point processes (DPPs) (Borodin 2009; Kulesza, Taskar
et al. 2012) for multiple objectives is used to select B in-
puts for evaluation from the Pareto set of the first step to
improve the diversity of the uncovered Pareto front. PDBO
updates the key parameters of the algorithms for these two
steps (dynamic selection of AF and selecting B Pareto-front
diverse inputs from a candidate Pareto set) after obtaining the
objective function evaluations. Our experiments on multiple
benchmarks with varying input dimensions and number of ob-
jective functions demonstrate that PDBO outperforms prior
methods in finding high-quality and diverse Pareto fronts.
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Contributions. The key contribution of this paper is devel-
oping and evaluating the PDBO approach for solving MOO
problems to find high-quality and diverse Pareto fronts.

Specific contributions are as follows:
• A multi-arm bandit strategy with a novel reward function

to dynamically select one acquisition function from a
given library for MOO problems.

• A novel DPP method for selecting a batch of inputs from
a given Pareto set to maximize Pareto front diversity using
a new mechanism to generate the DPP kernel for MOO.

• To demonstrate the effectiveness of PDBO and study the
Pareto front diversity, we propose a new metric to measure
the diversity of Pareto fronts. To the best of our knowl-
edge, this is the first attempt at extensive experimental
evaluation of Pareto front diversity within BO.

• Theoretical analysis of our PDBO algorithm in terms of
asymptotic regret bounds.

• Experimental evaluation of PDBO and baselines on mul-
tiple benchmark MOO problems. The code for PDBO is
publicly available at https://github.com/Alaleh/PDBO.

2 Problem Setup and Background
We first formally define the batch MOO problem along with
the metrics to evaluate the quality and diversity of solutions.
Next, we provide an overview of the BO framework.

Batch Multi-Objective Optimization. We consider a MOO
problem where the goal is to optimize multiple conflicting
functions. Let X ⊂ Rd be the input space of d design vari-
ables, where each candidate input x ∈ X is a d-dimensional
input vector. And let {f1, · · · , fK} with K ≥ 2 be the
objective functions defined over the input space X where
f1(x), · · · , fK(x) : X→ R. We denote the functions evalu-
ation at an input x as y = [y1, · · · , yK ], where yi = fi(x)
for all i ∈ {1, · · · ,K}. Without loss of generality, we as-
sume minimization for all K objective functions. The optimal
solution of the MOO problem is a set of inputs X ∗ ⊂ X such
that no input x′ ∈ X \ X ∗ Pareto-dominates another input
x ∈ X ∗. An input x Pareto-dominates another point x′ if
and only if ∀j : fj(x) ≤ fj(x

′) and ∃j : fj(x) < fj(x
′).

The set of input solutions X ∗ is called the optimal Pareto
set and the corresponding set of function values Y∗ is called
the optimal Pareto front. We can select B inputs for parallel
evaluation in each iteration, and our goal is to uncover a high-
quality and diverse Pareto front while minimizing the total
number of expensive function evaluations.

Metrics for Quality and Diversity of Pareto Front. Our
goal is to find high-quality and diverse Pareto fronts. The
diversity of the Pareto front has not been formally evaluated
in any previous work. We introduce an appropriate evaluation
metric to measure the diversity of the Pareto front and discuss
an existing measure of Pareto front quality below.

Diversity of Pareto Front. Diversity is an important crite-
rion for many optimization problems. Prior work on batch
BO, both in the single-objective and MO settings focused on
evaluating diversity with respect to the input space (Jain et al.
2022). However, in most real-world MOO problems, diver-
sity in the input space does not necessarily reflect diversity

in the output space. In MOO, practitioners might care more
about the diversity of the Pareto front rather than the Pareto
set. Yet, little work has gone into understanding, formalizing,
and measuring Pareto front diversity in MOO. In most cases,
finding a more diverse set of points in the output space leads
to a higher hypervolume (Zitzler and Thiele 1999). How-
ever, a higher hypervolume does not necessarily correspond
to a more diverse Pareto front. (Konakovic Lukovic, Tian,
and Matusik 2020) is the only prior work that proposed a
diversity-guided approach for batch MOO. However, the di-
versity of the produced Pareto front was not evaluated. To fill
this gap, we propose an evaluation metric to fill this gap to as-
sess the Diversity of the Pareto Front (DPF). Given a Pareto
front Yt, DPF (Yt) is the average pairwise distance between
points (i.e., output vectors) in Pareto front Yt. It is important
to clarify that the pairwise distances are computed in the out-
put space between different vector pairs (y,y′) ∈ Yt, unlike
previously used metrics to assess input space diversity in the
single-objective setting (Angermueller et al. 2020).

DPF (Yt) =
∑

(i,j)∈I ||yi − yj||
|I|

with I = {(i, j)∀i, j ∈ {1 · · · t}, i < j}
We provide a more detailed discussion of existing metrics
and some illustrative results on previous metrics and their
utility in evaluating diversity in the Appendix.

Hypervolume Indicator. The hypervolume indicator (Zit-
zler and Thiele 1999) is the most commonly employed mea-
sure to evaluate the quality of a given Pareto front. Given a
set of functions evaluations Yt = {y0, · · · ,yt}, the Pareto
hypervolume (PHV) indicator is the volume between a pre-
defined reference point r and the given Pareto front.

2.1 Bayesian Optimization Framework
BO (Shahriari et al. 2015) is a general framework for solv-
ing expensive black-box optimization problems in a sample-
efficient manner. BO algorithms iterate through three steps.

1) Build a probabilistic surrogate model of the true expen-
sive objective function. Gaussian process (GPs) (Williams
and Rasmussen 2006)) are widely employed in BO.

2) Define an acquisition function (AF) to score the utility of
unevaluated inputs. It uses the surrogate model’s predictions
as a cheap substitute for expensive function evaluations and
strategically trades off exploitation and exploration.

Some examples of widely used acquisition functions in
single-objective optimization include expected improvement
(EI) (Mockus, Tiesis, and Zilinskas 1978), upper confi-
dence bound (UCB) (Auer 2002), Thompson sampling (TS)
(Thompson 1933) and Identity (ID).

EI(x) = σ(x)(αΦ(α) + ϕ(α)), α = (τ − µ(x)

σ(x)
) (1)

UCB(x) = µ(x) +
√
βσ(x) (2)

TS(x) = f̂(x) with f̂ ∼ GP (3)
ID(x) = µ(x) (4)

Here, β is a parameter to balance exploration and exploita-
tion in the UCB acquisition function (Srinivas et al. 2009),
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τ is the best-uncovered function value; and Φ and ϕ are the
CDF and PDF of a standard normal distribution respectively.

3) Select the input with the highest utility score for
function evaluation by optimizing the acquisition function.

3 Related Work
Multi-Objective BO. There is relatively less work on MOO
in comparison with single-objective BO. Prior work builds
on the insights from single-objective methods (Shahriari
et al. 2015; Hernández-Lobato, Hoffman, and Ghahramani
2014; Wang and Jegelka 2017; Hvarfner, Hutter, and Nardi
2022) for MOO. Recent work on MOBO includes Predic-
tive Entropy Search (Hernández-Lobato et al. 2016), Max-
value Entropy Search (Belakaria, Deshwal, and Doppa 2019),
Multi-Objective Regionalized BO (Daulton et al. 2022),
Uncertainty-aware Search (Belakaria et al. 2020a), Pareto-
Frontier Entropy Search (Suzuki et al. 2020), and Expected
Hypervolume Improvement (Daulton, Balandat, and Bakshy
2020; Emmerich and Klinkenberg 2008). These methods are
shown to perform well on a variety of MOO problems.

Batch Multi-objective BO. The Batch BO problem in the
multi-objective setting is even much less studied. Diversity-
Guided Efficient Multi-Objective Optimization (DGEMO)
(Konakovic Lukovic, Tian, and Matusik 2020) approximates
and analyzes a piecewise-continuous Pareto set representa-
tion which allows the algorithm to introduce a batch selection
strategy that optimizes for both hypervolume improvement
and diversity of selected samples. However, DGEMO work
did not study or evaluate the Pareto-front diversity of the
produced solutions. qEHVI (Daulton, Balandat, and Bakshy
2020) is an exact computation of the joint EHVI of q new
candidate points (up to Monte-Carlo integration error).

qPAREGO is a novel extension of ParEGO (Knowles 2006;
Daulton, Balandat, and Bakshy 2020) that supports parallel
evaluation and constraints. More recent work (Lin et al. 2022)
proposed an approach to address MOO problems with con-
tinuous/infinite Pareto fronts by approximating the whole
Pareto set via a continuous manifold. This approach enables
a better preference-based exploration strategy for practition-
ers compared to prior work (Abdolshah et al. 2019; Paria,
Kandasamy, and Póczos 2020; Astudillo and Frazier 2020).
However, it is typically unknown to the user if the Pareto
front is dense/continuous, especially in expensive function
settings where the data is limited. It is not known whether any
of these batch methods produce diverse Pareto fronts or not,
as they were not evaluated on diversity metrics. We perform
an experimental evaluation to answer this question.

DPPs for Batch Single-Objective BO. DPPs are elegant
probabilistic models (Borodin and Olshanski 2005; Borodin
2009) that characterize the property of repulsion in a set of
vectors and are well-suited for the selection of a diverse sub-
set of inputs from a predefined set. Prior work used DPPs for
selecting batches for evaluation in the single-objective BO lit-
erature (Kathuria, Deshpande, and Kohli 2016; Nava, Mutny,
and Krause 2022; Wang et al. 2017). In the context of MOO
for cheap objective functions using evolutionary algorithms,
DPP was deployed using non-learning-based kernels such as
cosine function applied to points in the Pareto front while

disregarding the input space (Wang et al. 2022; Zhang et al.
2020; Okoth et al. 2022). However, to the best of our knowl-
edge, there is no work on using DPPs for multi-objective BO
to uncover diverse Pareto fronts using a learned kernel that
captures the trade-off between multiple objectives, similarity
in the input space, and diversity of the Pareto front.

Adaptive Acquisition Function Selection. There has been
a plethora of research on finding efficient and reliable acqui-
sition functions (AFs). However, prior work has shown that
no single acquisition function is universally efficient and con-
sistently outperforms all others. GP-Hedge (Hoffman et al.
2011) proposed to use a portfolio of acquisition functions.
The optimization of each AF will nominate an input, and the
algorithm will select one of them for evaluation using the se-
lection probabilities. The GP-Hedge method uses the Hedge
strategy (Freund and Schapire 1997), a multi-arm bandit
method designed to choose one action amongst a set of differ-
ent possibilities using selection probabilities calculated based
on the reward (performance given by function values) col-
lected from previous evaluations. Vasconcelos et al. extended
Hoffman et al. by proposing to use discounted cumulative
reward and Vasconcelos et al. suggested using Thompson
sampling to automatically set the hedge hyperparameter η.

4 Proposed PDBO Algorithm
We start by providing an overview of the proposed PDBO
algorithm illustrated in Figure 1. Next, we explain our algo-
rithms for two key components of PDBO, namely, adaptive
acquisition function selection via a multi-arm bandit strategy
and diverse batch selection via determinantal point processes
for multi-objective output space diversity.

Overview of PDBO. PDBO is an iterative algorithm. It in-
troduces novel methods for selecting varying acquisition
functions and for bringing the diversity of inputs into the
multi-objective BO setting. The method builds K indepen-
dent Gaussian processes GP1, · · · , GPK as surrogates for
each of the objective functions. Its three key steps at each
iteration t to select B inputs for evaluation are:

1. Solving multiple cheap MOO problems: PDBO
takes as input a portfolio of acquisition functions, P =
{AF1, · · · , AFM} for single-objective BO. It constructs M
cheap MOO problems, each corresponding to one AF. The
multiple objectives defining the cheap MOO problems are
acquisition functions respectively corresponding to the K
objective functions. Solving cheap MOO problems will gen-
erate M cheap Pareto-sets of solutions X 1

c · · · XM
c .

2. Diverse batch selection: From each cheap Pareto set
X j

c , a batch X
Bj

t ⊂ X j
c of B inputs is selected using a

diversity-aware approach based on DPPs. Importantly, the
adapted DPP is configured to favor the diversity in the output
space and to handle multiple objective settings by using a
principally fitted convex combination of the kernels of the
K Gaussian processes. The convex combination scalars are
strategically set to maximize the likelihood of selecting a
diverse subset of inputs with respect to the Pareto front.

3. Acquisition function selection: From {XBj

t ; ∀ j ∈
[1, · · · ,M ]}, only one nominated subset would be selected
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Figure 1: High-level overview of PDBO algorithm illustrating its three key components.

using a multi-arm bandit strategy. The keys to this selection
are probabilities p1, · · · , pj , one for each acquisition function
to capture their performance based on past iterations. pj is
the probability of selecting the batch generated by the acquisi-
tion function AFj , defined in equation 9. These probabilities
are updated based on the discounted cumulative reward rj

of each of the respective acquisition functions. The reward
values rj are updated based on the quality of the batches
nominated by the respective acquisition functions.

Algorithm 1 provides a pseudocode with high-level steps
of the PDBO approach. The DPP-SELECT and ADAPTIVE-
AF-SELECT represent the second and third key steps. The
details of these methods and their corresponding pseudocodes
are provided in Sections 4.1 and 4.2, respectively.

4.1 Multi-arm Bandit Strategy for Adaptive
Acquisition Function Selection

In this section, we propose a multi-arm bandit (MAB) ap-
proach to adaptively select one acquisition function (AF)
from a given library of AFs in each iteration of PDBO.
Multi-arm Bandit Formulation. We are given a portfolio
of M acquisition functions P = {AF1, · · · , AFM} and our
goal is to adaptively select one AF in each iteration of PDBO.
Each acquisition function in P corresponds to one arm, and
we need to select an arm based on the performance of past
selections for solving the MOO problem. Inspired by the
previous work on AF selection and algorithm selection in the
single objective setting (Hoffman et al. 2011; Vasconcelos
et al. 2019, 2022), we propose an adaptive acquisition func-
tion selection approach for the MOO setting (see Algorithm
2). We explain the two main steps of this approach below.

Nominating Promising Candidates via Cheap MOO. In
each PDBO iteration, we employ the updated statistical
models {GP1 · · ·GPK} and the portfolio P to generate M
sets of candidate points. For each AFj , the algorithm con-
structs a cheap MOO problem with the objectives defined as
AFj(GP1,x) · · ·AFj(GPK ,x). Assuming minimization, the
cheap MOO generate M Pareto-sets of solutions X 1

c · · · XM
c

Algorithm 1: Pareto front-Diverse Batch Multi-Objective BO
Input: X input space; {f1, · · · , fK}, K black-box objective func-
tions; P = {AF1, · · · , AFM} portfolio of acquisition functions; B
batch size; and Tmax number of iterations
1: Initialize data D0 = {X0,Y0} with N0 initial points
2: for each iteration t ∈ [1, Tmax] do
3: Fit statistical models GP1, · · · , GPk using Dt−1

4: for each acquisition function AFj ∈ P do
5: X j

c ← argminx∈X (AFj(GP1,x), · · · , AFj(GPk,x))
// Solve cheap MOO problem

6: X
Bj
t ← DPP-SELECT(X j

c , {GP1, · · · , GPk},Dt−1)
// Select a batch of inputs from X j

c using DPPs
7: end for
8: AFj∗ ← ADAPTIVE-AF-SELECT(Dt−1, {X

Bj

t−1}Mj=1)
// Select an AF using previously aggregated data

9: XB
t = X

Bj∗
t // Choose the batch nominated by AFj∗

10: Y B
t ← {[f1(x), · · · , fk(x)]; ∀ x ∈ XB

t }
// Evaluate objective functions for batch of inputs XB

t

11: Dt = {Xt,Yt} ← {Xt−1,Yt−1} ∪ {(XB
t , Y B

t )}
12: end for
13: return Pareto set XTmax and Pareto front YTmax

(one for each acquisition function) defined as:

X j
c ← argmin

x∈X
{AFj(GP1,x), · · · , AFj(GPK ,x)} (5)

We employ the algorithm proposed by Deb et al. to solve
cheap MOO problems defined in 5. From each X j

c , a batch
X

Bj

t ⊂ X j
c of B points is selected in iteration t using a

diversity-aware approach described in Section 4.2. We denote
the function evaluations of inputs in X

Bj

t by Y
Bj

t .

Multi-Objective Reward Update. We employ the relative
hypervolume improvement as the quality metric to define
our reward. The Pareto hypervolume captures the quality
of nominated batches from a Pareto-dominance perspective
and carries information about the represented trade-off be-
tween the multiple objectives. Defining the immediate re-
ward as the raw Pareto hypervolume of the nominated batch
IRj

t = HV (Y j
t ) can lead to an undesirable assessment of
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the suitable acquisition function since a batch of points can
have a large hypervolume value at iteration t but does not
provide a significant improvement over the previous Pareto
front Yt−1 while another batch nominated in iteration t− 1

may have a smaller hypervolume HV (Y j
t−1) yet provides

a higher improvement over Yt−2. Additionally, initial itera-
tions might provide drastic hypervolume improvements even
if the selected points are not optimal. To mitigate these is-
sues, we use the relative hypervolume improvement as the
immediate reward instead of the hypervolume. In each BO
iteration t, the immediate reward IRj

t for each acquisition
function AFj ; ∀ j ∈ {1 · · ·M} is defined as follows.

IRj
t =

HV (Ỹt−1 ∪ Ỹ j
t )−HV (Ỹt−1)

HV (Ỹt−1)
(6)

where Ỹt−1 is the Pareto front at iteration t − 1 and Ỹ j
t

is the evaluation of the batch of points Xj
t nominated by

AFj computed using the predictive mean of the updated GP
based statistical models. As optimization progresses, statis-
tical models provide a better representation of the objective
functions, and the batches nominated by each AF become
more informative about the quality of its selections. Hence,
the impact of the early iterations may become irrelevant later.
Consequently, we employ a discounted cumulative reward
for each acquisition function AFj at iteration t (denoted gjt ).

gjt = γgjt−1 + IRj
t =

∑
t′≤t

γt′−1IRj
t′ (7)

Where γ is a decay rate that trades off past and recent im-
provements. The use of the decay rate can lead to equal or
comparable rewards in advanced iterations, causing the algo-
rithm to select the acquisition function randomly. To address
this problem, the discounted cumulative reward gjt should be
normalized (Vasconcelos et al. 2019). The rewards at the first
iteration are all initialized to zero and then updated at each
iteration t using the following expression:

rjt =
gjt − gjmax

gjmax − gjmin

(8)

where gjmax = max({gjt′ , t′ ∈ [1, t]}) and gjmin =
min({gjt′ , t′ ∈ [1, t]}). Finally, the probability of selection of
each AF at each iteration t is calculated using equation 9.

pjt =
exp(ηrjt )∑M
l=1 exp(ηr

l
t)

for j = 1 . . .M (9)

The proposed MAB approach is an extension of the Hedge
algorithm but is fundamentally distinct in its methodology
and applicability. While it does generalize certain aspects of
Hedge, it introduces critical variations that make it unique
within the context of this study. Our approach diverges from
the original Hedge algorithm by incorporating two key modi-
fications: 1) The use of discounted rewards and the applica-
tion of normalization. Unlike the conventional Hedge, where
rewards are typically used without any discounting or nor-
malization, our strategy accounts for these factors, enhancing

Algorithm 2: ADAPTIVE-AF-SELECT

Input: training data Dt; Batches nominated by different AFs
{XBj

t , ∀j ∈ {1 · · ·M}}
1: if t == 0 then
2: rjt = 0 for j = 1 · · ·M
3: else
4: Compute rewards: rjt for j = 1 · · ·M using Equation 8

5: Update probabilities: pjt =
exp(ηr

j
t )∑M

l=1
exp(ηrlt)

for j = 1 · · ·M
6: end if
7: Select AFj∗ according to the probabilities {pjt}Mj=1

8: return acquisition function AFj∗

its adaptability to the specific problem domain. 2) Another
significant departure lies in the problem setting itself. Hedge
was initially designed for single-objective optimization while
our proposed approach solves the more challenging problem
of multi-objective optimization. This shift in focus has sub-
stantial implications, as it requires an entirely different set
of considerations and techniques to address the complexities
introduced by multiple conflicting objectives.

Remark. It is important to note that we are using a full in-
formation multi-arm bandit strategy that requires the reward
to be updated for all possible actions (i.e., for all acquisition
functions) at each iteration. Since we evaluate only the batch
nominated by the selected AF, we achieve this by computing
the reward using the predictive mean functions of the updated
surrogate models. For this reason, we solve a cheap MOO
problem for each AFj ∈ P even though the acquisition func-
tion is selected based on the data from the previous iterations.
Algorithm 2 provides the pseudocode of the adaptive AF
selection based on the estimated rewards and probabilities.

4.2 DPPs for Batch Selection
We explain our approach to select a batch of diverse inputs
by configuring DPPs to promote output space diversity.

Determinantal Point Processes. (DPPs) (Kulesza, Taskar
et al. 2012) are well-suited to model samples of a diverse
subset of k points from a predefined set of n of points. Given
a similarity function over a pair of points, DPPs assign a high
probability of selection to the most diverse subsets according
to the similarity function. The similarity function is typically
defined as a kernel. Formally, given a DPP kernel defined
over a set S of n elements, the k-DPP distribution is defined
as selecting a subset S′ of size k with S′ ⊂ S with probability
proportional to the determinant of the kernel:

Pr(S′) =
det(κ(S′))∑
|s|=k det(κ(s))

(10)

(Kathuria, Deshpande, and Kohli 2016) introduced the use
of DPP for batch BO in the single-objective setting. Given
the surrogate GP of the objective function, the covariance of
the GP is used as the similarity function for the DPP. The
approach selects the first point in the batch by maximizing
the UCB acquisition function. Next, it creates a set of points
referred to as relevance region by bounding the search space
with the maximizer of the LCB acquisition function and man-
ually discretizing the bounded space into a grid of n points.
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DPP selects the remaining (k − 1) points out of the n points
in the relevance region. (Wang et al. 2017; Oh et al. 2021;
Nava, Mutny, and Krause 2022) used similar techniques to
apply DPPs to high-dimensional and discrete spaces.

There exist two approaches to selecting a diverse subset
with a fixed size via DPP: 1) Choosing the subset that maxi-
mizes the determinant referred to as DPP-max; and 2) Sam-
pling with the determinantal probability measure referred to
as DPP-sample. In this paper, we will focus on DPP-max. Al-
though selecting the subset that maximizes the determinant is
an NP-Hard problem, several approximations were proposed
(Nikolov 2015). A greedy strategy (Kathuria, Deshpande,
and Kohli 2016) provides an approximate solution and was
adopted in several BO papers (Wang et al. 2017).

Limitations of Prior Work and Challenges for MOO. We
list the key limitations of prior methods for DPP-based batch
selection in the single-objective setting as they are applicable
to the multi-objective setting too. L1) How can we overcome
the limitation of selecting the first point separately regardless
of the DPP diversity? L2) How can we prevent the poten-
tial limitation of under-explored search space caused by the
discretization of the space to create the relevance region set?

The key challenges to employing DPPs for batch selection
in the MOO setting include C1) How to define a kernel that
captures the diversity for multiple objectives given that we
have K separate surrogate models and their corresponding
kernel? C2) How can the DPP kernel capture the Pareto front
diversity and the trade-off between the objectives without
compromising the Pareto quality of selected points?

DPPs for Multi-objective BO. We propose principled meth-
ods to address the limitations of prior work on DPPs for batch
BO (L1 and L2) and the challenges C1 and C2 for MOO.

Multi-objective Relevance Region. Our proposed algorithm
naturally mitigates the two limitations of the single-objective
DPP approach. Recall that the first step of PDBO algorithm
(Section 4.1) proposes to generate cheap approximate Pareto-
sets which capture the trade-offs between the objectives in
the utility space and might include, with high probability,
optimal points (Belakaria et al. 2020a; Konakovic Lukovic,
Tian, and Matusik 2020). We consider the cheap Pareto sets as
the multi-objective relevance region. Our approach allows for
generating the relevance region without manually discretizing
the search space. Also, the full batch is selected from the
multi-objective relevance region leading to a better diversity
among all the points in the batch.

Multi-objective DPP Kernel Fitting. To overcome the chal-
lenges of using DPPs in the MOO setting, we build a new
kernel κdpp that is defined as a convex combination of the K
kernels of the statistical models (GPs) representing each of
the black-box objective functions. Let Λ = [λ1, · · · , λK ] be
a vector of size K where each λi corresponds to the convex
combination scalar associated with kernel κi of the objective
function fi. The DPP kernel κDPP is defined as:

κDPP =
K∑
i=1

λi · κi st.
i=K∑
i=1

λi = 1 (11)

The hyperparameters of the kernels κi ∀ i ∈ {1, 2, · · ·K} are

Algorithm 3: DPP-SELECT

Input: cheap Pareto set Xc; surrogate models GP1, · · · , GPk; data
Dt.
1: Ct = [HV C(y), ∀ y ∈ Yt] // Calculate the individual

hypervolume contribution for each input ∈ Dt

2: κDPP =
∑K

i=1 λi · κi st.
∑K

i=1 λi = 1
// Construct κDPP as a convex combination of function kernels

3: Λ∗ = argminΛ∈[0,1]K log p(Ct|Xt) s.t
∑K

i=1 λi = 1
// Select λi values by maximizing the LML

4: Use the fitted κDPP kernel to select the most diverse points
XB

t from the cheap Pareto set Xc via DPP-max
5: return the selected B inputs, XB

t

fixed during the fitting of the GPs. To set the convex combi-
nation scalars Λ in a principled manner that promotes diverse
batch selection, we propose to set the Λ by maximizing the
log marginal likelihood of selecting points with the highest
individual hypervolume contribution.

The individual hypervolume contribution (HVC) of each
point in the evaluated Pareto front Yt (via evaluated training
data Dt) is the reduction in hypervolume if the point is
removed from the Pareto front. HVC is considered a Pareto
front (PF) diversity indicator (Daulton et al. 2022). Points
in crowded regions of the Pareto front have smaller HVC
values. Therefore, more Pareto front points with high HVC
indicate more output space coverage and consequently,
higher PF diversity.

HV C(y) = HV (Yt)−HV (Yt \ {y}) ∀ y ∈ Yt (12)

Given equation 12, we can construct the training set for the
fitting of Λ. Let Ct = [HV C(y); ∀ y ∈ Yt] be a vector of
the individual HV contributions of evaluated points Xt ∈ Dt.

Λ∗ = argminΛ∈[0,1]K log p(Ct|Xt) s.t.
K∑
i=1

λi = 1 (13)

where log p(Ct|Xt) =−
1

2
CT

t KDPP
−1Ct

− 1

2
log |KDPP | −

n

2
log 2π

Algorithm 3 provides the pseudo-code for selecting the
diverse batch from a given candidate/cheap Pareto set Xc.

5 Theoretical Analysis
Prior work developed regret bound for different single ob-
jective acquisition functions including UCB (Srinivas et al.
2009; Belakaria et al. 2020a). However, the theoretical anal-
ysis of our proposed MAB algorithm is more challenging
as it involves input selection based on different acquisition
functions at each iteration t. The choices made at any given
iteration t influence the state and subsequent rewards of all
future iterations (Hoffman et al. 2011) and therefore there is
a need to adapt prior theoretical analysis. Additionally, re-
gret bounds for Hedge MAB strategies have been developed
independently outside the context of acquisition function se-
lection (Cesa-Bianchi and Lugosi 2006). We follow similar
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steps suggested by Hoffman et al. (2011) to derive a suitable
regret bound for our MOO setting.

We assume maximization of objectives and further assume
that the UCB acquisition function is in the portfolio of ac-
quisition functions used by PDBO. We make this choice for
the sake of clarity and ease of readability as we build our
theoretical analysis on prior seminal work (Srinivas et al.
2009; Hoffman et al. 2011). Notably, this is not a restrictive
assumption, and with minimal mathematical manipulations,
the same derived regret bound holds for the case of minimiza-
tion with the LCB acquisition function being in the portfolio
instead.

To simplify the proof and solely for the sake of theoretical
regret bound, we consider the instant reward at iteration t to
be the sum of predictive means of the Gaussian processes

IRt =
k∑

i=1

µi,t−1(xt) (14)

where µi,t−1 is the posterior mean of function i. The cu-
mulative reward over Tmax iterations that would have been
obtained using acquisition function AFj is defined as:

rjTmax
=

Tmax∑
t=1

IRt =

Tmax∑
t=1

k∑
i=1

µi,t−1(x
j
t ). (15)

It is important to note that in our proposed PDBO algorithm,
we use a different and better instant reward IRt and cumu-
lative reward riTmax

. The rewards in equation 14 is a design
choice to achieve the following regret bound. In Section 5.1,
we provide a discussion accompanied by an experimental
ablation study comparing the reward function used in theory
to the reward function used in PDBO.

Theorem 5.1. Let x∗ be a point in the optimal Pareto set
X ∗. Let x be a point in the Pareto set Xt estimated by PDBO
via solving cheap MOO problem at the tth iteration. Let the
cumulative regret for the multiple objectives be defined as
RTmax(x

∗) =
∑Tmax

t=1

∑k
i=1 fi(x

∗)− fi(xt)
Assuming maximization of objectives and that UCB is in

the portfolio of acquisition functions, let βt be the UCB pa-
rameter and γi

Tmax
be the bound on the information gained

for function i at points selected by PDBO after Tmax iter-
ations, then with probability at least 1 − δ the cumulative
regret is bounded by

RTmax
(x∗) ≤ O(

√
Tmax) +

Tmax∑
t=1

k∑
i=1

√
βtσi,t−1(x

UCB
t )

+
√

CiTmaxβTmax
γi
Tmax

.

We provide complete proof in the Appendix. The theorem
suggests that our regret is bounded by two sublinear terms
and another term that might include points suggested by UCB
but not necessarily selected by the Hedge strategy. Addition-
ally, the theoretical proof accounts only for sequential input
selection. Extension to batch selection using DPP is possible
by carefully accounting for results introduced by Kathuria,
Deshpande, and Kohli (2016).

5.1 Analysis and Ablation Study
To simplify the proof for regret bound, we defined a new
instant reward and cumulative reward in equations 14 and
15 that are different from the rewards we use for PDBO in
equations 6, 7, and 8. The goal of this section was to define
a reward that allows tractable theoretical analysis. However,
this reward is not intuitive and has several practical issues:
1) It is defined as a summation over predictive means of the
functions and does not provide any insight on the quality of
the selected points; 2) It does not account for improvement
with respect to previous iterations which is uninformative in
terms of the quality of points selected by different acquisition
functions at different iterations; 3) It is non-discounted and
does not account for the importance of the iterative progress
of the input selection; and 4) It is not normalized and there-
fore can lead to random selection in the advanced iterations.
All stated issues have been addressed by our proposed re-
ward function which we carefully designed to be intuitive
and informative about the different acquisition strategies and
to mitigate potential numerical issues. We performed an abla-
tion study to compare the performance of PDBO when using
our proposed reward function and the reward function in the
theoretical proof. Our results in the Appendix show superior
performance for our proposed reward strategy.

6 Experiments and Results
We provide experimental details and compare PDBO to base-
line methods on multiple MOO benchmarks and varying
batch sizes. We evaluate all methods using the hypervolume
indicator and diversity of Pareto front (DPF) measure.
Benchmarks. We conduct experiments on benchmarks with
varying numbers of input and output dimensions to show
the versatility and flexibility of our method. We use several
synthetic problems: ZDT-1, ZDT-2, ZDT-3 (Zitzler, Deb, and
Thiele 2000), DTLZ-1, DTLZ-3, DTLZ-5 (Deb et al. 2005)
and three real wold problems: the gear train design problem
(Deb and Srinivasan 2006; Konakovic Lukovic, Tian, and
Matusik 2020), SWLLVM (Siegmund et al. 2012) and Un-
manned aerial vehicle power system design (Belakaria et al.
2020b). More details and descriptions of problem settings are
included in the Appendix. In the ablation studies, we provide
additional experiments with synthetic benchmarks where we
vary the input and output dimensions.
Baselines. We compare our PDBO method to state-of-the-
art batch MOO methods: DGEMO, qEHVI, qPAREGO, and
USEMO-EI. We also include NSGA-II as the evolutionary
algorithm baseline and random input selection. We set the
hyperparameters of PDBO to γ = 0.7 and τ = 4 as recom-
mended by (Hoffman et al. 2011; Vasconcelos et al. 2019).
We define the AF portfolio as P = {EI, TS, UCB, ID}.
Experimental Setup. All experiments are initialized with
five random inputs/evaluations and run for at least 250 func-
tion evaluations. We conduct experiments with four different
batch sizes B ∈ {2, 4, 8, 16} and adjust the number of it-
erations accordingly. For instance, when using a batch size
of two, we run the algorithm for 125 iterations. Each exper-
iment is repeated 25 times, and we report the average and
standard deviation of the hypervolume indicator and the DPF
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Figure 2: Diverse Pareto front (DPF) results evaluated on multiple benchmarks and batch sizes.

metric. To solve the constrained optimization problem in the
DPP algorithm, we utilize an implementation of the SQP
method (Lalee, Nocedal, and Plantenga 1998; Nocedal and
Wright 2006) from the Python SciPy library (Virtanen et al.
2020). For baselines, we use the codes and hyperparameters
provided in the open source repositories of DGEMO 1 and
Botorch 2. We provide the details for the NSGA-II baseline
and cheap MO solver, and more details about the setup for
fitting the hyperparameters of GP models in the Appendix.
Results and Discussion. Figure 2 demonstrates that PDBO
outperforms other baselines with respect to the Pareto-front
diversity metric. Additionally, Figure 3 demonstrates that
PDBO outperforms all baseline methods in most experiments
with respect to the Hypervolume indicator and provides a
competitive performance on the others.

In the Appendix, we present a comprehensive set of ad-
ditional results and analyses. This includes the evaluation
of hypervolume and DPF on various benchmarks. We also
introduce results using other metrics, notably the Inverted

1https://github.com/yunshengtian/DGEMO
2https://github.com/pytorch/botorch

Generational Distance (IGD) and a modified version of DPF,
accompanied by a relevant discussion. Additionally, we com-
pare the run-time of all baseline methods. For visual insight
into the diversity of solutions, we include scatter plots rep-
resenting the Pareto front for problems with two objectives.
Lastly, we provide statistics on the selection of AF.

PDBO Advantages. PDBO is fast and effective in produc-
ing high-quality and diverse Pareto fronts. While outperform-
ing the baseline methods, it can also be used with any number
of input and output dimensions as well as being flexible to
run with any batch size. The two state-of-the-art methods are
DGEMO and qEHVI. The DGEMO method fails to run for
experiments with more than three objective functions as the
graph cut algorithm consistently crashes (same observation
was made by (Daulton, Balandat, and Bakshy 2021)). qEHVI
fails to run with batch sizes higher than eight as the method
becomes extremely memory-consuming even with GPUs. We
provide a more detailed discussion about these limitations
in the Appendix. Therefore, PDBO’s ability to easily run
with any input and output dimensions as well as any batch
size is an advantage for practitioners. PDBO is capable of
proactively creating a diverse Pareto front while improving
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Figure 3: Hypervolume results evaluated on multiple benchmarks and batch sizes.

or maintaining the quality of the Pareto front.
Given that PDBO incorporates two key contributions,

namely adaptive acquisition function selection and multi-
objective batch selection using DPPs, we examine the indi-
vidual contributions of each component to the overall perfor-
mance by conducting ablation experiments.

Merits of Adaptive AF Selection. We demonstrate the
superiority of the adaptive AF selection method, as outlined
in Section 4.1, compared to using a static AF from the port-
folio. To isolate the impact of this component from the batch
selection process, we conduct an ablation study using the
USEMO baseline. With a batch size of one, we consider
USEMO with UCB, TS, ID, and EI as baselines. We then
evaluate the efficacy of our MAB method by incorporating
the adaptive AF selection approach into USEMO. Results
shown in the Appendix consistently demonstrate the superior
performance of the MAB strategy over using a static AF.

Merits of DPP-Based Batch Selection for MOO. Follow-
ing a similar ablation approach, we employ the USEMO-EI
baseline to examine the impact of the DPP-based batch selec-
tion. USEMO-EI selects the next input for evaluation from
the cheap Pareto set based on an uncertainty metric. To per-
form this ablation, we replace the input selection mechanism

utilized in USEMO with our proposed DPP selection strategy
and compare their performance. The ablation is conducted
across different batch sizes B ∈ {2, 4, 8, 16}. The results
presented in the Appendix reveal that the proposed DPP se-
lection strategy, referred to as DPP-EI, surpasses the USEMO
selection strategy in terms of diversity while simultaneously
improving the quality of hypervolume.

7 Summary

We studied the Pareto front-Diverse Batch Multi-Objective
BO (PDBO) method based on the BO framework. It em-
ploys a full information multi-arm bandit algorithm with
discounted reward to adaptively select the most suitable ac-
quisition function in each iteration. We also proposed an
appropriate reward based on the relative hypervolume con-
tribution of each acquisition function and a multi-objective
DPP approach configured to select a batch of Pareto-diverse
inputs for evaluation. Experiments on multiple benchmarks
demonstrate that PDBO outperforms prior methods in terms
of both diversity and quality of Pareto-front solutions.
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