
A Unified View on Forgetting and Strong Equivalence Notions
in Answer Set Programming

Zeynep G. Saribatur, Stefan Woltran
Institute of Logic and Computation, TU Wien, Austria
{zeynep.saribatur,stefan.woltran}@tuwien.ac.at

Abstract

Answer Set Programming (ASP) is a prominent rule-based
language for knowledge representation and reasoning with
roots in logic programming and non-monotonic reasoning.
The aim to capture the essence of removing (ir)relevant de-
tails in ASP programs led to the investigation of different
notions, from strong persistence (SP) forgetting, to faithful
abstractions, and, recently, strong simplifications, where the
latter two can be seen as relaxed and strengthened notions of
forgetting, respectively. Although it was observed that these
notions are related, especially given that they have character-
izations through the semantics for strong equivalence, it re-
mained unclear whether they can be brought together. In this
work, we bridge this gap by introducing a novel relativized
equivalence notion, which is a relaxation of the recent simpli-
fication notion, that is able to capture all related notions from
the literature. We provide necessary and sufficient conditions
for relativized simplifiability, which shows that the challeng-
ing part is for when the context programs do not contain all
the atoms to remove. We then introduce an operator that com-
bines projection and a relaxation of (SP)-forgetting to obtain
the relativized simplifications. We furthermore present com-
plexity results that complete the overall picture.

Introduction
Forgetting or discarding information that are not deemed
necessary is crucial in human reasoning, as it allows to fo-
cus on the important details and to abstract over the rest.
Such active or intentional forgetting is argued to enhance
decision-making through flexibility under changing condi-
tions and the ability to generalize (Richards and Frank-
land 2017). Over the years, the desire to abstract over de-
tails led to different theories (e.g., (Giunchiglia and Walsh
1992)) and applications of abstraction in various areas of AI,
among many are planning (Knoblock 1994), constraint sat-
isfaction (Bistarelli, Codognet, and Rossi 2002), and model
checking (Clarke, Grumberg, and Long 1994). Getting rid of
(ir)relevant details through forgetting continues to motivate
works in different subfields of AI (Beierle and Timm 2019),
such as knowledge representation and reasoning (KR) (Eiter
and Kern-Isberner 2018) and symbolic machine learning
(Siebers and Schmid 2019). Recent examples of forgetting

Copyright c© 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

within KR appear in action theories (Luo et al. 2020), ex-
planations for planning (Vasileiou and Yeoh 2022) and ar-
gumentation (Berthold, Rapberger, and Ulbricht 2023; Bau-
mann and Berthold 2022).

The theoretical underpinnings of forgetting has been in-
vestigated for classical logic and logic programming for over
decades. Answer Set Programming (ASP), is a well estab-
lished logic programming language, characterized by non-
monotonic declarative semantics. Its non-monotonic nature
resulted in various forgetting operators satisfying different
desirable properties (see recent survey (Gonçalves, Knorr,
and Leite 2023)). The property strong persistence (SP)
(Knorr and Alferes 2014) is considered to best capture the
essence of forgetting in the context of ASP. The aim is to
preserve all existing relations between the remaining atoms,
by requiring that there be a correspondence between the an-
swer sets of a program before and after forgetting a set of
atoms, which is preserved in the presence of additional rules.
This correspondence is formally defined as

AS (P ∪R)|A = AS (f(P,A) ∪R) (1)

for all programs R over the universe U without containing
atoms fromA, where f(P,A) is the resulting program of ap-
plying an operator f on P to forget about the setA of atoms,
AS (·) denotes the collection of answer sets of a program,
and AS (·)|A is their projection onto the remaining atoms.

When nothing is forgotten, (SP) matches the notion of
strong equivalence (SE) (Lifschitz, Pearce, and Valverde
2001) among programs, denoted as AS (P ∪R) = AS (Q ∪
R) for all programs R. Gonçalves et al. (2020) showed that
(SP)-forgetting can only be done when the SE-models of the
program adheres to certain conditions, which is motivated
by relativized strong equivalence (Woltran 2004; Eiter, Tom-
pits, and Woltran 2005), a relaxation of strong equivalence
where the context programs can exclude some atoms.

The motivation to obtain ASP programs with a reduced
signature also led to notion of abstraction by omission (Sari-
batur and Eiter 2018) by means of over-approximation, i.e.,
any answer set in program P can be mapped to some an-
swer set in the abstracted program Q, which is denoted by
AS (P)|A⊆AS (Q), and also has been referred as weakened
Consequence (wC) within forgetting (Gonçalves, Knorr, and
Leite 2016a). Saribatur and Eiter (2018) introduce a syntac-
tic operator that obtains abstracted programs, and an auto-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10687

A B Strong A-simplification relative to B

∅ ∅ equivalence
∅ U Strong Equivalence (Turner 2001)
∅ B relativized Strong Equivalence (Woltran 2004)
A U Strong Simplification (Saribatur and Woltran 2023)
A A Strong Persistence (Knorr and Alferes 2014)
A C C ⊆ A, relativized Strong Persistence (this paper)
A ∅ Faithful Abstraction (Saribatur and Eiter 2018)

Table 1: Overview of the full spectrum of the relativized
strong simplification notion introduced in this paper.

mated abstraction and refinement methodology, that starts
with a coarse abstraction and refines it upon encountering
spurious answer sets (which do not have correspondence in
P) until a fine-grained abstraction is achieved.

A desired abstraction property was considered to be faith-
fulness where Q does not contain a spurious answer set, i.e.,

AS (P)|A = AS (Q), (2)

matching an instance of Consequence Persistence (CP)-
forgetting (Wang, Wang, and Zhang 2013). The notion how-
ever does not truly preserve the semantics w.r.t. projection.
The recent equivalence notion, called strong simplification
(Saribatur and Woltran 2023), defined as1

AS (P ∪R)|A = AS (Q ∪R|A) (3)

for all programs R, allows to capture the atoms that can be
disregarded from the original program and also the context
program, so that the simplified program can reason over the
reduced vocabulary while ensuring that the semantics of the
original program is preserved w.r.t. projection.

It is known that strong simplifications imply (SP)-
forgetting (Saribatur and Woltran 2023) and the relation
between omission abstraction and forgetting has also been
studied (Saribatur and Eiter 2020). The characterizations for
all of the mentioned notions have been established through
the SE-models of programs, which characterizes strong
equivalence. However until now it remained unclear how
these notions come together.

In this paper we bridge this gap through a relaxation of the
recent simplification notion, where on the context programs
we allow for excluding some dedicated atoms: for sets A,B
of atoms, we define the notion of strong A-simplification
relative to B where (3) holds for all programs R over B.
All of the above mentioned notions such as (relativized)
strong equivalence, strong persistence, faithful abstractions
and strong simplifications, then become special cases of this
novel relativized equivalence notion, of which a summary
can be seen in Table 1. Furthermore we show the conditions
for relativized simplifiability and observe that the challeng-
ing part is for when the context programs do not contain all
the atoms to remove/forget. We then show how the desired
simplifications can be obtained by an operator that combines
projection and a relaxation of (SP)-forgetting.

1R|A projects the positive body of the rules in R onto A and
removes the rules with a negative body or head containing an atom
from A.

Our main contributions are thus as follows (i) We pro-
pose the novel concept of relativized strong simplification
between programs, provide the necessary and sufficient con-
ditions for testing relativized strong simplifiability, give se-
mantical characterizations of relativized strong simplifica-
tions and discuss the full spectrum of this notion; (ii) we
introduce a novel forgetting operator which is a combina-
tion of projection and a relaxation of SP-forgetting, which
we introduce as relativized SP-forgetting; (iii) we conclude
with complexity results.

Background
Answer Set Programming An (extended) logic program
(ELP) is a finite set of (extended) rules of form

A1 ∨ · · · ∨ Al ←Al+1, . . . , Am,not Am+1, . . . , not An,

not not An+1, . . . , not notAk

where Ai (1 ≤ i ≤ k, 0 ≤ l ≤ m ≤ n ≤ k) are
atoms from a first-order language, and not is default nega-
tion. We also write a rule r as H(r) ← B(r) or H(r) ←
B+(r), not B−(r), not not B−−(r). We call H(r) =
{A1, . . . , Al} the head of r, B+(r) = {Al+1, . . . , Am} the
positive body,B−(r) = {Am+1, . . . , An} the negative body
and B−−(r) = {An+1, . . . , Ak} the double-negated body
of r. If H(r) = ∅, then r is a constraint. A rule r is disjunc-
tive if k = n; if, in addition, l ≤ 1 then r is normal; r is pos-
itive if k = m and it is a (non-disjunctive) fact if B(r) = ∅
and l ≤ 1; for H(r) = ∅, we occasionally write ⊥.

In the what follows, we focus on propositional programs
over a set of atoms from universe U . Programs with vari-
ables reduce to their ground versions as usual. Unless stated
otherwise the term program refers to a (propositional) ELP.

Let I ⊆ U be an interpretation. The GL-reduct of a pro-
gram P w.r.t. I is given by P I = {H(r) ← B+(r) | r ∈
P,B−(r) ∩ I = ∅, B−−(r) ⊆ I}. An interpretation I is
a model of a program P (in symbols I |= P) if, for each
r ∈ P , (H(r)∪B−(r))∩I 6= ∅ or (B+(r)∪B−−(r)) 6⊆ I;
I is an answer set, if it is a minimal model of P I . We denote
the set of all answer sets by AS (P). Two programs P1, P2

are equivalent if AS (P1) = AS (P2) and strongly equivalent
(SE), denoted by P1 ≡ P2, if AS (P1 ∪ R) = AS (P2 ∪ R)
for every R over U .

An SE-interpretation is a pair 〈X,Y 〉 such thatX ⊆ Y ⊆
U ; it is total if X = Y and non-total otherwise. An SE-
interpretation 〈X,Y 〉 is an SE-model of a program P if Y |=
P and X |= PY . The set of all SE-models of P is denoted
by SE (P). Note that a set Y of atoms is an answer set of
P if 〈Y, Y 〉 ∈ SE (P) and no non-total 〈X,Y 〉 ∈ SE (P)
exists. Two programs P1 and P2 are strongly equivalent iff
SE (P1) = SE (P2) (Turner 2001).

Lastly, for a set S ⊆ U of atoms, S|A denotes the projec-
tion to the atoms in A and S is a shorthand for U \ S. We
also use the notion on pairs, i.e. 〈X,Y 〉|A = 〈X|A, Y|A〉 and
on sets of objects, i.e. S|A = {S|A | S ∈ S}.

We next summarize the notions needed for our purposes.

Relativized Equivalence Woltran (2004) relaxed the no-
tion of strong equivalence to have the added programs, R, in

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10688

a specific language B ⊆ U . Its semantical characterization
requires a generalization of SE-models as follows.
Definition 1. A pair of interpretations 〈X,Y 〉 is a (rela-
tivized) B-SE-interpretation iff either X = Y or X ⊂ (Y ∩
B). The former are called total and the latter non-total B-
SE-interpretations. Moreover, aB-SE-interpretation 〈X,Y 〉
is a (relativized) B-SE-model of a program P iff:

(i) Y |= P ;
(ii) for all Y ′⊂Y with (Y ′ ∩B) = (Y ∩B), Y ′ 2 PY ;

and
(iii) X ⊂ Y implies existence of a X ′ ⊆ Y with X ′ ∩B =

X , such that X ′ |= PY holds.

The set of B-SE-models of P is given by SEB(P).
Two programs P1 and P2 are strongly equivalent relative

to B iff SEB(P1) = SEB(P2).

Forgetting We refer to (Eiter and Kern-Isberner 2018;
Gonçalves, Knorr, and Leite 2023) for recent surveys on for-
getting, and briefly define (SP)-forgetting. For a class F of
forgetting operators and a class C of programs
(SP) F satisfies Strong Persistence if, for each f ∈ F , P ∈
C and A ⊆ U , we have AS(f(P,A)∪R) = AS(P ∪R)|A
for all programs R ∈ C over A.
Here f(P,A) denotes the result of forgetting about A

from P . Strong persistence is also considered for a partic-
ular forgetting instance 〈P,A〉, for P ∈ C and A ⊆ U , de-
noted by (SP)〈P,A〉. Gonçalves, Knorr, and Leite (2016b) in-
troduce a criterion Ω to characterize the instances for which
an operator achieving (SP)〈P,A〉 is impossible, which has re-
lations with A-SE-models as shown below.
Definition 2. Let P be a program over U and A ⊆ U . An
instance 〈P,A〉 satisfies criterion Ω if there exists Y ⊆ U\A
such that the set of sets

RY
〈P,A〉= {{X \A | 〈X,Y ∪A

′〉 ∈ SEA(P)}

| A′ ⊆ A, 〈Y ∪A′, Y ∪A′〉 ∈SEA(P)}

is non-empty and has no least element.
It is not possible to forget aboutA from P while satisfying

strong persistence exactly when 〈P,A〉 satisfies criterion Ω.
Gonçalves, Knorr, and Leite (2016b) also show that the

resulting program obtained from forgetting A from pro-
gram P by applying an operator f from the class FSP
of (SP)-forgetting operators has the SE-models over A as
SE (f(P,A)) = {〈X,Y 〉 | Y ⊆ U \A ∧X ∈

⋂
RY
〈P,A〉}.

Abstraction and Simplification The general notion of ab-
straction as an over-approximation is defined as follows.
Definition 3 ((Saribatur and Eiter 2018)). For programs P
(over U) and Q (over U ′) with |U|≥ |U ′|, and a mapping
m : U → U ′ ∪ {>}, Q is an abstraction of P w.r.t. m, if
m(AS (P)) ⊆ AS (Q).

For an omission abstraction mapping that omits a setA of
atoms from U , it becomes AS(P)|A ⊆ AS(Q). An abstrac-
tion Q is called faithful if AS(P)|A = AS(Q).

Saribatur and Woltran (2023) generalized this notion for
disjunctive logic programs (DLP) to consider newly added
rules or facts that also get abstracted. For that they consider
context programsR over U to beA-separated, which means
they are of form R = R1 ∪R2 for programs R1 and R2 that
are defined over U \A and A, respectively.

Definition 4 ((Saribatur and Woltran 2023)). Given A ⊆ U
and a program P (over U), a program Q (over U \ A) is a
strong A-simplification of P if for any program R over U
that is A-separated, we have

AS(P ∪R)|A = AS(Q ∪R|A) (4)

We say that P is strong A-simplifiable if there is a program
Q such that (4) holds.

It was shown that the SE-models of P need to satisfy the
below conditions, whereA is semantically behaving as facts,
in order to ensure the existence of such a simplification.

Theorem 1 ((Saribatur and Woltran 2023)). There exists a
strong A-simplification of P iff P satisfies the following

∆s1 : 〈Y, Y 〉 ∈ SE (P) implies A ⊆ Y .
∆s2 : For any 〈X,Y 〉∈SE (P), X|A=Y|A implies X=Y .
∆s3 : 〈X,Y 〉∈SE (P) implies 〈X∪(Y ∩A), Y 〉∈SE (P).

The simplifications are shown to have SE-models equal-
ing SE (P)|A. For strong A-simplifiable programs, project-
ing away the atoms in A achieves the desired simplification.

Theorem 2 ((Saribatur and Woltran 2023)). Let P be a
strong A-simplifiable program. Then P|A is a strong A-
simplification of P .

Here P|A refers to removing the atoms in A from the pos-
itive bodies of rules, and omitting the rule all together if an
atom from A appears in the negative body or the head.

We will later show that such a projection can still be par-
tially applicable in the relaxation of the simplification no-
tion, while an additional operator more close to forgetting
will be needed as well.

Relaxing Strong Simplifications
A natural relaxation for strong simplification is to allow ex-
cluding some atoms from the added programs. Thus we pro-
pose the following notion.

Definition 5. Given A,B ⊆ U and a program P (over U),
a program Q (over U \ A) is a (strong) A-simplification
of P relative to B if for any program R over B that is A-
separated, we have

AS(P ∪R)|A = AS(Q ∪R|A) (5)

We say that P is B-relativized (strong) A-simplifiable if
there is a program Q such that (5) holds.

This relaxed notion of strong simplifiability allows to
identify programs which are originally not strong simpli-
fiable, but are relativized strong simplifiable when some
atoms are not taken into account in the context programs.
Below are examples of such programs.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10689

Example 1. Let program P1 consist of rules

a← b, c. c← d. b.

and program P2 consist of rules

a← not b. b← not a. c.

P1 and P2 are not strong {b, c}-simplifiable (though the pro-
grams P1 ∪ {c.} and P2 ∪ {b.} are).

However P1 is strong {b, c}-simplifiable relative to
{a, b, d}, since the program Q1 = {a ← d.} is such a sim-
plification, and P2 is strong {b, c}-simplifiable relative to
{a, c}, since the program Q2 = {a← not not a.} is such a
simplification.

Note that in Definition 5 there are no restrictions on how
B and A might relate. Thus there can be cases where not all
atoms in the set A appear in R. We will see that such cases
are the cause for the notion of relativized (strong) simplifi-
cations being more challenging than strong simplifications.

The context programs that do not contain any atoms from
A would be trivially A-separated, thus the relativized sim-
plification notion gets reduced to (SP)-forgetting.
Proposition 3. A forgetting operator f satisfies (SP)〈P,A〉
iff f(P,A) is an A-simplification of P relative to A.

Similar to strong simplifications, not every program might
have a relativized simplification. By investigating the unde-
sired case that prevents a program from being relativized
simplifiable, which is similar to Proposition 2 from (Sari-
batur and Woltran 2023), thus omitted for brevity, we obtain
our first result which adjusts the conditions in Theorem 1 to
the relativized case considering the B-SE models.2

Proposition 4 (?). Let P be a program and A,B be sets of
atoms. If there exists an A-simplification of P relative to B
then P satisfies following

∆r
s1 : 〈Y, Y 〉 ∈ SEB(P) implies A ∩B ⊆ Y .

∆r
s2 : For any 〈X,Y 〉 ∈ SE (P) with 〈Y, Y 〉 ∈ SEB(P),
X|A = Y|A implies X =Y .

∆r
s3 : 〈X,Y 〉∈SEB(P) implies 〈X ∪ (Y ∩ (A∩B)), Y 〉 ∈
SEB(P).

One can see that the restrictive conditions that were re-
quired from the SE-models in Theorem 1 are relaxed to only
hold for the B-SE-models, since those are the ones of im-
portance for the answer sets of P ∪R for R over B.

We shortly say that P satisfies ∆r if it satisfies the condi-
tions ∆r

si for 1 ≤ i ≤ 3. The following example illustrates
checking the ∆r conditions.
Example 2 (Ex. 1 ctd). The SE-models of P1 are

〈bcad, bcad〉 〈bca, bca〉 〈ba, ba〉 〈b, b〉
〈bca, bcad〉 〈ba, bca〉 〈b, ba〉
〈ba, bcad〉 〈b, bcad〉 〈b, bca〉

For B = {a, b, d}, SEB(P1) = {〈bcad, bcad〉, 〈ba, ba〉,
〈b, b〉, 〈ba, bcad〉, 〈b, bcad〉, 〈b, ba〉}. Now for A = {b, c},

2For proofs of theorems marked by ? see the extended version
at http://arxiv.org/abs/2312.07993.

we can easily see that ∆r
s1 and ∆r

s3 are satisfied since each
B-SE-model contains A ∩ B = {b}, and ∆r

s2 is trivially
satisfied since there is no relevant model.

Observe that, for B = U , the conditions ∆r
si become the

same with the conditions ∆si of strong simplification, for
1 ≤ i ≤ 3. On the other hand, if B is such that A ∩ B = ∅,
i.e., B ⊆ A, the conditions become immaterial.
Proposition 5. Any program P satisfies ∆r, for any A,B
with B ⊆ A.

Proof (Sketch). ∆r
s1 and ∆r

s3 trivially holds as A ∩ B = ∅.
For some 〈X,Y 〉 ∈ SE (P) to violate ∆r

s2 , X and Y need
to differ on the atoms from A, while X ∩A = Y ∩A holds
which contradicts 〈Y, Y 〉 ∈ SEB(P).

Unsurprisingly, the ∆r conditions are not sufficient forB-
relativized A-simplifiability in general. This can easily be
seen for the case when the context programs do not con-
tain atoms to remove, making use of Proposition 3 and the
knowledge that not every program has a set of atoms which
can be forgotten by satisfying (SP).
Example 3. Let program P3 consist of rules

a← p. b← q. p← not q. q ← not p.

For A = {p, q} and B = {a, b}, P3 satisfies ∆r (Propo-
sition 5), but is not B-relativized A-simplifiable, since no
forgetting operator satisfies (SP)〈P3,A〉 (Gonçalves, Knorr,
and Leite 2016b).

Note that, when A ⊆ B, due to the definition of B-SE-
models, in order to satisfy ∆r

s3 there cannot be non-total
〈X,Y 〉 ∈ SEB(P) with X ⊂ Y ∩ B. In addition to ∆r

s1
and ∆r

s2 , these become quite restrictive conditions on the
SE-models of P . In fact, as we shall see later, the ∆r con-
dition turns out to be sufficient for relativized simplifiability
when A ⊆ B. Though first we need to understand the se-
mantical characterization of such simplifications.

From B-SE-Models to A-B-SE-Models
We investigate the semantical characterization of relativized
simplifications of a program. For that we first introduce the
following notion ofA-B-SE-models, which project thoseB-
SE-models of importance w.r.t. A.
Definition 6. Given program P over U and A,B ⊆ U , the
A-B-SE-models of P are given by the set

SEB
A(P) ={〈Y|A, Y|A〉 | 〈Y, Y 〉 ∈ SEB(P)}∪

{〈X|A, Y|A〉 | 〈X,Y 〉 ∈ SEB(P), X ⊂ Y,

and for all 〈Y ′, Y ′〉 ∈SEB(P) with Y ′|A =Y|A,

〈X ′, Y ′〉 ∈SEB(P) with X ′|A =X|A}

The set of A-B-SE-models collects the projection of
all total B-SE-models 〈Y, Y 〉 and all non-total B-SE-
models 〈X,Y 〉 for which a respective non-totalB-SE-model
〈X ′, Y ′〉 can be found that agree on the projection, among
all total B-SE-models 〈Y ′, Y ′〉 that agree on the projection
with 〈Y, Y 〉.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10690

Example 4 (Ex. 1 ctd). For A={b, c} and B={a, b, d},
none of the total B-SE-models agree on the projection onto
A = {a, d}. So SEB

A simply collects the projection of
those models and their non-total models. Thus SEB

A(P1) =
{〈ad, ad〉, 〈a, a〉, 〈∅, ∅〉} ∪ {〈a, ad〉, 〈∅, ad〉, 〈∅, a〉}.

Now assume that another program P ′1 has the SE-models
SE (P ′1) = SE (P1) \ 〈ba, bca〉. Then 〈bca, bca〉 is added to
SEB(P ′1) in addition to SEB(P1). Since 〈bca, bca〉|{a,d} =

〈ba, ba〉|{a,d} = 〈a, a〉, in order for 〈∅, a〉 to be in SEB
A(P ′1)

there needs to be some non-total B-SE-model of form
〈., bca〉 that can be projected onto 〈∅, a〉 which is not the
case. Thus SEB

A(P ′1) = SEB
A(P1) \ 〈∅, a〉.

For referring to the relativized SE-models of the simplifi-
cations in our next result, let us introduce a notation for the
set of SE-models of a program over A1 relativized to A2.
Definition 7. Let P be a program. The relativization of SE-
models of P over A1 to the set A2 of atoms is denoted by

SEA1,A2(P) = {〈X,Y 〉 | 〈X,Y 〉 ∈ SEA2(P), Y ⊆ A1}.
Interestingly, the relativized SE-models of any A-

simplification for a program P relative to B, if exists, need
to adhere with the A-B-SE-models of P .
Proposition 6 (?). If Q is an A-simplification for P relative
to B, then it satisfies

SEB
A (P) = SEA,B\A(Q). (6)

Example 5 (Ex. 1 ctd). Equation (6) holds for P1 and Q1.
Now we can show the sufficiency of ∆r for whenA ⊆ B.

Theorem 7. Given program P over U and A,B ⊆ U
such that A⊆B. P satisfies ∆r iff there exists an A-
simplification of P relative to B.

Proof (Sketch). When A⊆B, due to ∆r
s1 , there cannot be

different totalB-SE-models agreeing on the projection, thus
SEB

A(P) amounts to SEB(P)|A. Due to Proposition 4, what
remains is to show that a program with (B\A)-SE-models
matching SEB(P)|A is a relativized simplification of P ,
which follows a very similar proof to that of Theorem 1.

This result shows that the challenge of relativized simpli-
fiability is in fact due to having atoms to be removed that do
not appear in the context programs. Then the B-SE-models
might differ in terms of the atoms from A \B which cannot
be distinguished in the projection, making the ∆r condition
no longer sufficient. Thus in order to characterize relativized
simplifiability in general, an additionaly property is needed.

Characterizing Relativized Simplifiability
We introduce the following criterion that will help us in ob-
taining the sufficient conditions.
Definition 8. Let P be a program over U and A,B ⊆ U . P
satisfies criterion ΩA,B if there exists Y ⊆ U \ A such that
the set of sets

RY
〈P,A,B〉= {{X \A | 〈X,Y ∪A

′〉 ∈ SEB(P)}

| A′ ⊆ A, 〈Y ∪A′, Y ∪A′〉 ∈SEB(P)}
is non-empty and has no least element.

The difference of ΩA,B from Ω is that instead of A-SE-
models, now B-SE-models are taken into account. In fact,
RY
〈P,A,A〉 = RY

〈P,A〉. Thus we have the following.

Proposition 8. P does not satisfy ΩA,A iff 〈P,A〉 does not
satisfy Ω.

We illustrate how the criterion ΩA,B can be checked with
the following example.
Example 6. Consider a program P with SE-models

〈abc, abc〉 〈abd, abd〉 〈abcd, abcd〉
〈ac, abc〉 〈bd, abd〉 〈abc, abcd〉
〈ac, abcd〉 〈bd, abcd〉 〈abd, abcd〉

Let A = {c, d} and B = {a, b, c}. For Y = {a, b},
only 〈abc, abc〉 and 〈abd, abd〉 appear in SEB(P). There
are 〈abc, abc〉, 〈ac, abc〉 ∈ SEB(P) of form 〈X, abc〉, and
〈abd, abd〉, 〈bd, abd〉 ∈ SEB(P) of form 〈X, abd〉. Thus
R{a,b}〈P,A,B〉 = {{{a, b}, {a}}, {{a, b}, {b}}} is non-empty
and does not have a least element. So ΩA,B is satisfied.

As the set RY
〈P,A,B〉 collects all B-SE-models that can be

projected onto 〈·, Y 〉, the criterion ΩA,B can in fact be char-
acterized through A-B-SE-models.
Proposition 9 (?). P does not satisfy criterion ΩA,B iff
{〈X,Y 〉 | Y ⊆ U \A ∧X ∈

⋂
RY
〈P,A,B〉} = SEB

A (P).

It turns out that criterion ΩA,B is also necessary for rela-
tivized simplifiability.
Proposition 10 (?). If P satisfies criterion ΩA,B , then a B-
relativized A-simplification cannot exist.

We next show that the ∆r conditions together with the
ΩA,B criterion are sufficient for relativized simplifiability.
Theorem 11 (?). If P satisfies ∆r and does not satisfy cri-
terion ΩA,B then P is B-relativized A-simplifiable.

The result is obtained by proving that a program Q satis-
fying (6) is a relativized simplification of P .

Thus we have the necessary and sufficient conditions on
B-relativized A-simplifiability, while also providing a char-
acterization for such simplifications, when exist.
Corollary 12. P satisfies ∆r and does not satisfy criterion
ΩA,B iff P is B-relativized A-simplifiable.

The Full Spectrum
We now discuss how the notion of relativized simplification
captures all the related notions from the literature (shown in
Table 1), by looking at the special cases of removing atoms
and relativization.

When A= ∅, the ∆r conditions are trivially satisfied,
and as SEB

∅ (P) =SEB(P), the criterion Ω∅,B is not sat-
isfied for any B. Also any program is ∅-separated. Then
B-relativized ∅-simplification simply amounts to relativized
strong equivalence (Woltran 2004). If, in addition, we set
B=U , we reach strong equivalence.
Proposition 13. P and Q are strong equivalent relative to
B iff Q is a ∅-simplification relative to B. Every program is
B-relativized ∅-simplifiable, for any B.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10691

For B = ∅, the ∅-SE models only contain the total mod-
els of the answer sets, which captures the notion of faithful
omission abstraction. Moreover ∆r is trivially satisfied and
ΩA,∅ is not satisfied for any A.

Proposition 14. Q is an A-simplification of P relative to ∅
iff Q is a faithful abstraction of P for omission of A. Every
program is ∅-relativized A-simplifiable, for any A.

When we additionally set A to ∅, then we reach equiva-
lence of two programs.

Setting A = U results in omitting all the atoms from the
program. Thus as potential relativized simplifications over ∅
we have either Q = ∅ or Q′ = {⊥ ← .}. From above we
know that every program is ∅-relativized U -simplifiable. So
a satisfiable program has Q as its relativized simplification,
while an unsatisfiable program has Q′. Though for B 6= ∅,
relativized simplifiability might not always hold.

When the context programs are set to be over the remain-
ing atoms, i.e., B = A, we reach (SP)-forgetting. In the
next section we introduce a relativization of (SP)-forgetting
to consider the case of B ⊆ A, which will be needed in
defining operators that obtain the relativized simplifications.

Combination of Projection and Forgetting
In this section we introduce an operator that can achieve rel-
ativized simplifications. As we know, whenever a relativized
simplification exists, it satisfies the equation (6). Following
the notation from forgetting operators, we introduce a class
of operators that achieves these simplifications. For this, in-
stead of a forgetting instance 〈P,A〉 we consider relativized
forgetting instance 〈P,A,B〉.
Definition 9. Let FrSS be the class of forgetting operators
defined by the following set: {f | SEA,B\A(f(P,A,B)) =
{〈X,Y 〉 | Y ⊆ U \A ∧X ∈

⋂
RY
〈P,A,B〉}}.

Proposition 9 and Corollary 12 leads to the following.

Corollary 15. For f∈FrSS, f(P,A,B) is aB-relativizedA-
simplification of P iff P is B-relativized A-simplifiable.

Note that above class of operators is similar to FSP, where
instead ofRY

〈P,A〉 we focus onRY
〈P,A,B〉, and instead of giv-

ing the characterization over the SE-models of the resulting
program, we consider its B-SE models.

Clearly when B = A, since RY
〈P,A,A〉 = RY

〈P,A〉, the re-
sulting program after applying an operator in FrSS is strongly
equivalent to the result of an (SP)-forgetting operator.

Proposition 16. Let P be a program, A ⊆ U , fSP ∈ FSP,
frSS ∈ FrSS. Then fSP (P,A) ≡ frSS(P,A,A).

Thus any operator in FrSS can be applied as an (SP)-
forgetting operator. As we shall show next, the forgetting
operators in FrSS can also be used to achieve a relaxed no-
tion of (SP)-forgetting.

Relativized Strong Persistence
We introduce a relaxed (SP)-forgetting notion, where non-
forgotten atoms can be excluded from the context program.

Definition 10. A forgetting operator f satisfies relativized
strong persistence for a relativized forgetting instance
〈P,A, S〉, S⊆A, denoted by (rSP)〈P,A,S〉, if for all pro-
grams R over S, AS(f(P,A, S)∪R) =AS(P ∪R)|A .

Above definition naturally leads to the following.
Proposition 17. If a forgetting operator f satisfies
(SP)〈P,A〉 then it satisfies (rSP)〈P,A,S〉, for any S ⊆ A.

In fact, every operator in FrSS satisfies (rSP)〈P,A,S〉, when
possible, which we get by Proposition 5 and Corollary 15.
Theorem 18. Every f ∈ FrSS satisfies (rSP)〈P,A,S〉, S ⊆ A,
for every relativized forgetting instance 〈P,A, S〉, where P
does not satisfy ΩA,S .

An Operator That Projects and Forgets
We begin with showing that as long as the ∆r conditions are
satisfied for those of A which appear in B it is possible to
project them away3 from P while preserving the semantics.

We observe that the relativized SE-models of the resulting
program after the projecting away atoms occurring in A∩B
equals the B-SE-models of P projected onto the remaining
atoms. This then also equals its (A ∩B)-B-SE-models.
Proposition 19 (?). Let P satisfy ∆r for A,B ⊆ U , and
A′ = A ∩B. Then it holds that

SEA′,B\A(P|A′) = SEB(P)|A′ = SEB
A′(P).

This observation leads to the following result.
Corollary 20. Let P satisfy ∆r for A,B ⊆ U , and A′ =
A ∩B. P|A′ is an A′-simplification of P relative to B.

This result shows that whenever P satisfies ∆r, even
if ΩA,B criterion is satisfied, preventing B-relativized A-
simplifiability, it is still possible to project away atoms in
B ∩A to reach a program with a reduced signature.

Interestingly, if a program isB-relativizedA-simplifiable,
obtaining the desired simplification is possible by first syn-
tactically projecting away those atoms in B ∩ A and then
applying an operator from FrSS for (rSP)-forgetting that for-
gets those atoms remaining outside of the context programs.
Theorem 21. Let P be B-relativized A-simplifiable, and
f ∈ FrSS. Then f(P|A∩B , A \ B,B \ A) is a B-relativized
A-simplification of P .

Proof (Sketch). By Proposition 19, the (B \ A)-SE-models
of P ′=P|A∩B amount to SEB(P)|A∩B . Thus for any
Y ,

⋂
RY
〈P ′,A\B,B\A〉 =

⋂
RY
〈P,A,B〉, which means that

if f achieves a B-relativized A-simplification of P with
f(P,A,B), then it can achieve such a simplification with
f(P|A∩B , A \B,B \A) as well.

We see that the challenging part of obtaining a relativized
simplification when there are atoms to remove that do not
appear in the context programs brings us closer to (SP)-
forgetting. In order to obtain a fully syntactic operator, an in-
teresting follow-up work would be to see whether the exist-
ing syntactic (SP)-forgetting operators (Berthold et al. 2019;
Berthold 2022) can be adjusted to consider (rSP).

3When projecting from ELPs, the atoms in A are removed from
the double negated body of the rules as well.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10692

Computational Complexity
We provide the complexity of deciding simplifiability
through checking the ∆r and ΩA,B conditions, and simpli-
fication testing. We assume familiarity with basic concepts
of complexity theory. For comprehensive details we refer to
(Papadimitriou 2003; Arora and Barak 2009).

We begin with checking the ∆r conditions.

Proposition 22. Let P be a program over U and A,B ⊆ U .
Deciding whether P satisfies ∆r is in ΠP

2 .

Violation of any ∆r
si can be checked in ΣP

2 since B-SE-
model checking is in DP (Eiter, Fink, and Woltran 2007).

Next we move on to checking the ΩA,B criterion. For
this we follow the results from (Gonçalves et al. 2020), with
the condition that the given program satisfies ∆r. Remem-
ber that for the case of (SP)-forgetting, ∆r is trivially sat-
isfied. For the below two results, we make use of ∆r

s1 and
∆r

s3 , which gives us that whenever 〈Y, Y 〉 ∈ SEB(P) some
〈X,Y 〉 ∈ SEB(P) exists iff 〈X ∪ (A∩B), Y 〉 ∈ SEB(P).

Proposition 23. Given program P satisfying ∆r forA,B ⊆
U , (i) given SE-interpretation 〈X,Y 〉 with Y ⊆ U \ A, de-
ciding whether X ∈

⋂
RY
〈P,A,B〉 is in ΠP

2 ; (ii) deciding
whether P satisfies criterion ΩA,B is ΣP

3 -complete.

Proof (Sketch). For the complemetary problem, it suffices to
guess an A′ ⊇ A ∩ B, and check that 〈Y ∪ A′, Y ∪ A′〉 ∈
SEB(P) and 〈X∪(A∩B), Y ∪A′〉 /∈ SEB(P) (the former
ensures also that RY

〈P,A,B〉 6= ∅). (i) then follows by B-SE-
model checking being in DP . For (ii), we just need to addi-
tionally guess Y and check thatRY

〈P,A,B〉 is non-empty (see
above) and has no least element. For the latter, we addition-
ally guess X and use (i) together with Proposition 9. ΣP

3 -
hardness follows from the special case B = A, cf. Thm 16,
(Gonçalves et al. 2020), where ∆r is trivially satisfied.

Recall Corollary 12. The results in Proposition 22 and
Proposition 23 are then used to determine the complexity
of deciding relativized simplifiability.

Theorem 24. Let P be a program over U , and A,B ⊆ U .
Deciding whether P isA-simplifiable relative toB is in ΠP

3 .

By making use of the characterizing equality (6), Propo-
sitions 9 and 23, we finally provide the complexity result for
relativized simplification testing.

Theorem 25. Given program P which is B-relativized A-
simplifiable, and program Q, checking whether Q is a B-
relativized A-simplification of P is ΠP

3 -complete.

Proof (Sketch). Making use of the equality (6), we show
the complementary problem to be in ΣP

3 , by guessing an
SE-interpretation 〈X,Y 〉 and checking the containment in
SEB

A(P) or in SEA,B(Q) but not both. By Proposition 9,
deciding 〈X,Y 〉 ∈ SEB

A (P) amounts to checking that
Y ⊆ U \ A and X ∈

⋂
RY
〈P,A,B〉. By Proposition 23 the

latter is in ΠP
2 , and B-SE-model checking is in DP .

For hardness, we use the case B = ∅, where the prob-
lem reduces to decide AS (P)|A = AS (Q) for a program P

∅ B U
∅ ΠP

2 -complete ΠP
2 -complete coNP-complete

A ΠP
3 -complete ΠP

3 -complete in ΠP
2

Table 2: Complexity landscape of testing B-relativized A-
simplification. Results in bold-face are given in this paper.

being ∅-relativized A-simplifiable. To this end, we extend
the hardness-construction from (Eiter and Gottlob 1995)
and reduce from (3, ∀)-QSAT. Let Φ = ∀U∃V ∀Wφ with
φ =

∨n
i=1(li,1 ∧ li,2 ∧ li3). We use copies of atoms, e.g.,

Ũ = {ũ | u ∈ U}. We construct P as follows:

P = {x ∨ x̃← . | x ∈ U ∪ V ∪W} ∪
{w ← s. w̃ ← s. s← w, w̃. | w ∈W} ∪
{s← l̃i,1, l̃i,2, l̃i,3. | 1 ≤ i ≤ n} ∪
{⊥ ← not s. }

where l̃i,j is given by ã if li,j is ¬a and by l̃i,j = li,j if li,j is
a positive literal. Note that P is ∅-relativized A-simplifiable
no matter how Φ looks like. Moreover, we set

Q = {u ∨ ũ← . | u ∈ U}

and A = V ∪ Ṽ ∪W ∪ W̃ ∪ {s}. It can be checked that
AS (P)|A = AS (Q) holds iff Φ is true.

Table 2 presents the full complexity landscape, using re-
sults from (Eiter and Gottlob 1995; Eiter, Fink, and Woltran
2007) for (relativized) (strong) equivalence and (Saribatur
and Woltran 2023) for strong simplifications. Saribatur and
Eiter (2018) provides the ΠP

2 -completeness of B = ∅ for
normal programs, which here we lifted to ELPs.

Conclusion
We introduced a novel relativized equivalence notion, which
is a relaxation of the recent strong simplification notion
(Saribatur and Woltran 2023), that provides a unified view
over all related notions of forgetting and strong equivalence
in the literature. We provided the necessary and sufficient
conditions to ensure such relativized simplifiability. We ob-
served that the challenge is when the context programs do
not contain all the atoms to remove, that requires a criterion
on the program that focuses on its relativized SE-models,
which also captures the case of (SP)-forgetting.

We furthermore introduced an operator that can obtain rel-
ativized simplifications, when possible. We showed that at
least for those atoms to be removed that appear in the con-
text programs, it is possible to simply project them away,
while for those that are outside of the context programs a re-
laxed version of an (SP)-forgetting operator will need to be
applied. We provided complexity results that fill the gap in
the landscape of the introduced notion.

Investigating the relativized simplification notion for the
uniform case to bring together uniform persistence forget-
ting (Gonçalves et al. 2019), (relativized) uniform equiv-
alence and uniform simplifications (Saribatur and Woltran
2023) would be an interesting extension of this work.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10693

Acknowledgments
This work has been supported by the Austrian Science Fund
(FWF) projects T-1315, P32830, and by the Vienna Science
and Technology Fund (WWTF) under grant ICT19-065. We
thank the anonymous reviewers for their valuable feedback.

References
Arora, S.; and Barak, B. 2009. Computational complexity:
a modern approach. Cambridge University Press.
Baumann, R.; and Berthold, M. 2022. Limits and Possi-
bilities of Forgetting in Abstract Argumentation. In Raedt,
L. D., ed., Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022, Vienna,
Austria, 23-29 July 2022, 2539–2545. ijcai.org.
Beierle, C.; and Timm, I. J. 2019. Intentional forgetting: An
emerging field in AI and beyond. KI-Künstliche Intelligenz,
33: 5–8.
Berthold, M. 2022. On syntactic forgetting with strong per-
sistence. In Proceedings of the 19th International Confer-
ence on Principles of Knowledge Representation and Rea-
soning, KR 2022, Haifa, Israel. July 31 - August 5, 2022,
43–52. IJCAI Organization.
Berthold, M.; Gonçalves, R.; Knorr, M.; and Leite, J. 2019.
A syntactic operator for forgetting that satisfies strong per-
sistence. Theory and Practice of Logic Programming, 19(5-
6): 1038–1055.
Berthold, M.; Rapberger, A.; and Ulbricht, M. 2023. Forget-
ting Aspects in Assumption-Based Argumentation. In Pro-
ceedings of the 20th International Conference on Principles
of Knowledge Representation and Reasoning, 86–96. IJCAI
Organization.
Bistarelli, S.; Codognet, P.; and Rossi, F. 2002. Abstracting
soft constraints: Framework, properties, examples. Artificial
Intelligence, 139(2): 175–211.
Clarke, E. M.; Grumberg, O.; and Long, D. E. 1994. Model
checking and abstraction. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 1512–1542.
Eiter, T.; Fink, M.; and Woltran, S. 2007. Semantical char-
acterizations and complexity of equivalences in answer set
programming. ACM Transactions on Computational Logic
(TOCL), 8(3): 17.
Eiter, T.; and Gottlob, G. 1995. On the Computational Cost
of Disjunctive Logic Programming: Propositional Case.
Ann. Math. Artif. Intell., 15(3-4): 289–323.
Eiter, T.; and Kern-Isberner, G. 2018. A Brief Survey on
Forgetting from a Knowledge Representation and Reasoning
Perspective. KI – Künstliche Intelligenz. Online http://link.
springer.com/article/10.1007/s13218-018-0564-6.
Eiter, T.; Tompits, H.; and Woltran, S. 2005. On Solution
Correspondences in Answer Set Programming. In Proceed-
ings of the 19th International Joint Conference on Artificial
Intelligence, 97–102.
Giunchiglia, F.; and Walsh, T. 1992. A theory of abstraction.
AIJ, 57(2-3): 323–389.

Gonçalves, R.; Janhunen, T.; Knorr, M.; Leite, J.; and
Woltran, S. 2019. Forgetting in modular answer set pro-
gramming. In Proc. of the Thirty-Third AAAI Conference on
Artificial Intelligence, 2843–2850. AAAI Press.
Gonçalves, R.; Knorr, M.; and Leite, J. 2016a. The Ulti-
mate Guide to Forgetting in Answer Set Programming. In
Proc. of the 15th International Conference on Principles of
Knowledge Representation and Reasoning, 135–144.
Gonçalves, R.; Knorr, M.; and Leite, J. 2016b. You can’t
always forget what you want: On the limits of forgetting in
answer set programming. In Proc. of the 22nd European
Conference on Artificial Intelligence, 957–965. IOS Press.
Gonçalves, R.; Knorr, M.; and Leite, J. 2023. Forgetting in
Answer Set Programming A Survey. Theory and Practice
of Logic Programming, 23(1): 111156.
Gonçalves, R.; Knorr, M.; Leite, J.; and Woltran, S. 2020.
On the limits of forgetting in Answer Set Programming. Ar-
tif. Intell., 286: 103307.
Knoblock, C. A. 1994. Automatically generating abstrac-
tions for planning. Artificial Intelligence, 68(2): 243–302.
Knorr, M.; and Alferes, J. J. 2014. Preserving strong equiv-
alence while forgetting. In Logics in Artificial Intelligence:
14th European Conference, JELIA 2014, Funchal, Madeira,
Portugal, September 24-26, 2014. Proceedings 14, 412–425.
Springer.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
Equivalent Logic Programs. ACM Transactions on Compu-
tational Logic, 2(4): 526–541.
Luo, K.; Liu, Y.; Lespérance, Y.; and Lin, Z. 2020. Agent
Abstraction via Forgetting in the Situation Calculus. In Gi-
acomo, G. D.; Catalá, A.; Dilkina, B.; Milano, M.; Barro,
S.; Bugarı́n, A.; and Lang, J., eds., Proceedings of the 24th
European Conference on Artificial Intelligence, ECAI 2020,
volume 325 of Frontiers in Artificial Intelligence and Appli-
cations, 809–816. IOS Press.
Papadimitriou, C. H. 2003. Computational complexity. John
Wiley and Sons Ltd.
Richards, B. A.; and Frankland, P. W. 2017. The persistence
and transience of memory. Neuron, 94(6): 1071–1084.
Saribatur, Z. G.; and Eiter, T. 2018. Omission-based Ab-
straction for Answer Set Programs. In Proc. of the 16th In-
ternational Conference on Principles of Knowledge Repre-
sentation and Reasoning, 42–51. AAAI Press.
Saribatur, Z. G.; and Eiter, T. 2020. A Semantic Perspective
on Omission Abstraction in ASP. In Proceedings of the 17th
International Conference on Principles of Knowledge Rep-
resentation and Reasoning, 733–737. IJCAI Organization.
Saribatur, Z. G.; and Woltran, S. 2023. Foundations for Pro-
jecting Away the Irrelevant in ASP Programs. In Proceed-
ings of the 20th International Conference on Principles of
Knowledge Representation and Reasoning, 614–624. IJCAI
Organization.
Siebers, M.; and Schmid, U. 2019. Please delete that! Why
should I? Explaining learned irrelevance classifications of
digital objects. KI-Künstliche Intelligenz, 33(1): 35–44.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10694

Turner, H. 2001. Strong equivalence for logic programs and
default theories (made easy). In Logic Programming and
Nonmotonic Reasoning: 6th International Conference, LP-
NMR 2001 Vienna, Austria, September 17–19, 2001 Pro-
ceedings 6, 81–92. Springer.
Vasileiou, S. L.; and Yeoh, W. 2022. On Generating Ab-
stract Explanations via Knowledge Forgetting. In ICAPS
2022 Workshop on Explainable AI Planning.
Wang, Y.; Wang, K.; and Zhang, M. 2013. Forgetting for
Answer Set Programs Revisited. In IJCAI 2013, Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence, Beijing, China, August 3-9, 2013, 1162–1168.
IJCAI/AAAI.
Woltran, S. 2004. Characterizations for Relativized Notions
of Equivalence in Answer Set Programming. In Alferes,
J. J.; and Leite, J. A., eds., Logics in Artificial Intelligence,
9th European Conference, JELIA 2004, Lisbon, Portugal,
September 27-30, 2004, Proceedings, volume 3229 of Lec-
ture Notes in Computer Science, 161–173. Springer.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10695

