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Abstract

The need to model and analyse dynamic systems operating
over complex data is ubiquitous in AI and neighboring ar-
eas, in particular business process management. Analysing
such data-aware systems is a notoriously difficult problem, as
they are intrinsically infinite-state. Existing approaches work
for specific datatypes, and/or limit themselves to the verifi-
cation of safety properties. In this paper, we lift both such
limitations, studying for the first time linear-time verification
for so-called data-aware processes modulo theories (DMTs),
from the foundational and practical point of view. The DMT
model is very general, as it supports processes operating over
variables that can store arbitrary types of data, ranging over
infinite domains and equipped with domain-specific predi-
cates. Specifically, we provide four contributions. First, we
devise a semi-decision procedure for linear-time verification
of DMTs, which works for a very large class of datatypes
obeying to mild model-theoretic assumptions. The proce-
dure relies on a unique combination of automata-theoretic
and cover computation techniques to respectively deal with
linear-time properties and datatypes. Second, we identify an
abstract, semantic property that guarantees the existence of
a faithful finite-state abstraction of the original system, and
show that our method becomes a decision procedure in this
case. Third, we identify concrete, checkable classes of sys-
tems that satisfy this property, generalising several results in
the literature. Finally, we present an implementation and an
experimental evaluation over a benchmark of real-world data-
aware business processes.

Introduction
In many application domains of AI, the evolution of dy-
namic systems is inextricably intertwined with the progres-
sion of some form of data. This calls for representing the
states of the system with richer structures than propositional
assignments, making the system intrinsically infinite-state.
Notable examples of such data-aware processes are (Situa-
tion Calculus) action theories (Baral and De Giacomo 2015;
De Giacomo, Lespérance, and Patrizi 2016), lifted plan-
ning and planning over relational states/ontologies (Francès
and Geffner 2016; Calvanese et al. 2016; Borgwardt et al.
2022), dynamic systems operating over databases (Cal-
vanese, De Giacomo, and Montali 2013; Deutsch, Li, and
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Vianu 2019; Deutsch et al. 2018) and lightweight ontologies
(Bagheri Hariri et al. 2013; Calvanese et al. 2023), and work
processes in business process management (BPM) (Reichert
2012; Calvanese et al. 2019a; Gianola 2023). In these set-
tings, verification is important due to the data-process inter-
play, but highly challenging due to infinity of the state space.

When considering, within this large spectrum, those ap-
proaches that come with foundational results paired with ef-
fective algorithmic techniques and implementations, we ob-
serve that they either: (i) operate on arbitrary datatypes while
limiting verification to safety/reachability properties (Cal-
vanese et al. 2020b; Ghilardi et al. 2023), (ii) handle general
linear-time properties but only for specific datatypes, such
as relational structures (Li, Deutsch, and Vianu 2017), or
numerical variables (Demri and D’Souza 2007; Felli, Mon-
tali, and Winkler 2022), (iii) restrict both the model and the
verification formalism (Masellis et al. 2017).

In this paper, we tackle such limitations and study linear-
time verification for so-called data-aware processes modulo
theories (DMTs), from the foundational and practical point
of view. Our verification machinery is very general: DMTs
capture dynamic systems manipulating variables that can
store arbitrary types of data, ranging over infinite domains
and equipped with domain-specific predicates, only impos-
ing very mild assumptions on their underlying theory. In this
respect, DMTs subsume several models studied in the litera-
ture for which very little is known regarding decidability of
linear-time verification. Among them, particularly relevant
and investigated are those where variables can store numeric
values subject to linear arithmetic operations, and/or objects
extracted from a read-only relational database or lightweight
ontology (Demri and D’Souza 2007; Damaggio, Deutsch,
and Vianu 2012; Bojańczyk, Segoufin, and Toruńczyk 2013;
Calvanese et al. 2020b; Felli, Montali, and Winkler 2022;
Calvanese et al. 2023). Notably, analysis is in this case re-
formulated as a parameterized verification problem, where
the property of interest needs to hold irrespectively of how
the read-only component is instantiated. Since process ex-
ecutions typically have a finite (yet unbounded) length, we
express properties using a data-aware extension of LTLf (De
Giacomo and Vardi 2013). However, data variables cause
undecidability already for reachability over very limited sys-
tems (Bojańczyk, Segoufin, and Toruńczyk 2013).

We show a simple example for our verification problem.
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Example 1. In a webshop, a customer logs in using a cus-
tomer database, and chooses five products from a product
database. It is checked whether the customer is eligible for a
20% discount, and, if so, the discount is applied to the price
of the order. If the balance in the customer’s account is suf-
ficient, the order is shipped; if not the process is restarted.
The system can be modeled as a guarded transition system:

start loggedIn orderCreated billed checked shipped
login select add

discount

no discountrestart

ship

login : Cust(cw, aw, vipw) select :
∧5

i=1 ItemId(pw
i )

add : tw = Σ5
i=1fprice(p

r
i ) no discount : ¬vipr ∧ tw = tr

ship : tr ≤ ar restart : ⊤
discount : vipr ∧ tw = tr− 1

5
tr

The process uses variables c, a , vip for customer id,
account balance, and eligibility for discounts; pi for prod-
uct ids; and t for the total cost. These variables are read
(superscript r) or written (superscript w) as specified by
the transition guards. The DB relations Cust(CustomerId ,
Account , IsVIP) and Items(ItmId ,Price) hold customer
and product data. Relevant verification properties are
for example that discounts are only applied to eligible
customers, and that each order is eventually shipped.

To address problems like the one of Ex. 1, we develop
a semi-decision procedure that constructs a faithful, sym-
bolic abstraction of the state space. While in purely numeric
settings this idea has been explored by relying on quanti-
fier elimination (Felli, Montali, and Winkler 2022), the same
approach cannot be lifted to theories formalizing data struc-
tures and relational databases, as quantifiers cannot be elim-
inated therein. We deal with this essential technical diffi-
culty by combining automata-theoretic and cover compu-
tation (Calvanese et al. 2021, 2022; Gulwani and Musu-
vathi 2008) techniques to respectively deal with the tem-
poral and datatype dimensions. More specifically, this pa-
per makes the following four contributions: (1) We devise
a model checking procedure for DMTs w.r.t. theories enjoy-
ing two mild theoretical assumptions: decidable satisfiability
of quantifier-free formulas, and the computability of covers
(Calvanese et al. 2021). (2) We propose the abstract criterion
of finite data history, and show that for systems enjoying
this criterion, our model checking procedure is a decision
procedure. (3) This decidability criterion is shown to apply
to several concrete classes of systems singled out in the lit-
erature, where guards combine database queries with arith-
metic. The property of finite data history strictly generalizes
several known decidability results from the literature (see
below). (4) We demonstrate the feasibility of our approach
by an SMT-based implementation of the model checking
technique, and we experimentally tested it on an extensive
benchmark of real dynamic systems taken from the BPM
field. Our work provides the first approach for linear-time
verification modulo theories of a very general class of data-
aware dynamic systems, unifying in a single framework sev-
eral models and results from the literature.

In the sequel, after discussing related work, we introduce
the DMT model and the verification logic. We then describe
the model checking procedure and how to build automata to
capture data-aware LTLf properties. Next, we give a general

decidability criterion and single out relevant, concrete de-
cidable classes. We close by discussing implementation and
experiments. Full proofs are in the online extended version
(Gianola, Montali, and Winkler 2023).

Related Work. Notable approaches to the verification
of dynamic systems operating over (read-only) relational
databases (Bojańczyk, Segoufin, and Toruńczyk 2013; Cal-
vanese et al. 2020b) or lightweight ontologies (Calvanese
et al. 2023) focused on safety properties: we generalize all
such approaches, since we support full LTLf verification.
(Bojańczyk, Segoufin, and Toruńczyk 2013) is based on
amalgamation, but it is known that the computability of cov-
ers implies amalgamation (Chang and Keisler 1990). How-
ever, (Calvanese et al. 2020b) also supports the richer setting
of relational artifact systems, where elements extracted from
the database can be inserted into updatable relations (thus
going beyond states containing variables). Several works
deal with linear-time verification of systems operating over
purely numeric data, with no support of other datatypes
(Felli, Montali, and Winkler 2022; Demri and D’Souza
2007; Demri 2006). A linear-time verification procedure was
proposed for artifact systems with data dependencies and
arithmetic (Damaggio, Deutsch, and Vianu 2012); this was
shown to be a decision procedure for so-called feedback free
systems, which restrict how operations can be chained over
time. This is the only decidability result combining DBs and
arithmetic that we are aware of. Our decidability criteria
strengthen this result to the larger class of bounded lookback
systems. A procedure for restricted linear-time verification
of transition systems operating over databases was also pre-
sented by Deutsch, Li, and Vianu (2019), but the verification
language is not full LTL, systems need to be hierarchical,
and no arithmetic is supported. Related to our work is also
a tableau-based semi-decision procedure for satisfiability of
LTLf with general SMT constraints (Geatti, Gianola, and
Gigante 2022), but no decidability results are given there.

Framework
We start with the necessary preliminaries. We consider
a first-order multi-sorted signature Σ = ⟨S,P,F , V, U⟩,
where S is a set of sorts; P is a set of predicate and F a
set of function symbols over S; V is a set of data variables;
and U is a set of variables disjoint from V that will be used
for quantification; where all variables have a sort in S . We
assume that Σ contains equality predicates for all sorts in
S . Then, Σ-terms t are built in the usual way from F , V ,
and U . An atom is of the form p(t1, . . . , tk) for p∈P and
terms t1, . . . , tk; and a literal is an atom or its negation. For
a set of variables Z, a Σ-constraint c over Z is of the form
∃u1, . . . , ul.φ such that u1, . . . , ul ∈ U , φ is a conjunction
of Σ-literals, and all free variables in c are in Z; the set of all
such constraints is denoted CΣ(Z). Moreover, Σ-formulas φ
have the form φ ::= p(t1, . . . , tk) | φ∧φ | ¬φ | ∃u.φwhere
p ∈ P , t1, . . . , tk are terms of appropriate sort, and u ∈ U .
We use the usual shorthands ∀, ∨, and ↔ for universal quan-
tification, disjunction, and equivalence. We call φ a state for-
mula if all its free variables are in V . Σ-formulas without
free variables are Σ-sentences, and a set of Σ-sentences is a
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Σ-theory T . It is universal if all its sentences have the form
∀u1, . . . , ul. φ with φ quantifier-free.

To define semantics, we use the standard notion of a Σ-
structure M , which associates each sort s ∈ S with a do-
main sM , and each predicate p ∈ P and function sym-
bol f ∈ F with a suitable interpretation pM and fM . The
equality predicates have the standard interpretation given by
the identity relation. The carrier of M , i.e., the union of all
domains of sorts in S , is denoted by |M |. A total function
α : V → |M | is called a state variable assignment. We also
use α to denote a partial assignment α : V ∪ U → |M | with
V ⊆ Dom(α). We always assume that variables are mapped
to an element of their respective domain. We write α[u 7→ e]
for the extended assignment such that α[u 7→ e](u) = e and
α[u 7→ e](x) = α(x) for all x ̸= u.

Given M and α, the evaluation [t]Mα of a term t is de-
fined as [v]Mα = α(v) if v ∈V ∪ U , and [f(t1, . . . , tk)]

M
α =

fM ([t1]
M
α , . . . , [tk]

M
α ). Whether a Σ-formula φ is satisfied

by M and α, denoted α |=M φ, is defined as follows:
α |=M p(t1, . . . , tk) if pM ([t1]

M
α , . . . , [tk]

M
α ) holds

α |=M φ1 ∧ φ2 if α |=M φ1 and α |=M φ2

α |=M ¬φ if α ̸|=M φ
α |=M ∃u. φ if ∃ e ∈ |M | s.t. α[u 7→ e] |=M φ
Note that α |=M φ is always defined if φ is a state formula
and α a state variable assignment. If φ is a Σ-sentence, we
write |=M φ for ∅ |=M φ. We adopt a common SMT per-
spective and view a Σ-theory T as the set of all Σ-structures
that satisfies all axioms of T , and write M ∈ T if M is
a model of T , i.e., |=M φ holds for all φ in T . A state
formula φ is T -satisfiable if there is some M ∈ T and
state variable assignment α : V → |M | such that α |=M φ.
Moreover, two state formulas φ1 and φ2 are T -equivalent,
denoted φ1 ≡T φ2, if ¬(φ1 ↔ φ2) is not T -satisfiable.

A Σ-theory T has quantifier elimination (QE) if for ev-
ery Σ-formula φ there is a quantifier-free formula φ′ that is
T -equivalent to φ. As QE is a strong requirement, we make
use of the weaker notion of covers. Intuitively, a T -cover of
an existential formula ψ is the strongest quantifier-free for-
mula T -implied by ψ. Precisely, given a universal theory T
and an existential formula ψ := ∃x. ψ′ where ψ′ has free
variables {x} ∪ Y , a T -cover of ψ is a quantifier-free for-
mula φ with free variables Y such that: 1) T |= ψ → φ;
and 2) for all quantifier-free formulae φ′ with free variables
Y ∪ Z such that T |= ψ → φ′, we have T |= φ → φ′.
Computing covers in T is equivalent to T having a model
completion (Calvanese et al. 2019b, 2021): a universal Σ-
theory T has a model completion (Ghilardi 2004; Chang
and Keisler 1990) iff there exists a Σ-theory T ∗ such that
(i) every Σ-constraint satisfiable in a model of T is satisfi-
able in a model of T ∗, and (ii) T ∗ has QE. Throughout the
paper, in the formal proofs we make use of model comple-
tions, since they are easier to handle when adopting, as we
do, a model-theoretic approach.

We will sometimes refer to common SMT theories (Bar-
rett et al. 2021): the theory of equality and uninterpreted
functions (EUF) for a given Σ, and linear arithmetic over
rationals (LRA), integers (LIA), or both (LIRA). While the
arithmetic theories have QE (Presburger 1929), EUF admits
model completion and so do certain tame combinations of

LIRA and EUF (Calvanese et al. 2020a, 2022). We denote
the sorts of rationals and integers by rat and int .

Data-Aware Processes Modulo Theories. Let Σ =
⟨S,P,F , V, U⟩ be a signature. For each data variable v ∈
V , let vr and vw be two annotated variables of the same
sort, and set V r = {vr | v ∈ V } and V w = {vw | v ∈ V }.
These copies of V are called the read and write variables;
they will denote the variable values before and after a tran-
sition, respectively. Moreover, V denotes a vector that sorts
the variables V in an arbitrary but fixed order.

Definition 2. A data-aware process modulo theories over
Σ (Σ-DMT for short) is a labelled transition system B =
⟨Σ, V, I, T ⟩, where: (i) Σ is a signature, (ii) V is the finite,
nonempty set of data variables in Σ; (iii) the transition for-
mulae T (V r, V w) are a set of constraints in CΣ(V r ∪ V w);
(iv) I : V → F0, called initial function, initializes variables,
where F0 is the set of Σ-constants.

Example 3. As a running example, we consider a simple
DMT B = ⟨Σ, V, I, T ⟩ where the theory combines LRA with
EUF using uninterpreted sorts status and elem, uninter-
preted predicates R ⊆ rat × elem, P ⊆ elem and con-
stants a, b of sort elem, and o1, o2 of sort status. The set
of variables V consists of x (sort rat) and y (sort elem),
and a variable s of sort status that takes values o1 and
o2. We set I(s)=o1, I(x)=0 and I(y)=a. The transitions
T = {xset, yset} are as follows:

xset= (sr = o1 ∧ sw = o2 ∧ xw>xr ∧ R(xw, yr))
yset= (sr = o2 ∧ sw = o1 ∧ P(yw))

o1 o2
xset : [xw>xr ∧ R(xw, yr)]

yset : [P(yw)]

The transition system is a visualization of B where the status
s is interpreted as a control state, to help readability. Tran-
sitions simultaneously express conditions on read variables
(superscript r), and updates on the written ones (super-
script w): e.g., xset requires the current control state (sr)
to be o1, fixes the next control state (sw) to o2, and nonde-
terministically sets x to a new value (xw) that is greater than
its current value (xr), and in relation R with yr.

Similarly, also Ex. 1 can be formalized as a Σ-DMT.
We next define the semantics for Σ-DMTs. For a Σ-theory

T and a model M ∈ T , a state of a Σ-DMT B is an assign-
ment α : V → |M |. A guard assignment β is a function
β : V r ∪ V w → |M |. As defined next, a transition t can
transform a state α into a new state α′, updating the vari-
able values in agreement with t, while variables that are not
explicitly written keep their previous value as per α.

Definition 4. A Σ-DMT B = ⟨Σ, V, I, T ⟩ admits a T -step
from state α to α′ via transition t ∈ T w.r.t. a modelM ∈ T ,
denoted α t−→M α′, if there is some guard assignment β s.t.
β |=M t, β(vr) = α(v) and β(vw) = α′(v) for all v ∈ V .

A T -run of B is a pair (M,ρ) of a model M ∈ T and a se-
quence of steps of the form ρ : α0

t1−→M α1
t2−→M · · · tn−→M

αn where α0(v) = I(v)M for all v ∈ V . Note that givenM ,
the initial assignment α0 of a run is uniquely determined by
the initializer I of B. The transition sequence ⟨t1, . . . , tn⟩ is
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called the abstraction of ρ, and is denoted by σ(ρ). If clear
from the context, we omit the modelM in the notation t−→M ;
and sometimes we refer to a run, leaving the theory implicit.

For Exs. 1 and 3, a natural choice for the theory T is
that of arithmetic over Q together with equality and unin-
terpreted functions (i.e., the union of LRA and EUF), plus
axioms that fix entries in the database. E.g. for Ex. 3, if M
satisfies R(4, a) and R(8, b), then (M,ρ) is a run, for

ρ :

{
s= o1
x=0
y= a

}
xset−−→

{
s= o2
x=4
y= a

}
yset−−→

{
s= o1
x=4
y= b

}
xset−−→

{
s= o2
x=8
y= b

}
.

Verification language. We assume that V is the set of data
variables of a given DMT B, and all variables in verification
properties are in V . Formally, our verification language LΣ

(called data-LTLf ) consists of all properties ψ:
ψ := c | ψ∧ψ | ψ∨ψ | Xψ | Gψ | ψ U ψ

where c is a constraint in CΣ(V ). Note that LΣ does not sup-
port negation, but can express formulae in negation normal
form. For convenience, we abbreviate ⊤ := (v = v) for
some v ∈ V , and Fψ := ⊤ U ψ. We adopt LTL semantics
over finite traces (LTLf ) (De Giacomo and Vardi 2013):

Definition 5. A run (M,ρ) of B for ρ : α0
t1−→M α1

t2−→M

· · · tn−→M αn satisfies ψ ∈ LΣ, denoted ρ |=M ψ, iff ρ |=0
M

ψ holds, where for all i, 0 ≤ i ≤ n:
ρ |=iM c iff αi |=M c
ρ |=iM ψ1 ∧ ψ2 iff ρ |=iM ψ1 and ρ |=iM ψ2

ρ |=iM ψ1 ∨ ψ2 iff ρ |=iM ψ1 or ρ |=iM ψ2

ρ |=iM Xψ iff i < n and ρ |=i+1
M ψ

ρ |=iM Gψ iff ρ |=iM ψ and (i = n or ρ |=i+1
M Gψ)

ρ |=iM ψ1 U ψ2 iff ρ |=iM ψ2, or (i<n and both
ρ |=iM ψ1 and ρ |=i+1

M ψ1 U ψ2)
A T -run (M,ρ) is a T -witness for ψ ∈ LΣ if ρ |=M ψ. The
problem addressed in this paper is the following:
Definition 6 (T -verification task). Given a Σ-DMT B, a Σ-
theory T , and ψ ∈ LΣ, check whether there exists a T -
witness for ψ in B.

The DMT in Ex. 3 has a witness for (x ≥ 0) U (s= o2 ∧
x=4), e.g. the run (M,ρ) above. The DMT in Ex. 1 has no
witness for F(s=shipped∧¬vip∧a <

∑5
i=1 fprice(pi)), so

an order is not shipped if the account balance is insufficient.
Remark 7. Def. 6 generalizes related verification tasks
for data-aware processes, notably (1) verification of safety
properties in Simple Artifact Systems (SASs) over relational
databases with key dependencies (Calvanese et al. 2020b),
and (2) linear-time model checking of DDSs with arithmetics
(Felli, Montali, and Winkler 2022). SASs can be represented
as DMTs by taking the theory EUF with constants, unary
functions, and arbitrary relations, possibly together with a
read-only database. Artifact variables of SASs can be repre-
sented as data variables in V , and safety properties can be
expressed in LΣ. DDSs can be formalized as DMTs by tak-
ing the theory LIRA: The initial assignment of variables can
be encoded in I , one additional designated variable can be
used to model DDS control states, and the transition formu-
lae T in DMTs can represent guarded actions. DDSs have
final states, but any verification property can be extended to
require that such a state is reached.

LTLf verification is undecidable for dynamic systems
over numeric variables, as reachability in 2-counter ma-
chines can be encoded (Felli, Montali, and Winkler 2022),
so the verification task considered here is undecidable, too.

Model Checking
From now on, we assume a fixed Σ-theory T that satisfies:

Assumptions 8. (a) Satisfiability of quantifier-free T -
formulas is decidable; (b) T is either universal and has a
model completion T ∗; or has QE, in this case let T ∗ := T .

Remark 9. As constraints are existential formulas, Assump-
tion (b) implies that T -satisfiability and T ∗-satisfiability of
Σ-constraints coincide (Calvanese et al. 2020b).

Automata construction. It is well-known that LTLf
properties can be captured by non-deterministic automata
(NFA) (De Giacomo and Vardi 2013; De Giacomo, De
Masellis, and Montali 2014). Our model checking proce-
dure relies on such an NFA for a given verification prop-
erty ψ ∈ LΣ. Its construction differs from earlier work
only in that propositional/numeric atoms are replaced by
constraints. We sketch here the general approach: For a
Σ-DMT B = ⟨Σ, V, I, T ⟩ and ψ ∈ LΣ, let cstr(ψ) be
the set of all constraints in ψ. We then build an NFA
Nψ =(Q,Θ, ϱ, q0, {qf , qe}) where: (i) the set Q of states
consists of properties φ ∈ LΣ ∪ {⊤,⊥}, (ii) the alphabet
is Θ := 2cstr(ψ), i.e., a symbol is a subset of constraints
in ψ, (iii) the initial state is q0 :=ψ, (iv) qf :=⊤ is a final
state, (v) qe is an additional, designated final state, (vi) ϱ ⊆
Q×Θ×Q is a set of transitions.

To state correctness, let a word ⟨ς0, . . . , ςn⟩ ∈ Θ∗ be con-
sistent with a run (M,ρ) for ρ : α0

t1−→ α1
t2−→ · · · tn−→ αn if

αi |=M
∧
ςi for all 0≤ i≤n. The main result about Nψ is:

Proposition 1. Nψ accepts a word w that is consistent with
(M,ρ) iff ρ |=M ψ.
All details can be found in (Gianola, Montali, and Winkler
2023). We show here only the construction for an example.
Example 10. The NFA Nψ for ψ := (x ≥ 0) U (s= o2 ∧
x=4) is shown below. The initial state ψ has a loop labeled
x ≥ 0 that can be taken until both s= o2 and x=4 hold; at
this point the final state ⊤ can be reached. For the construc-
tion see (Gianola, Montali, and Winkler 2023, Ex. 31)

ψ ⊤
{x=4, s= o2}

∅{x≥ 0}

Verification procedure. We next develop our model
checking technique. To this end, we assume a Σ-theory T ,
a Σ-DMT B = ⟨Σ, V, I, T ⟩, and ψ ∈ LΣ with associated
NFA Nψ and alphabet Θ as above. We first aim to show the
crucial fact that witnesses exist in T iff they do in T ∗:
Theorem 11. A Σ-DMT B admits a T -witness for a prop-
erty ψ ∈ LΣ iff it admits a T ∗-witness for ψ.

To prove Thm. 11, we introduce notions that will be
used throughout the paper: Let write(t) := {x | xw ∈
V w occurs in t} be the set of variables written by a transi-
tion t ∈ T . We write t̂ for the extended transition formula
t̂ := t ∧

∧
v ̸∈write(t) v

w = vr, which simply expresses that
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the transition formula t must hold and the values of all vari-
ables that are not explicitly written are propagated. Below,
we consider disjoint variable sets V0, V1, V2, . . . that are in-
dexed copies of V , i.e. Vi := {vi | v ∈ V }, and assume that
V0, V1, V2, . . . are ordered in the same way as V . For a for-
mula φwith free variables V , we write φ(Vi) for the formula
obtained by renaming V to Vi; and for t with free variables
V r ∪ V w, the formula t(Vi, Vj) replaces V r by Vi and V w

by Vj . Moreover, φI :=
∧
v∈V v0=I(v) is a formula that

encodes the initial state.
We next define a formula that combines all constraints ac-

cumulated in a transition sequence, together with a word w
that expresses additional constraints relevant for verification.
For readability, we use ς ∈ Θ as a formula to mean

∧
ς .

Definition 12. For a transition sequence σ=⟨t1, . . . , tn⟩ of
B and w = ⟨ς0, . . . , ςn⟩ ∈ Θ∗, the formula H(σ,w) is
φI∧ς0(V0)∧t̂1(V0, V1)∧ς1(V1)∧· · ·∧t̂n(Vn−1, Vn)∧ςn(Vn)

E.g., for the transition sequence σ = ⟨xset⟩ of the DMT
in Ex. 3 and w = ⟨{x≥ 0}, {x=4, s=o2}⟩, H(σ,w) =
(s0=o1 ∧ x0=0 ∧ y0=a) ∧ (x0≥0) ∧ (s0=o1 ∧ s1=o2 ∧
x1>x0 ∧ R(x1, y0) ∧ y1=y0 ∧ x1=4)). In Lem. 14 below
we prove that satisfying assignments for formulas H(σ,w)
are witnesses for ψ, if w is accepted by Nψ . To state this, we
need some notation to link assignments with runs:
Definition 13. Let σ = ⟨t1, . . . , tn⟩ be a transition se-
quence, w ∈ Θ∗, and M be a Σ-structure.
• If (M,ρ) is a run of B for ρ : α0

t1−→ α1
t2−→ · · · tn−→ αn

the run assignment ν(ρ) has domain
⋃n
i=0 Vi and sets

ν(ρ)(vi) := αi(v), for all v ∈V and 0≤ i≤n.
• For an assignment ν such that ν |=M H(σ,w) the de-

coded run ρ(M,ν, σ) is the sequence α0
t1−→ α1

t2−→
· · · tn−→ αn where αi(v) := ν(vi), for all v ∈V and i.

Lemma 14. (1) If B admits a witness (M,ρ) for ψ, there
is a word w consistent with ρ and accepted by Nψ such
that ν(ρ) |=M H(σ(ρ), w).

(2) If ν |=M H(σ,w) for some assignment ν, transition
sequence σ of B, and word w accepted by Nψ , then
ρ(M,ν, σ) is a witness for ψ of B.

Proof (sketch). Both directions are by induction on ρ and σ.
For the connection between a witness and Nψ accepting a
word consistent with ρ, Prop. 1 is used.

At this point, we are ready to prove Thm. 11.

Proof (of Thm. 11). If (M,ρ) is a T -witness for ψ then by
Lem. 14 (1), (M,ν(ρ)) satisfies H(σ(ρ), w) for some w
consistent with ρ and accepted by Nψ . By Rem. 9, there
must be some (M ′, ν′) which satisfies H(σ(ρ), w) in T ∗

as H(σ(ρ), w) is an existential formula. By Lem. 14 (2),
ρ(M ′, ν′, σ) is a T ∗-witness for ψ.

We next define our main data structure for model check-
ing: a product automaton Nψ

B built from the NFA Nψ and
the Σ-DMT B. The construction uses an update function to
capture how the current variable configuration, expressed as
a formula φ with free variables V , changes by executing a
transition t. Namely, update(φ, t) := ∃X.φ(X) ∧ t̂(X,V ),

where X is a fresh copy of V . Below, we write Φ(V ) for the
set of all quantifier-free Σ-formulae over variables V .
Definition 15. Given B = ⟨Σ, V, I, T ⟩ and the NFA Nψ as
above, the product automaton Nψ

B := (P,R, p0, PF ) with
states P ⊆ Q× Φ(V ), transition relation R, initial state p0,
and final states PF is inductively defined as follows:
• P contains the initial state p0 := (q0, φI); and
• if (q, φ) ∈ P , q ς−→ q′ in Nψ and either
(i) (q, φ) = p0 and t = ⊤, or
(ii) (q, φ) ̸= p0 and t ∈ T
such that the formula ξ := update(φ, t) ∧ ς is T -
satisfiable, there is some (q′, φ′) ∈ P s.t. φ′≡T ∗ξ, and
(q, φ) t,ς−→ (q′, φ′) is in R,

• PF consists of all (q, φ) ∈ P such that q is final in Nψ .
We add some remarks on Def. 15: First, the distinction of

the two kinds of transitions (i) and (ii) is a technical require-
ment as constraints in the property ψ are evaluated in states
of a run but constraints in B are on transitions. To achieve
this “offset”, we use a dummy transition t = ⊤ from the ini-
tial state. Second, a quantifier-free formula φ′ as required in
Def. 15 exists because T ∗ has QE. Finally, the product au-
tomaton is not unique due to many T ∗-equivalent formulae.

We now consider paths π in Nψ
B that start in the initial

state and thus have, for some n ≥ 0, the form

(q0, φI)
⊤,ς0−−−→(q1, φ1)

t1,ς1−−−→ . . . tn,ςn−−−→(qn+1, φn+1) (1)
i.e., the first edge is labeled (⊤, ς0) for some ς0. We write
σπ = ⟨t1, . . . , tn⟩ for the transition sequence of B and wπ
for the word ⟨ς0, . . . , ςn⟩ read from the edge labels of π. Our
main result relates paths to final states with witnesses:
Theorem 16. (1) For every path π to a final state of Nψ

B ,
H(σπ, wπ) is satisfiable by some (M,ν) for M ∈ T ,
and ρ(M,ν, σπ) is a T -witness for ψ.

(2) If B admits a T -witness for ψ then Nψ
B has a final state.

Example 17. The product of B from Ex. 3 with the NFA Nψ

from Ex. 10 for ψ := (x≥ 0) U (s= o2∧x=4) is as shown
next. We abbreviate ς0 = {x ≥ 0} and ς1 = {s=o2, x=4}.

ψ s= o1 ∧ x=0 ∧ y= a

ψ s= o1 ∧ x=0 ∧ y= a

ψ s= o2 ∧ x> 0 ∧ y= a ∧ R(x, y)

⊤ s= o2 ∧ x=4 ∧ y= a ∧ R(x, y)

ψ s= o1 ∧ P(y) ∧ x> 0

ψ s= o2 ∧ P(y) ∧ x> 0 ∧ R(x, y)

⊤ s= o1 ∧ P(y) ∧ x=4

⊤ s= o2 ∧ x> 4 ∧ P(y) ∧ R(x, y)

⊤ s= o1 ∧ x> 4 ∧ P(y)

⊤ s= o2 ∧ x=4 ∧ P(y) ∧ R(x, y)

⊤, ς0

xset, ς0

xset, ς1

yset, ς0

xset, ς0 yset, ς0

xset, ς1

yset, ∅

xset, ∅
yset, ∅

yset, ∅xset, ∅

By Thm. 16 (1), witnesses can be obtained from all paths
to accepting states. E.g., from the path π shown in red we
extract the single-step transition sequence σ = ⟨xset⟩ and
the word w = ⟨{x≥ 0}, {s=o2, x=4}⟩, with H(σ,w) as
shown below Def. 12; it is T -satisfied by any model M
s.t. (4, a) ∈ RM and ν(s0)= o1, ν(s1)= o2, ν(x0)= 0,
ν(x1)= 4, and ν(y0)= ν(y1)= a. The witness ρ(M,ν, σ)
is thus {s= o1, x=0, y= a} xset−−→ {s= o2, x=4, y= a}.

In general, the product construction Nψ
B from Def. 15 can

be infinite, but Thm. 16 gives rise to a semi-decision pro-
cedure: Nψ

B can be approximated by expanding Def. 15 in
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a fair way. Then an accepting path π will be detected if it
exists, so that a witness can be constructed.

Correctness and termination. To prove Thm. 16, and
show that the semi-decision procedure actually serves as a
decision procedure in notable cases, we employ some addi-
tional notions. We do so using ideas from (Felli, Montali,
and Winkler 2022), with the key difference that reasoning is
delegated to T ∗, and moreover we have no control states.

Let σ = ⟨t1, . . . , tn⟩ be a transition sequence and w ∈
Θ∗ have length n+1. We define the history constraint
H∃(σ,w) := (∃V0 . . . Vn−1. H(σ,w))(V ), which is a for-
mula with free variables V .

The next result formalizes in which sense Nψ
B is a product

construction: a path π of the form (1) combines σπ with wπ
and the last formula in π is equivalent to H∃(σπ, wπ).
Lemma 18. Nψ

B has a non-empty path π to a node (q, φ) iff
Nψ has a transition sequence ending in q labeled wπ and B
a transition sequence σπ such that φ ≡T ∗ H∃(σπ, wπ) and
φ is T ∗-satisfiable.
Both directions are by plain induction. Now we can show:

Proof (of Thm. 16). (1) Let π be a path to a final state
(qn, φ) in Nψ

B . So qn is final in Nψ , and we cannot have
qn = q0 as ψ ̸= ⊤. By Lem. 18 (=⇒), there is a transition
sequence in Nψ labeled wπ = ⟨ς0 . . . ςn⟩ and H∃(σπ, wπ)
is T ∗-satisfiable. So alsoH(σπ, wπ) must be T ∗-satisfiable,
and by Rem. 9 also T -satisfied by some M ∈ T and ν. By
Lem. 14 (2), ρ(M,ν, σ) is a witness for ψ. (2) If there is a T -
witness for ψ, by Thm. 11, there is a T ∗-witness (M,ρ). By
Lem. 14 (1), there is a wordw consistent with ρ and accepted
by Nψ such that H(σ(ρ), w) is T -satisfiable. By Lem. 18
(⇐=), the accepting transition sequence of Nψ labeled w
and σ(ρ) give rise to a path π in Nψ

B such that w=wπ and
σ(ρ)=σπ . As Nψ accepts w, π leads to a final state.

We next state an abstract decidability criterion.
Definition 19. A data history for (B, ψ) is a minimal set
of quantifier-free formulae Φ such that for every transition
sequence σ of B and w ∈ Θ∗, there is some φ∈Φ such that
H∃(σ,w)≡T ∗ φ.

Intuitively, a data history has a formula representation of
every pair of a transition sequence in B, and a sequence of
constraints needed to verify ψ. As formulas in Nψ

B are his-
tory constraints (Lem. 18), if (B, ψ) has finite data history
then a finite Nψ

B exists, so by Thm. 16 we have decidability:
Corollary 20. The verification task is decidable if (B, ψ)
has a finite data history.
Below, we use Cor. 20 to identify concrete, decidable classes
of DMTs that involve databases and arithmetic. However,
our approach is not limited to this domain, cf. (Gianola,
Montali, and Winkler 2023, Ex. 32) which uses list theory.

Decidability Criteria
In this section, we exploit Cor. 20 to identify concrete,
checkable classes of DMTs where our verification task is
decidable. We focus on systems that query a read-only
database, which are crucial to BPM and database processes

(Bojańczyk, Segoufin, and Toruńczyk 2013; Calvanese, De
Giacomo, and Montali 2013; Deutsch et al. 2018); and ex-
tend this setting with arithmetic, a key combination in prac-
tice. Before turning to decidable classes, we recall related
work on reasoning about databases in an SMT context.

Static DB schemas. In order to define databases in an
SMT context, we rely on the notion of static DB schemas
from (Ghilardi et al. 2023), where classical relational
databases are formalized in an algebraic way and are ex-
tended with integer and real values. In this setting, static DB
schemas consist of the combination of two first-order the-
ories, Tdb and Tar. The theory Tdb models read-only DB
relations with primary and foreign key constraints by em-
ploying function symbols to represent the key dependencies:
formally, this can be captured via pure identifiers and func-
tions subject to multi-sorted EUF. The theory Tar formalizes
integer/real data attributes subject to arithmetic constraints
expressed in LIRA. Static DB schemas employ an unusual
functional approach, but they are able to describe the most
sophisticated notion of read-only database schemas consid-
ered in the literature (Deutsch, Li, and Vianu 2019; Cal-
vanese et al. 2019a; Ghilardi et al. 2023). Unary functions
capture relations with primary and foreign keys. Specifi-
cally, the domain of a unary function is an id sort, repre-
senting object identifiers. Functions sharing the same id sort
as domain model the attributes of such objects, which either
point to other id sorts (implicitly representing foreign keys),
or to so-called value sorts that denote primitive datatypes,
such as strings or real/integer values. We call DB instances
the models of static DB schemas, in line with knowledge
bases such as description logic ontologies (Baader et al.
2003) studied in the KR community.1

In the next paragraph we define Σ-DMTs over static
DB schemas, where the corresponding T -runs have DB in-
stances as underlying models. In this context, we tackle a
verification task that is parameterized on the DB instances,
i.e., over the instances of the read-only DB. In order to do
that, we rely on a sort of Open World Assumption (OWA),
because the DB is not fixed apriori, but can change among
the possible parameters. Nevertheless, every DB instance is
a model of the DB theory, and every run of Σ-DMT operates
over one such model (fixed throughout the entire run). For
this reason, a query of the Σ-DMT is then answered in a (sin-
gle) run through its evaluation over that fixed model, hence
obeying to the standard Closed World Assumption (CWA)
when referring to a fixed DB instance.

Σ-DMT over static DB schemas Let a DBΣ-DMT be a
Σ-DMT where Σ consists of arbitrary relation, and unary
function symbols, and let its theory Tdb be EUF possibly ex-
tended with a set of ground facts to model an initial DB. This
theory enjoys model completion (Calvanese et al. 2020b). In
a DBΣ-DMT with arithmetic, Σ supports in addition opera-
tions from an arithmetic theory Tar such as LIRA, and its
theory is T := Tdb ∪ Tar. Exs. 1 and 3 are examples for
DBΣ-DMTs with arithmetic. To ensure that the combined

1It is certainly of interest to study the setting where only finite
models are considered. This is left for future work.
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theory has model completion, we assume that the signature
is tame, which intuitively means that no uninterpreted func-
tion symbol has an arithmetic domain (see below).

In general, both the DB and the arithmetic perspective can
give rise to infinitely many terms, so in classes of Σ-DMTs
where the verification task is decidable, both must be suit-
ably restricted. Below, we explore different ways to do so.

I. Acyclic signature. First, we consider DBΣ-DMTs with-
out arithmetic. Acyclicity of the signature Σ is defined via
the sort graph of Σ, which has as node set the sorts S , and
an edge from s to s′ iff there is a function symbol f : s→ s′

in Σ (as we have only unary functions); we say that Σ is
acyclic if the sort graph is so. In this case, only finitely many
Σ-terms exist (Abadi, Rabinovich, and Sagiv 2010). Thus,
there are also only finitely many non-equivalent quantifier-
free formulas over the finite set of variables V , so finitely
many history constraints. Hence if Σ is acyclic, every DBΣ-
DMT has a finite data history, so by Cor. 20:

Theorem 21. The verification task for a DBΣ-DMT is de-
cidable if Σ is acyclic.

This generalizes the result about decidability of reacha-
bility in SASs over an acyclic signature (Calvanese et al.
2020b, Thm 4.2), as we consider here full LTLf model
checking. An example for a respective process is shown in
(Gianola, Montali, and Winkler 2023, Ex. 33).

II. Acyclic signature and monotonicity constraints.
Next, we consider DBΣ-DMTs with arithmetic. As men-
tioned above, we assume that signature Σ is tame, i.e., in
the sort graph of Σ, sorts rat and int are leaves. In this case,
the combined theory T is known to enjoy model comple-
tion (Calvanese et al. 2022, Thm. 7). E.g., the signatures in
Exs. 1 and 3 are tame. Towards decidability, we require that
Σ is acyclic, and moreover restrict arithmetic constraints to
monotonicity constraints (MCs), i.e., constraints of the form
t ⊙ t′ where t, t′ are Σ-terms of sort rat over free variables
V and ⊙ is one of =, ̸=, ≤, or <. MCs have been repeatedly
considered in the verification literature (Demri and D’Souza
2007; Felli, de Leoni, and Montali 2019) and are important
in BPM since transition guards of this shape can be learned
automatically from data (de Leoni and van der Aalst 2013).

Theorem 22. Let Σ be acyclic, B a DBΣ-DMT with arith-
metic and ψ ∈ LΣ. If all arithmetic constraints in B and ψ
are MCs, the verification task is decidable.

Proof (idea). We inspect procedure TameCombCover (Cal-
vanese et al. 2022, Sec. 8) to show that it has finitely many
possible results of the form φ1(X) ∧ φ2(Y, t(X)), up to
equivalence. Here φ1 is an EUF formula, t is a list of EUF
terms, and φ2 an arithmetic formula. Acyclicity bounds the
possibilities for φ1 and t, and by results about QE of MCs,
there are only finitely many choices for φ2(Y, t(X))(Felli,
Montali, and Winkler 2022, Thm. 5.2).

For instance, Thm. 22 applies to Ex. 3, and explains why
the product automaton in Ex. 17 is finite. Thm. 22 strictly
generalizes (Felli, Montali, and Winkler 2022, Thm. 5.2) as
it supports arithmetic and EUF.

III. Local Finiteness. Next, we consider decidability be-
yond acyclic signatures for DBΣ-DMT without arithmetic,
using the concept of local finiteness (Lipparini 1982). A Σ-
theory T is called k-locally finite, for some k∈N, if for ev-
ery finite set of variablesX , the number of Σ-terms with free
variablesX is upper-bounded by k, up to T -equivalence. As
local finiteness directly ensures that there are only finitely
many non-equivalent quantifier-free formulas in T ∗, we get:

Theorem 23. If T is a k-locally finite Σ-theory that admits
model completion, the T -verification task is decidable for
any DBΣ-DMT B and Σ-property ψ.

This generalizes the reachability result in (Bojańczyk,
Segoufin, and Toruńczyk 2013, Thm. 5) to full LTLf , since
their Fraı̈ssé classes, when first-order definable, coincide
with universal, locally finite theories admitting a model
completion (Calvanese et al. 2020b). One way to ensure that
a model completion exists in Thm. 23 is by restricting ax-
ioms in T to single-variable sentences:

Corollary 24. The T -verification task is decidable for a
DBΣ-DMT B and Σ-property if T is a k-locally finite Σ-
theory axiomatized by single-variable axioms.

Thm. 23 generalizes Thm. 21 as acyclicity implies lo-
cal finiteness but not vice versa: consider a signature where
f is the only non-constant function symbol and T :=
{∀x.f2(x) = x}, which is locally finite but not acyclic.
One can also obtain decidability by replacing acyclicity in
the combination result of Thm. 22 by local finiteness, using
in the proof local finiteness to ensure that up to equivalence
there are only finitely many formulas without arithmetic.

IV. Bounded lookback. The above criteria achieve de-
cidability mostly by syntactic restrictions. However, finite
data history can also be achieved by controlling interaction
of transitions, so that Cor. 20 applies. This is the case for
systems with bounded lookback, a property intuitively ex-
pressing that the behaviour of a DMT depends only on a
bounded amount of information from the past (Felli, Mon-
tali, and Winkler 2022); it generalizes the feedback freedom
property (Damaggio, Deutsch, and Vianu 2012). Bounded
lookback is defined via computation graphs: Let σ =
⟨t1, . . . , tn⟩ be a transition sequence of a DBΣ-DMT with
arithmetic, and w = ⟨ς0, . . . , ςn⟩ ∈ 2C for C := cstr(ψ).
The computation graph for σ and w is an undirected graph
Gσ,w with nodes V := {vi | v ∈ V , 0≤ i≤n} and an edge
(xi, yj) whenever xi and yj are in the transitive closure of
variable pairs that occur in a common literal of H(σ,w), for
all i, j ≤ n. The subgraphEσ,w ofGσ,w consists of all edges
(xi, yj) s.t. xi and yj are in the transitive closure of variable
pairs that occur in a common equality atom of H(σ,w). The
graph obtained fromGσ,w by collapsing equality edges (i.e.,
edges in Eσ,w) is denoted [Gσ,w].

Example 25. Consider the Σ-DMT in Ex. 1 and the transi-
tion sequence σ = ⟨login, select, sum up, discount, restart,
select, sum up, discount, ship⟩. For w = ⟨∅, . . . , ∅⟩, the
graphGσ,w is shown below. Edges in Eσ,w are dotted, other
edges of Gσ,w solid. When collapsing equality edges, i.e. in
[Gσi,w], the longest path has length 5 (e.g. from c1 to p1,6).
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For k ≥ 0, (B, ψ) has k-bounded lookback if for all σ and
all w ∈ 2C s.t. H(σ,w) is T -satisfiable, all acyclic paths
in [Gσ,w] have length at most k. E.g., one can check that
Ex. 1 has 5-bounded lookback, as variables get reset when
the loop repeats, so the dynamics depends only on the last
five steps. Also all DMTs without loops have bounded look-
back, since the length of computation graphs is bounded. We
show (Gianola, Montali, and Winkler 2023):

Theorem 26. If B is a DBΣ-DMT with arithmetic such that
(B, ψ) has k-bounded lookback for some k ≥ 0, the verifi-
cation task is decidable.

Summary of decidability results. We showed how to re-
construct but also generalize several decidable fragments
from the literature: Thm. 22 shows the combination of an
acyclic DB signature and MCs to be decidable, which con-
siderably generalizes Felli et al. (2022) as they did not have
DBs; Thm. 23 generalizes Bojanczyk et al. (2013) who had
no arithmetic and only safety verification; Thm. 21 gen-
eralizes Calvanese et al. (2020) from safety to linear-time
verification; Thm. 26 advances Damaggio et al. (2012) as
bounded lookback is more general than feedback freedom.

A large set of practical processes fit into one of the identi-
fied classes. The requirement of an acyclic signature (Thms.
21 and 22) is not very restrictive for database schemas in
practice (notice, e.g., that all business processes in the exper-
iments below satisfy this); it is also a practical guideline to
avoid cyclic dependencies in DBs if possible. Also, Damag-
gio et al. (2012) showed that feedback freedom (generalized
by bounded lookback) is a property that many real-world
web applications/DB systems possess (cf. Thm. 26). Mono-
tonicity constraints are important in BPM as they are mined
by automatic data/decision mining techniques (cf. Thm. 22).

Implementation
We implemented our model checking procedure for DBΣ-
DMTs with arithmetic in the tool LINDMT. Given a prop-
erty and a DBΣ-DMT as input, it visualizes the NFA and
product construction, and computes a witness as prescribed
by Thm. 16, if it exists. The tool interfaces CVC5 (Deters
et al. 2014) for SMT checks, and QE in LIRA. On top of
that, we implemented the cover computation procedure for
EUF with unary functions and arbitrary relations from (Cal-
vanese et al. 2021, p. 961), and the TameCombCover routine
(Calvanese et al. 2022) to compute covers in tame combina-
tions of EUF and LIRA. LINDMT is a command-line tool
written in Python, but it is also accessible via a web interface
(https://lindmt.unibz.it); sources and benchmarks are avail-
able as well. In the input files for Σ-DMTs, control states

T D R/F/ C time SMT checks
(1) IV 10 60 0/0/ 9 3.47 / 0.69 / 1.23 2702 / 540 / 880
(2) IV 44 124 0/0/ 7 14.23/ 2.85 / 3.66 20470/4094/4285
(3) IV 6 30 0/0/ 7 0.95 / 0.19 / 0.40 186 / 37 / 57
(4) II 39 257 0/0/10 8.14 / 1.63 / 2.32 3811 / 762 /1342
(5) IV 19 37 0/0/ 3 1.71 / 0.34 / 0.71 1130 / 226 / 433
(6) IV 20 88 0/0/ 3 5.43 / 1.09 / 2.40 2816 / 563 /1109
(7) II 2 9 2/0/ 1 0.31 / 0.06 / 0.11 127 / 25 / 33
(8) IV 8 52 2/1/ 2 1.36 / 0.27 / 0.60 506 / 101 / 239
(9) IV 20 194 3/0/ 5 8.18 / 1.64 / 2.91 11363/2272/4067
(10) IV 20 159 2/1/ 3 54.23/10.85/17.38 17648/3529/4265
(11) IV 19 196 5/0/ 3 3.30 / 0.66 / 0.93 568 / 113 / 288
(12) IV 8 106 2/0/ 4 3.03 / 0.61 / 0.79 2319 / 463 / 663
(13) IV 21 291 2/0/ 7 13.31/ 2.66 / 2.98 8144 /1628/1829
(14) IV 12 264 1/0/ 4 17.43/ 3.49 / 6.26 2858 / 571 / 804
(15) IV 16 107 2/6/ 6 2.70 / 0.54 / 0.98 375 / 75 / 171
(16) IV 16 213 3/0/ 4 3.11 / 0.62 / 0.75 488 / 97 / 138
(17) II 10 22 2/4/ 5 0.38 / 0.08 / 0.13 134 / 26 / 46
(18) IV 8 35 1/1/ 7 6.29 / 1.26 / 5.69 560 / 112 / 195

Table 1: Experimental results

(like o1, o2 in Ex. 3) are supported for efficiency.
We curated a benchmark set using data-aware business

processes from the literature, especially the VERIFAS prob-
lem set (Li, Deutsch, and Vianu 2017). We excluded up-
dates of DB relations, which are not supported by DMTs;
however, we can verify LTLf properties of these prob-
lems that were beyond the reach of VERIFAS. For each
DMT, we checked five different properties. The results are
summarized in Tab. 1, listing the decidable class I–IV for
each problem, the number of transitions (T), total size of
transition formulae (D), number of relations/functions/con-
stants (R/F/C), the total/average/maximal time in seconds
for the five properties, and the total/average/maximal num-
ber of SMT checks. All problems are in one of the decidable
classes, which indicates that these classes indeed cover Σ-
DMTs that are relevant in practice. Overall, about 36% of
the computation time is spent on SMT checks, and 29% on
QE and cover computation. We observed that transition for-
mulae with large depth such as (10) (problem airline checkin
from the VERIFAS set) cause performance to deteriorate.
However, all problems could be solved in less than 20 secs,
which we believe indicates feasibility of our approach.

Conclusion
We have tackled linear-time verification for DMTs, a very
general model of data-aware processes. Our procedure is
semi-decision in general, but becomes a decision procedure
for several relevant, checkable settings. We obtained novel
decidability criteria especially for processes operating over
read-only DBs with arithmetic, generalizing several earlier
results. In the future, we plan to study other verification
tasks for DMTs, such as branching-time model checking
and monitoring. Second, we want to study whether our tech-
niques apply to evolving, read-write DBs, or to description
logics (Koopmann 2020; Baader, Ghilardi, and Lutz 2012).
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