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Abstract

Epistemic planning is useful in situations where multiple
agents have different knowledge and beliefs about the world,
such as in robot-human interaction. One aspect that has been
largely neglected in the literature is planning with observa-
tions in the presence of false beliefs. This is a particularly
challenging problem because it requires belief revision. We
introduce a simple specification language for reasoning about
actions with knowledge and belief. We demonstrate our ap-
proach on well-known false-belief tasks such as the Sally-
Anne Task and compare it to other action languages. Our
logic leads to an epistemic planning formalism that is expres-
sive enough to model second-order false-belief tasks, yet has
the same computational complexity as classical planning.

1 Introduction
The ability to perform theory of mind reasoning is a valuable
skill for autonomous agents. For example, planning from the
perspective of other agents can facilitate coordination be-
tween agents (Engesser et al. 2017; Bolander et al. 2018).
It is also fundamental in robot-human interaction scenarios
where the robot has to account for (and potentially adjust) a
human’s false beliefs (Dissing and Bolander 2020).

Most epistemic planning approaches in the literature use
either knowledge or belief, but not both. An exception is the
work of Andersen, Bolander, and Jensen (2015), which how-
ever does not focus on false beliefs but rather on the plausi-
bility of action outcomes. We argue that the distinction be-
tween knowledge and belief is relevant to the applications
mentioned above: basing decisions on knowledge provides
more guarantees than basing them on belief.

Another problem shared by many existing epistemic plan-
ning formalisms is their complexity. In particular, planning
based on Dynamic Epistemic Logic (DEL) is undecidable
(Bolander and Andersen 2011; Aucher and Bolander 2013).
Some useful PSPACE-complete fragments of DEL-based
planning were identified (Kominis and Geffner 2015; En-
gesser and Miller 2020; Bolander et al. 2020), but they typ-
ically disallow actions increasing the agents’ uncertainty.
Among other things, this makes it impossible to model most
false-belief tasks from the literature.
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Static epistemic reasoning is actually already difficult: de-
ciding satisfiability for epistemic formulas is PSPACE-hard
if there is more than one agent, and EXPTIME-complete if
the language contains the common knowledge operator (Fa-
gin et al. 1995). Several authors have proposed lightweight
fragments of the epistemic language, most prominently in
terms of epistemic literals and proper epistemic knowledge
bases (Lakemeyer and Lespérance 2012). These fragments
forbid conjunctions and disjunctions in the scope of the epis-
temic operators. Formulas are therefore boolean combina-
tions of what may be called epistemic literals: sequences
of ‘knowing-that’ operators Ki and K̂i followed by a propo-
sitional variable or its negation. Static epistemic reasoning
then typically reduces to propositional reasoning, and epis-
temic planning to classical planning (Muise et al. 2022). The
reduction considers epistemic literals as arbitrary proposi-
tional literals without any structure. This requires an ax-
iomatisation of their interaction. For example, the conjunc-
tion Kip ∧ Ki¬p is unsatisfiable in epistemic logic but is
propositionally satisfiable: one has to add its negation as an
axiom in order to obtain propositional unsatisfiability.

An alternative route was proposed by Herzig, Lorini, and
Maffre (2018) and Cooper et al. (2021) in terms of the
‘knowing whether’ (or ‘knowledge about’) operator KAi.
There, an epistemic atom is a sequence of KAi operators
followed by a propositional variable. An advantage over
‘knowledge that’ literals is that less interactions have to be
axiomatised. If the epistemic logic is S5, then the epistemic
atoms KAiKAip are tautologous; more generally, this is the
case for epistemic atoms with repetitions which have the
form · · · KAiKAi · · · p. Luckily, this is the only axiom to be
taken into account: if we restrict all atoms to be repetition-
free, then all atoms are logically independent and epistemic
reasoning reduces to propositional reasoning.

We here generalise the ‘knowledge about’ approach by
adding belief. Our epistemic-doxastic atoms consist of se-
quences of modal operators TBAi and MBAi, followed by a
propositional variable, where TBAiφ reads “i has a true be-
lief about φ” and MBAiφ reads “i has a mere belief about
φ”. We prove that reasoning with boolean combinations
of repetition-free epistemic-doxastic atoms can be directly
done in propositional logic. In that lightweight fragment we
define laws for ontic and epistemic actions. The latter are of
two kinds: starting and ceasing to observe an atom, where
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we identify observation of an atom with knowledge about
that atom. This allows us to track the agents’ knowledge and
beliefs in scenarios involving higher-order false beliefs. Our
logic is the basis for a useful multiagent planning formalism
that has the same complexity as classical planning and that
is suitable for modelling, among other things, second-order
false-belief tasks.

The paper is organised as follows. After recall-
ing epistemic-doxastic logic (Section 2), we define our
lightweight fragment (Section 3) and make explicit the hy-
potheses about observations and inertia of knowledge and
belief (Section 4). We then introduce ontic and epistemic
actions (Sections 5 and 6) and illustrate them on a second-
order false-belief task (Section 7). We define epistemic-
doxastic planning (Section 8), and finally we compare our
approach to action languages from related work and discuss
its limitations (Section 9).

2 Background
Throughout the paper P is a countable set of propositional
variables, with typical elements p, q, . . .; and A is a count-
able set of agents, with typical elements i, j, . . .

In standard presentations, the vocabulary from which for-
mulas are built is identical to the set P. We here consider
more generally that the vocabulary is a countable set Voc
that may have some structure. Then a propositional formula
on Voc is a boolean combination of atoms from Voc. The
propositional language on Voc, noted Lbool(Voc), is the set
of all boolean combinations of elements of Voc.

Propositional valuations on Voc, alias states, are sub-
sets of Voc. Propositional satisfaction of a formula φ ∈
Lbool(Voc) in a valuation V ⊆ Voc is denoted by V |= φ
and defined as usual. A formula φ ∈ Lbool(Voc) is propo-
sitionally valid if V |= φ for every V ⊆ Voc. It is proposi-
tionally satisfiable if ¬φ is not propositionally valid.

Epistemic-Doxastic Logic S5-EDL: Kripke Models
We suppose that knowledge comes from observations, and
that these observations are reliable. This justifies the choice
of the logic S5 and in particular that of the negative intro-
spection axiom ¬Kiφ → Ki¬Kiφ (which can be criticised
otherwise, cf. Voorbraak 1993, Aucher 2015).

An S5-EDL model is a quadruple M =
⟨W, {Ki}i∈A, {Bi}i∈A, val⟩ where W is a non-empty
set of possible worlds; every Ki and Bi is a binary relation
on W ; and val : W → 2P associates propositional valua-
tions on P to possible worlds. The accessibility relations Ki

and Bi must satisfy the following constraints:
• Each Ki is an equivalence relation;
• Each Bi is serial, transitive, and euclidean;
• Bi ⊆ Ki, for every i ∈ A;
• Ki ◦Bi ⊆ Bi, for every i ∈ A.

Knowing-That and Believing-That
The standard language of epistemic-doxastic logic is defined
by the following grammar:

φ ::= p | ¬φ | φ ∨ φ | Kiφ | Biφ,

where p ranges over P and i ranges over A. The formula Kiφ
reads “i knows that φ” and Biφ reads “i believes that φ”.
The truth conditions are:
M,w ⊩ p if p ∈ val(w), for p ∈ P;
M,w ⊩ Kiφ if for every w′ ∈ Ki(w), M,w′ ⊩ φ;
M,w ⊩ Biφ if for every w′ ∈ Bi(w), M,w′ ⊩ φ;

and as usual for the boolean connectives, where Ki(w) =
{w′ : ⟨w,w′⟩ ∈ Ki} and likewise for Bi(w). Validity and
satisfiability are defined in the standard way. The logic of the
Ki operators is S5; the logic of the Bi is KD45; the principles
Biφ → KiBiφ and Kiφ → Biφ complete the axiomatisation.
Moreover, the principles ¬Biφ → Ki¬Biφ and BiKiφ → Kiφ
are valid (Voorbraak 1993; Aucher 2015). Just like negative
introspection for Ki, the last validity is not acceptable in gen-
eral, but is so for knowledge based on reliable observation.

True Belief and Mere Belief
We now give an alternative presentation of S5-EDL that fol-
lows Herzig and Perrotin (2021).

Epistemic-doxastic formulas are defined by the grammar

φ ::= p | ¬φ | φ ∨ φ | TBAiφ | MBAiφ,

where p ranges over P and i over A. The formula TBAiφ
reads “i has a true belief about φ” and MBAiφ reads “i has
a mere belief about φ”. The epistemic-doxastic language is
noted LEDL(P).

We say that a set of worlds S ⊆ W of a model M agrees
on φ if either M,w ⊩ φ for every w ∈ S, or M,w ̸⊩ φ for
every w ∈ S; otherwise we say that S disagrees on φ. Then:

M,w ⊩ TBAiφ if Bi(w) ∪ {w} agrees on φ;
M,w ⊩ MBAiφ if Bi(w) agrees on φ, and

Ki(w) disagrees on φ.

Validity and satisfiability are defined as before.
The language LEDL(P) has the same expressivity as the

standard epistemic-doxastic language: in one direction, we
define TBAiφ as (φ ∧ Biφ) ∨ (¬φ ∧ Bi¬φ) and MBAiφ as
(Biφ∧¬Kiφ)∨ (Bi¬φ∧¬Ki¬φ); in the other direction, we
define Kiφ as TBAiφ ∧ ¬MBAiφ and Biφ as (φ ∧ TBAiφ) ∨
(¬φ ∧ ¬TBAiφ ∧ MBAiφ).

The logical combinations of TBAiφ and MBAiφ account for
all possible epistemic-doxastic attitudes of i w.r.t. φ:

OBSiφ = TBAiφ ∧ ¬MBAiφ (observation)
LBAiφ = TBAiφ ∧ MBAiφ (lucky belief)
FBAiφ = ¬TBAiφ ∧ MBAiφ (false belief)
NBAiφ = ¬TBAiφ ∧ ¬MBAiφ (no belief)

An agent observes φ if and only if she has knowledge about
φ. Hence OBSiφ is nothing but KAiφ; we however prefer
the present notation because it matches our hypothesis that
knowledge comes from observation.1

1Lucky beliefs are debated in the epistemology literature: can
we give conditions under which knowledge can be separated from
‘epistemic luck’, i.e., luckily believing a proposition (Ichikawa and
Steup 2018)? We here suppose that the distinction can be made.
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p,
TBASp,¬MBASp,
TBAAp,¬MBAAp

p,
TBASp, MBASp,
TBAAp,¬MBAAp

¬p,
¬TBASp, MBASp,
TBAAp,¬MBAAp

|= p ∧ OBSSp ∧ OBSAp |= p ∧ LBASp ∧ OBSAp |= ¬p ∧ FBASp ∧ OBSAp

Sally stops
observing

Anne moves
the marble

Figure 1: The Sally-Anne Task. Atoms that have changed from the previous state are underlined.

3 Repetition-Free Epistemic-Doxastic Atoms
We now define a lightweight fragment of the language
LEDL(P). It consists in boolean combinations of modal
atoms: sequences of modal operators TBAi and MBAi fol-
lowed by a propositional variable.

Definition of the Fragment
If i is an agent, an i-formula is a formula of LEDL(P) of
the form either TBAiφ or MBAiφ. The set of repetition-free
epistemic-doxastic atoms REDA is the smallest set such that:

• P ⊆ REDA;
• If i ∈ A, α ∈ REDA and α is not an i-formula then
TBAiα ∈ REDA and MBAiα ∈ REDA.

For example, TBAiMBAjp is in REDA iff i ̸= j. The
propositional language on REDA, Lbool(REDA), is the set of
boolean combinations of REDA atoms. It can also be viewed
as a fragment of the epistemic-doxastic language on P: we
have that Lbool(REDA) ⊆ LEDL(P). The set of atoms of
modal depth at least one is noted REDA≥1; REDA≤1 is that
of depth at most one; and REDA≤2 that of depth at most two.

Example: the Sally-Anne Task
False-belief tasks are well-known experiments from cogni-
tive psychology to determine the ability of people—usually
children—to use theory-of-mind reasoning. The paradig-
matic Sally-Anne Task goes as follows:

Two children, Sally and Anne, are in a room together.
Sally has a marble, which she puts into a basket. Then
she leaves the room to go out for a walk. While Sally
is away, Anne removes the marble from the basket and
puts it into a box (which is also in the room). Finally,
Sally comes back into the room. Will Sally search for
her marble in the basket or in the box?

The answer requires reasoning from Sally’s perspective. It
is well-known that children under the age of four as well as
older children with autism spectrum disorder have difficul-
ties performing this kind of reasoning (Wimmer and Perner
1983; Baron-Cohen, Leslie, and Frith 1985).

Figure 1 depicts the evolution of facts, knowledge, and
beliefs in terms of REDA valuations. We use a single propo-
sitional variable p: if it is true then the marble is in the bas-
ket; if it is false then the marble is in the box. Furthermore,
we restrict our attention to first-order beliefs about p.

Initially, the marble is in the basket, and both agents ob-
serve this: they have true beliefs about p that are not mere
beliefs. After Sally has left she can no longer observe the
marble. This means that her belief about the marble be-
comes a mere belief. Since that belief is still true, Sally now

has a lucky belief about the position of the marble. Finally,
when Anne moves the marble, the value of the proposition
p changes. Since Sally does not observe p (which is clear
from the fact that MBASp is true), her belief about the posi-
tion of the marble should not change. Thus, her lucky belief
must become a false belief. When Sally returns (assuming
that returning does not further change Sally’s observations),
she falsely believes that the marble is still in the basket.

Equivalence with Propositional Satisfiability
In the rest of the section we prove that for the fragment
Lbool(REDA) of LEDL(P), S5-EDL satisfiability is equiva-
lent to propositional satisfiability in a valuation V ⊆ REDA.
Theorem 1 For every φ ∈ Lbool(REDA), φ is S5-EDL sat-
isfiable iff φ is propositionally satisfiable.
PROOF. The left-to-right direction is straightforward: given
a pointed model (M,w), we extract a valuation Vw = {α ∈
REDA : M,w ⊩ α} and show by induction that any for-
mula φ ∈ Lbool(REDA) is propositionally true in Vw if and
only if it is true in (M,w).

The right-to-left direction relies on the construction of a
canonical model M c = ⟨2REDA, {Kc

i }i∈A, {Bc
i }i∈A, val

c⟩
such that for any V ⊆ REDA and any formula φ ∈
Lbool(REDA) we have that V |= φ iff M c, V ⊩ φ. The
delicate part is defining the relations Kc

i and Bc
i (valc is de-

fined naturally as valc(V ) = V ∩P). If V and U are subsets
of REDA, let V Kc

iU iff for all α ∈ REDA:
• MBAiα ∈ V iff MBAiα ∈ U ;
• If MBAiα /∈ V then TBAiα ∈ V iff TBAiα ∈ U ;
• If TBAiα ∈ V ∩ U then V and U agree on α;
• If MBAiα ∈ V and TBAiα /∈ V ∪U then V,U agree on α;
• If TBAiα ∈ (V \ U) ∪ (U \ V ) then V,U disagree on α.

Intuitively, the first two conditions ensure that agent i has
knowledge and belief about the same atoms in V and U ,
while the latter three ensure that those knowledge and beliefs
have the same truth value for those atoms (e.g. if an agent
believes p in V then she also believes p, and not ¬p, in U ).

If V and U are subsets of REDA, we further say that
V Bc

iU if V Kc
iU and for all α ∈ REDA, if MBAiα ∈ V

then TBAiα ∈ U . That is, agents believe they are in a world
in which all of their beliefs are correct. From there, it is rela-
tively straightforward to show that M c is an S5-EDL model,
that is, that Kc

i and Bc
i have the right properties. ■

4 Adding Dynamics
We now add actions to the picture. We do so in a principled
way: we first spell out some hypotheses and then define the
general format of action descriptions and their semantics.
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H1: All knowledge comes from observation. We sup-
pose that agents’ knowledge comes from observations. As
already argued, this justifies the choice of S5 as the logic of
knowledge. It follows that if an agent i has knowledge about
α then this not only means that i observes the truth value of
α (and therefore either knows that α or that ¬α), but also
that i observes any change in the truth value of α.

In terms of our logical language of true and mere beliefs,
“i observes α” is expressed by OBSiα = TBAiα∧¬MBAiα. If
the truth value of α changes then i’s observation means that
TBAiα cannot become false2 and that MBAiα cannot become
true; that is, OBSiα remains true.

H2: Lack of observation implies inertia of beliefs.
When an agent does not observe α, she either holds a (pos-
sibly false) mere belief about α or has no belief about α. In
both cases, we suppose that a change of α does not affect the
status of her belief about α. Thus, an agent cannot acquire a
new belief without observation.3 We also exclude that agents
lose beliefs.4 It follows that an agent continues to believe the
last truth value of α that she has observed, and so until a new
observation tells her otherwise. It also follows that when an
agent has never observed α, she cannot but have no belief
about α.

If i does not observe α then there are three possibilities:
NBAiα (no belief about α), LBAiα (lucky belief about α), and
FBAiα (false belief about α). If an action flips α then:

• If NBAiα was true, then NBAiα remains true.
• If LBAiα was true, then FBAiα will be true afterwards.
• If FBAiα was true, then LBAiα will be true afterwards.

So a mere belief about α that happens to be false becomes a
lucky belief about α when α flips, and vice versa.

To sum it up, a change of α has the following effects in
terms of true and mere beliefs: (a) MBAiα is stable: if it was
true then it remains true, and if it was false then it remains
false5; (b) if MBAiα was true then TBAiα is flipped.

H3: Actions are either ontic or epistemic. Ontic actions
are actions whose primary effects are about the world, such
as moving an object. These effects therefore concern subsets
of the set of propositional variables P. In contrast, epistemic
actions have no effects on the physical world: all effects con-
cern the agents’ beliefs, and the atoms changed by an epis-
temic action are elements of REDA≥1. The only action that
is both ontic and epistemic is the ‘do nothing’ action.

2This supposes that no action can flip both α and TBAiα. The
actions that we are going to consider satisfy that constraint, as we
make explicit in our hypothesis (H3).

3We therefore exclude the possibility of doxastic voluntarism,
an issue that is much debated in philosophy (Chignell 2018).

4We are aware that this is a strong hypothesis because the
strength of an agent’s belief about something she doesn’t observe
typically decreases over time. In order to obtain a more realistic ac-
count one has to add more machinery and introduce things such as
forgetting, deadlines for belief (belief that α turns into ignorance
about α after some time), and, ultimately, degrees of belief.

5In the latter case, if TBAiα holds then i observes α, and stabil-
ity already follows from (H1).

H4: Higher-order effects are limited to depth at most
two. In order to simplify things, we restrict the kind of ef-
fects that we consider: we suppose that all atoms involved
in action effects are of modal depth at most two. The atoms
that are changed by an epistemic action are therefore ele-
ments of REDA≤2. In consequence, we also restrict higher-
order reasoning about knowledge and belief: description of
the agents’ knowledge and belief is supposed to be at most of
depth two as well; and states are simply subsets of REDA≤2.

Direct and Indirect Effects of an Action
Actions are described by sets of conditional effects of the
form φ ▷α, where φ is a formula from Lbool(REDA) and α is
an element of REDA≤2. The intuition is that if the condition
φ is true then the truth value of α is flipped by the action.
For example, the ontic action of removing the marble from
the basket has the single conditional effect p ▷ p. So if p is
true, then the truth value of p gets flipped, that is, it becomes
false. As this is the only conditional effect, the truth value of
p remains false when p is false.6

The set of all conditional effects of action a is noted
eff (a). We partition eff (a) into direct effects deff (a) and
indirect effects ieff (a). The indirect effects are derived from
the direct effects and are the action’s effects on the agents’
knowledge and beliefs. They are conditioned by the agents’
observational status w.r.t. the direct effects. In particular, the
following principle follows from our hypothesis H2:

If φ ▷ α ∈ eff (a) then φ ∧ MBAiα ▷ TBAiα ∈ eff (a). (M)

In words: if, under circumstances described by φ, α flips and
i has a mere belief about α, then TBAiα also flips. The only
situation where (M) does not apply is when TBAiα is among
the direct effects of a. In our framework this will only be the
case for the action type of starting shared observation.

Principle (M) allows us to derive an effect of epistemic
level n+ 1 from an effect at level n. There is a similar prin-
ciple deriving an effect of epistemic level n + 2 from an
effect at level n. Due to our restriction to epistemic depth at
most 2 it only applies to ontic actions. We therefore postpone
the discussion to the next section, where we associate indi-
rect effects to each type of action. For each of these we will
argue that no other indirect effects need to be considered.

Semantics of an Action
Let eff (a) be the effects of action a. The result of applying
a to a state V is a(V ) =

{α ∈ V : there is no φ ▷ α ∈ eff (a) such that V |= φ} ∪
{α /∈ V : there is a φ ▷ α ∈ eff (a) such that V |= φ}.

We have a(V ) ⊆ REDA≤2 because (1) V ⊆ REDA≤2 and
(2) all action effects are restricted to REDA≤2. With V ⊆
REDA≤2, no atoms of depth greater than 2 need to be added
by Principle (M), or any reasonable higher order principle.

6Any STRIPS action with add-list P+ ⊆ P and delete-list
P− ⊆ P can be expressed in that format as an action a with condi-
tional effects ¬p ▷ p for every p ∈ P+ and p ▷ p for every p ∈ P−.
We could add action preconditions as usually done in the planning
literature; we will do so in Section 8.
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5 Ontic Actions
The direct effects of an ontic action a are described by a fi-
nite set of conditional effects of the form φ ▷ p, for p ∈ P.
Let us discuss how indirect effects are computed from the
direct effects. Consider the ontic action flip(p) of chang-
ing the truth value of the propositional variable p. That is,
deff (flip(p)) = {⊤ ▷ p}. According to H1, the first-order
indirect effects of flip(p) should be that all agents who ob-
serve p know that p’s truth value got flipped. According to
H2, all agents not observing p stick to their previous belief:
if before the action they believed that p then after the action
they still believe that p; and if they believed ¬p then after the
action they still believe ¬p. Hence the truth status of mere
belief flips between lucky belief and false belief, that is,

MBAip ▷ TBAip.

This is a consequence of Principle (M) of Section 4. This
effect of flip(p) on all TBAip is its only first-order indirect
effect: the truth value of all MBAip is stable because ontic
actions do not modify the agents’ observability, i.e., what
the agents do and don’t observe.

Let us turn to the second-order indirect effects. First of
all, the application of Principle (M) allows us to derive a
second-order indirect effect of flip(p) from the first-order
indirect effect MBAip ▷ TBAip, namely

MBAip ∧ MBAjTBAip ▷ TBAjTBAip.

In words: if i does not observe p but holds a belief about
p then, as flip(p) also flips TBAip, the truth value of
TBAjTBAip must also be flipped as soon as j holds a mere
belief about TBAip.

The preceding second-order indirect effect occurs when
TBAip is flipped while agent j, due to a mere belief about
TBAip, wrongly believes it is not going to change. There is
also a symmetric case where TBAip is stable while j wrongly
believes that it is going to be flipped. This requires a situa-
tion where j wrongly believes that MBAip is true; moreover, j
must observe the change of p in order to mistakenly deduce
that TBAip will be flipped. Hence flip(p) has the following
second-order indirect effect:

¬MBAip ∧ FBAjMBAip ∧ OBSjp ▷ TBAjTBAip.

These two second-order indirect effects of flip(p) on
TBAjTBAip are the only ones: the truth values of all
TBAjMBAip, MBAjTBAip and MBAjMBAip are stable because
ontic actions do not modify the agents’ observability, and all
agents know that and know that all agents know that.

Altogether, we obtain the following set of indirect condi-
tional effects of an ontic action a:

ieff (a) =

{φ ∧ MBAip ▷ TBAip : φ ▷ p ∈ deff (a)} ∪
{φ ∧ MBAip ∧ MBAjTBAip ▷ TBAjTBAip :

φ ▷ p ∈ deff (a), i ̸= j} ∪
{φ ∧ ¬MBAip ∧ FBAjMBAip ∧ OBSjp ▷ TBAjTBAip :

φ ▷ p ∈ deff (a), i ̸= j}.

6 Epistemic Actions
Many kinds of epistemic actions exist, in particular sensing
actions and actions of communication between agents such
as informative and interrogative speech acts. We here only
consider the two kinds that we need in order to account for
false-belief tasks.

1. A group of agents J ⊆ A starts to observe a proposi-
tional variable p. We focus on two versions, according to
whether the agents in J observe the other agents starting
to observe or not. When they don’t we have the first-order
startobs1(J, p); and when everybody observes the oth-
ers starting their observation we have the second-order
startobs2(J, p). The former actually reduces to a se-
quence of startobs1(i, p), for any order of the i ∈ J .

2. An agent i ∈ A stops observing either p or another
agent j’s observation of p. The former is denoted by
stopobs(i, p) and the latter by stopobs(i, j, p).

We stress that if one of the members of J has a false be-
lief about p then startobs1(J, p) requires the revision of
i’s beliefs about p. Similarly, startobs2(J, p) requires the
revision of false beliefs about another members’ belief about
p. We now define direct effects and derive indirect effects.

Starting Individual Observation
The action of agent i ∈ A starting to observe a propositional
variable p without learning about others’ belief change is
denoted by a = startobs1(i, p). Its direct effect is that
OBSip = TBAip ∧ ¬MBAip becomes true:

deff (a) = {¬TBAip ▷ TBAip, MBAip ▷ MBAip}.

As for the indirect effects, applying Principle (M) to the
direct effects we derive the following:

ieff (a) =

{¬TBAip ∧ MBAjTBAip ▷ TBAjTBAip : j ∈ A, j ̸= i} ∪
{MBAip ∧ MBAjMBAip ▷ TBAjMBAip : j ∈ A, j ̸= i}.

Even if we have already motivated Principle (M) in Sec-
tion 4, let us explain here why these conditional effects are
intuitively correct. For the first subset, suppose MBAjTBAip
is true; then j does not observe whether i has a true belief
about p but holds a belief about it (that is, about TBAip);
and j will keep that belief because i’s observation change is
only observed by i. Suppose moreover that TBAip is false.
As startobs1(i, p) makes TBAip true, the truth status of j’s
belief about TBAip will be flipped: either from TBAjTBAip to
¬TBAjTBAip, or from ¬TBAjTBAip to TBAjTBAip. The sec-
ond subset can be motivated in a similar way.

These two indirect effects of startobs1(i, p) on
TBAjTBAip and TBAjMBAip are the only ones: the truth val-
ues of all remaining atoms MBAjTBAip and MBAjMBAip are
stable because startobs1(i, p) only modifies the status of
the first-order MBAip, but not of second-order mere beliefs.

Starting Shared Observation
The action of agents J ⊆ A starting to observe a proposi-
tional variable p while learning that the other agents in J
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stopobs
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stopobs
(A, S, p)

startobs1

(S, p)

flip(p)

Figure 2: The first variant of the Sally-Anne Task of Section 7.

also start observing p is noted a = startobs2(J, p). Its di-
rect effects are:

deff (a) = {¬TBAip ▷ TBAip : i ∈ J} ∪
{¬TBAjTBAip ▷ TBAjTBAip : i, j ∈ J, j ̸= i} ∪
{¬TBAjMBAip ▷ TBAjMBAip : i, j ∈ J, j ̸= i} ∪
{MBAip ▷ MBAip : i ∈ J} ∪
{MBAjTBAip ▷ MBAjTBAip : i, j ∈ J, j ̸= i} ∪
{MBAjMBAip ▷ MBAjMBAip : i, j ∈ J, j ̸= i}.

The direct effects guarantee that startobs2(J, p) makes
OBSip ∧ OBSiTBAjp ∧ OBSiMBAjp true for all i, j in J .

As for the indirect effects of startobs2(J, p), Principle
(M) applies to ¬TBAip ▷ TBAip and MBAip ▷ MBAip and re-
sults in the following effects:

ieff (a) =

{¬TBAip ∧ MBAjTBAip ▷ TBAjTBAip : i ∈ J, j ∈ A \ J} ∪
{MBAip ∧ MBAjMBAip ▷ TBAjMBAip : i ∈ J, j ∈ A \ J}.

Note that this only applies to j /∈ J : for i, j ∈ J , both
MBAjTBAip and MBAjMBAip are made false by the direct ef-
fects. There are no other effects as the beliefs of agents not in
J as well as their higher-order mere beliefs are not changed.

Ceasing to Observe a Fact of the World
The action a = stopobs(i, p) of agent i ∈ A ceasing to
observe p ∈ P has a single direct effect:

deff (a) = {TBAip ∧ ¬MBAip ▷ MBAip}.

This guarantees that stopobs(i, p) makes MBAip true; that
is, i no longer observes α. The role of the condition TBAip is
to exclude the case where i has no belief about p: then MBAip
should not be flipped, that is, i remains ignorant about p.

Just like the direct effects, the indirect effects apply only
when i observes p: if moreover j has a belief about MBAip
but does not observe it then j does not observe any change
of MBAip; and as a = stopobs(i, p) changes MBAip, the truth
value of TBAjMBAip gets flipped. We therefore have:

ieff (a) =

{TBAip ∧ ¬MBAip ∧ MBAjMBAip ▷ TBAjMBAip : j ̸= i}.

These are the only indirect effects of a = stopobs(i, p):
the other second-order atoms remain stable. In particu-
lar, TBAjTBAip, TBAjMBAip, MBAjTBAip, MBAjMBAip remain
unchanged, reflecting that stopobs(i, p) is public for the
agents observing TBAip and MBAip.

Ceasing to Observe Another Agent
The action a = stopobs(i, j, p) of agent i ∈ A ceasing to
observe whether j observes p has two direct effects:

deff (a) = {OBSiTBAjp ∧ OBSiMBAjp ▷ MBAiTBAjp,

OBSiTBAjp ∧ OBSiMBAjp ▷ MBAiMBAjp}.
This guarantees that stopobs(i, p) makes MBAiTBAjp ∧
MBAiMBAjp true; that is, i no longer observes whether j ob-
serves p. Indirect effects of stopobs(i, j, p) would be of
modal depth three and are therefore not considered here.

7 Second-Order False-Belief Tasks
We now demonstrate the usefulness of our action repertoire
by applying it to false-belief tasks. The first example in-
volves second-order beliefs and is analogous to the second-
order chocolate task (Flobbe et al. 2008; Arslan, Taatgen,
and Verbrugge 2013) in Bolander’s version (2018). The only
difference with the simple Sally-Anne Task is that after leav-
ing the room Sally peeks through the window. This allows
her to observe the position of the marble again without Anne
noticing. The question is where Anne believes that Sally be-
lieves the marble is. Figure 2 shows the evolution of REDA
states. For brevity, we model Anne’s beliefs about Sally’s
beliefs, but not vice versa. We also make use of our abbrevi-
ations OBS, LBA, FBA, and NBA in order to compactly repre-
sent the various combinations of TBA and MBA.

We model Sally leaving the room as two successive ac-
tions: first, Sally stops observing the marble (she turns away
and walks through the door), and then Anne stops observ-
ing Sally (once Sally is gone, Anne no longer sees her).
The first action stopobs(S, p) makes MBASp true: Sally’s
observation of p is turned into a lucky belief. As the condi-
tion MBAAMBASp is false, Anne’s second-order beliefs do not
change. The second action stopobs(A, S, p) further turns
Anne’s observations of TBASp and MBASp into lucky beliefs.

We then model Sally peeking through the window as the
action startobs1(S, p). As a direct effect, only MBASp is
flipped, making OBSSp true. As for indirect effects, only
TBAAMBASp is flipped, turning the lucky belief into a false
belief. In the resulting state, Anne now has the false belief
that Sally’s belief is a mere belief.

Finally, the action of removing the marble from the basket
is simply the ontic action flip(p). Besides the direct effect,
only the following indirect effect applies:

¬MBASp ∧ FBAAMBASp ∧ OBSAp ▷ TBAATBASp.

In the end, the marble is in the box, and both agents can
observe this. However Anne has false beliefs about both
Sally’s true and mere beliefs about p: she falsely believes
that ¬TBASp and MBASp, i.e., she falsely believes that FBASp.
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In the second version we switch the final flip(p) and
startobs1(S, p). In this case, Sally first obtains a false be-
lief about p as result of the flip(p) action. One effect of
startobs1(S, p) is then that Sally revises her belief. The
resulting state is the same as the final state in Figure 2.

In the third version, Anne eventually notices Sally look-
ing in. We add a final startobs2({A, S}, p) (assuming we
also model Sally’s second order beliefs), resulting in Anne
revising her second-order false belief about Sally’s first or-
der false belief.

8 Epistemic-Doxastic Planning
We now sketch a planning formalism using our logic.

Similar to classical planning, a REDA planning task con-
sists of an initial state I ⊆ REDA≤2, a set of actions A, and a
goal formula γ ∈ Lbool(REDA). Each action a ∈ A is an ac-
tion from our repertoire (i.e., an arbitrary ontic action or one
of the epistemic startobs, stopobs actions), annotated
with an additional precondition pre(a) ∈ Lbool(REDA) that
specifies the condition under which a is applicable.

A plan is then a sequence of actions a1, . . . , an ∈ A such
that a1, . . . , an are sequentially applicable from I and the
resulting final state satisfies γ. The plan existence problem is
the problem of deciding, for a given planning task, whether
there exists a plan. False-belief tasks can be turned into such
planning tasks; for example, one may wish to know whether
there exists a plan that produces a false belief about p of
some agent i while keeping the beliefs of j correct.

REDA planning can be polynomially reduced to classi-
cal planning with conditional effects and vice versa: When
translating from REDA to classical planning, we directly
use the atoms occurring in the REDA task as state vari-
ables. When translating from classical to REDA planning,
we use P for the state variables and never need any atom
from REDA≥1. The translations between our flip-based and
classical add/delete-based conditional effects are straightfor-
ward. Since classical plan existence with conditional effects
and propositional preconditions is PSPACE-complete (By-
lander 1994; Nebel 2000), we obtain the following result:

Theorem 2 REDA plan existence is PSPACE-complete.

9 Discussion and Conclusion
We have introduced a new action formalism that can be
used to model change of agents’ knowledge and beliefs and
that encompasses belief revision. It is based on the concepts
of observability of propositional facts and of other agents’
first-order beliefs. We have illustrated how our formalism
can model false-belief tasks such as the Sally-Anne Task
and its second-order version. We proved that reasoning re-
duces to classical propositional logic. This is due to the re-
striction that epistemic atoms are repetition-free. The same
restriction was exploited under the denomination ‘agent-
alternating formulas’ by Ding, Holliday, and Zhang (2019)
in order to reduce reasoning with introspection to reason-
ing without introspection (though on ‘knowledge-that’ and
‘belief-that’ operators). Finally, we have shown how our for-
malism can be used for epistemic planning with the same
complexity as classical planning.

There exist other epistemic action languages that can be
used for similar purposes. Bolander (2018) describes a sim-
ple action language with the explicit purpose of modelling
higher-order false-belief tasks, which translates directly into
dynamic epistemic logic with edge-conditioned update mod-
els. Baral et al. (2022) introduce mA∗, a general-purpose
action language that includes ontic actions, announcements,
and sensing actions where agents can have different lev-
els of observation. The Sally-Anne Task can be formalised
in the original version of mA∗, but not higher-order false-
belief tasks. This is due to the inability of the semantics
to deal with false beliefs about observations. In a follow-
up paper, Pham et al. (2022) introduced a new semantics
for mA∗, also based on edge-conditioned update models,
that correctly handles such situations. Another approach has
been proposed by Lorini and Romero (2019), which is based
on belief bases. Similar to the original version of mA∗, it
does not support false beliefs about observations and thus
can only model first-order false-belief tasks. Wan, Fang, and
Liu (2021) propose another epistemic planning formalism
based on KD45 update and revision.

Those approaches differ from ours in the way they model
observability. The papers by Baral et al., Pham et al., and
Wan et al. consider the observability of actions (agent i ob-
serves an action taking place), while Bolander and Lorini
and Romero consider the observability of agents (agent i
observes agent j). In contrast to our approach, which con-
siders the observability of epistemic-doxastic atoms, these
approaches model only beliefs and not knowledge.

On the other hand, a problem with most DEL-based ap-
proaches is that they do not account for belief revision. For
example, both mA∗ and Bolander’s approach assume KD45
models in their semantics. However, KD45 models are not
closed under product update: if an agent has a false belief
about φ and senses whether φ is the case then the updated
model is no longer a KD45 model (Balbiani et al. 2012;
Herzig 2017). In the literature this limitation has been over-
come by moving from KD45 models to plausibility order-
ings (van Ditmarsch 2005; Baltag and Smets 2006; Aucher
2008; Andersen, Bolander, and Jensen 2015). Our approach
does not require such complex devices, as illustrated by the
second example from Section 7: in a state where FBAip is
true, the execution of the action startobs1(i, p) results in
a state where OBSip and thus TBAip hold.

As a drawback, there are situations that we cannot model
in our formalism. For example, consider a state where agent
j observes that agent i does not observe p. For this to be
true, it must be the case that OBSjTBAip and OBSjMBAip, as
in any other case j would be uncertain about the observa-
tion status of i. However, this assumption seems too strong
in general: since j can now observe the value of TBAip and
MBAip separately, she also knows whether i has a lucky be-
lief, a false belief, or no belief about p. This means that using
combinations of REDA atoms, it is impossible to model the
situation where i observes that j does not observe p, and at
the same time i has no knowledge about j’s beliefs. We have
also so far excluded beliefs of depth greater than two. In fu-
ture work, we plan to lift these limitations by considering
richer fragments of epistemic-doxastic logic.
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