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Abstract

The ability to generalise from a small number of examples
is a fundamental challenge in machine learning. To tackle
this challenge, we introduce an inductive logic programming
(ILP) approach that combines negation and predicate inven-
tion. Combining these two features allows an ILP system to
generalise better by learning rules with universally quantified
body-only variables. We implement our idea in NOPI, which
can learn normal logic programs with predicate invention,
including Datalog programs with stratified negation. Our ex-
perimental results on multiple domains show that our approach
can improve predictive accuracies and learning times.

Introduction
Zendo is a game where one player, the teacher, creates a
hidden rule for structures. The other players, the students,
aim to discover the rule by building structures. The teacher
provides feedback by marking which structures follow or
break the rule without further explanation. The students con-
tinue to guess the rule. The first student to correctly guess
the rule wins. For instance, consider the examples shown in
Figure 1. A possible rule for these examples is “there are two
red cones”.

Figure 1: Positive (E+ ) and negative (E−) Zendo examples.

Suppose we want to use machine learning to play Zendo, i.e.
to learn rules from examples. Then we need an approach that
can (i) learn explainable rules, and (ii) generalise from a small
number of examples. Although crucial for many problems,
these requirements are difficult for standard machine learning
techniques (Cropper et al. 2022).

Inductive logic programming (ILP) (Muggleton 1991) is
a form of machine learning that can learn explainable rules
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from a small number of examples. For instance, an ILP sys-
tem could learn the following hypothesis (a set of logical
rules) from the examples in Figure 1:
{ f(S)← cone(S,A),red(A),cone(S,B),red(B),all diff(A,B) }

This hypothesis says that the relation f holds for the state
S when there are two distinct red cones A and B, i.e. this
hypothesis says there are two red cones.

Figure 2: Additional Zendo examples.

Suppose we are given the two new examples shown in Figure
2. Our previous hypothesis does not correctly explain the new
examples as it entails the new negative example. To correctly
explain all the examples, we need a disjunctive hypothesis
that says “[there are exactly two red cones] or [there are
exactly three red cones]”. Given a new positive example with
four red cones and a negative example with three red and one
green cone, we would need to learn yet another rule that says

“there are exactly four red cones”.
As is hopefully clear, we would struggle to generalise

beyond the training examples using this approach because
we need to learn a rule for each number of cones. Rather than
learn a rule for each number of cones, we would ideally learn
a single rule that says “all the cones are red”. However, most
ILP approaches struggle to learn rules of this form because
they only learn Datalog or definite programs and thus only
learn rules with existentially quantified body-only variables
(Apt and Blair 1991; Dantsin et al. 2001).

To overcome this limitation, we combine negation as fail-
ure (NAF) (Clark 1977) and predicate invention (PI) (Stahl
1995) to learn rules with universally quantified body-only
variables. The main reason to combine NAF and PI is that
many concepts can only be expressed in this more expressive
language (Stahl 1995; Dantsin et al. 2001). For instance, for
the Zendo scenario, our approach, which combines negation
and PI, learns the hypothesis:{

f(S)← scene(S), not inv1(S)
inv1(S)← cone(S,P), not red(P)

}
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This hypothesis says “all the cones are red”. The predicate
symbol inv1 is not provided as input and is invented by our
approach. The rule defined by inv1 says “there is a cone
that is not red”. The rule defined by f negates this rule and
says “it is not true that there is a cone that is not red”. The
hypothesis, therefore, states “there does not exist a cone that
is not red” which by the equivalences of first-order logic
(∀ ≡ not ∃ not) is the same as “all the cones are red”.

To combine negation and PI, we build on learning from
failures (LFF) (Cropper and Morel 2021). An LFF learner
continually generates and tests hypotheses, from which it
infers constraints. For instance, if a hypothesis is too general,
i.e. entails a negative example, an LFF learner, such as POP-
PER, builds a generalisation constraint to prune more general
hypotheses from the hypothesis space. We extend LFF from
learning definite (monotonic) programs to learning polar pro-
grams, a fragment of normal (non-monotonic) programs. The
key benefit of polar programs is that we can efficiently reason
about the subsumption relation between them in our learning
algorithm. Furthermore, we show (Theorem 2) that polar pro-
grams capture Datalog with stratified negation (Dantsin et al.
2001). We implement our idea in NOPI, which, as it builds on
POPPER, supports learning recursive and optimal programs.

Novelty, impact, and contributions. The key novelty of
our approach is the ability to learn normal logic programs
with invented predicate symbols. We expand on this novelty
in the Related Work section. The impact is that our approach
can learn programs that existing approaches cannot. Specifi-
cally, we claim that combining negation and PI can improve
learning performance by allowing us to learn rules with uni-
versally quantified body-only variables. Our experiments on
multiple domains support our claim and show that our ap-
proach leads to vastly improved predictive accuracies and
learning times.

Overall, we make the following contributions:

1. We introduce polar programs, a fragment of stratified
logic programs. We show (Theorem 2) that this fragment
of normal logic programs can capture Datalog with strati-
fied negation (Dantsin et al. 2001).

2. We introduce LFF constraints for this non-monotonic set-
ting and prove their soundness (Propositions 1 and 2).

3. We introduce NOPI, an ILP system that can learn normal
logic programs with PI and recursion, such as Datalog
programs with stratified negation.

4. We empirically show on multiple domains that (i) NOPI
can outperform existing approaches and (ii) our non-
monotonic constraints can reduce learning times.

Related Work
Program synthesis. ILP is a form of program synthesis
(Shapiro 1983), which attracts a broad community of re-
searchers (Evans and Grefenstette 2018; Ellis et al. 2018;
Silver et al. 2022). Many recent approaches synthesise mono-
tonic Datalog programs (Si et al. 2019; Raghothaman et al.
2020; Bembenek, Greenberg, and Chong 2023). We differ in
many ways, including by learning non-monotonic programs.

Negation. Many ILP approaches learn non-monotonic pro-
grams (Quinlan 1990; Srinivasan, Muggleton, and Bain 1992;
Dimopoulos and Kakas 1995; Sakama 2001; Sakama and In-
oue 2009; Ray 2009). Most use negation to handle exceptions
such as “birds fly except penguins” and thus require negative
examples. For instance, Inoue and Kudoh (1997) learn nor-
mal logic programs by first learning a program that covers the
positive examples and then adding exceptions (using NAF)
to account for the negative examples. By contrast, we com-
bine NAF and PI to improve generalisation and do not need
negative examples – as Bekker and Davis (2020) state, it is
sometimes necessary to learn from positive examples alone.
Moreover, most approaches build on inverse entailment (Mug-
gleton 1995), so they struggle to learn recursive and optimal
programs. By contrast, our approach can learn recursive and
optimal programs because we build on LFF. As Fogel and
Zaverucha (1998) state, learning non-monotonic programs
is difficult because the standard subsumption relation does
not hold in general for normal programs. To overcome this
challenge, the authors introduce a subsumption relation for
normal programs based on the dependency graph of predicate
symbols in a program. We differ because we introduce a gen-
eral fragment of normal logic programs related to stratified
logic programs. Moreover, our approach supports PI.

Predicate invention. Although crucial for many tasks,
such as planning (Silver et al. 2022) and learning complex
algorithms (Cropper and Muggleton 2019), most ILP systems
do not support PI (Muggleton 1995; Srinivasan 2001; Block-
eel and De Raedt 1998; Corapi, Russo, and Lupu 2011; Zeng,
Patel, and Page 2014; Inoue, Ribeiro, and Sakama 2014).
Approaches that support PI usually need metarules to restrict
the syntax of hypotheses (Muggleton, Lin, and Tamaddoni-
Nezhad 2015; Evans and Grefenstette 2018; Kaminski, Eiter,
and Inoue 2019; Hocquette and Muggleton 2020; Dai and
Muggleton 2021; Glanois et al. 2022), which, in some cases,
are impossible to provide (Cropper and Tourret 2020). By
contrast, we do not need metarules.

Negation and predicate invention. Ferilli (2016) describe
an approach that specialises a theory to account for a misclas-
sified negative example. If a negative example is misclassi-
fied, they introduce a conjunction of negated preconditions,
where each precondition is an invented predicate. Their ap-
proach only works in a Datalog setting, cannot learn recursive
programs, and only works when a negative example is mis-
classified. We differ because we (i) do not need negative
examples, (ii) learn recursive programs, (iii) learn normal
logic programs, and (iv) learn optimal programs. Siebers
and Schmid (2018) learn recursive programs with negation
and PI. Their approach first learns a program for the pos-
itive examples and allows some negative examples to be
covered. It then flips the examples (false positives from the
previous iteration are positive examples, and the previous
true positives are now negative examples) and tries to learn
again. We differ because we do not need negative examples
or metarules. ILASP (Law, Russo, and Broda 2014) can learn
non-monotonic programs with invented predicate symbols
if a user tells it which symbols to invent. By contrast, NOPI
does not need this information. Moreover, ILASP precom-
putes every possible rule in the hypothesis space, which is
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often infeasible. For instance, our Zendo4 experiment has
approximately 1010 rules in the hypothesis space.

Problem Setting
We assume familiarity with logic programming (Lloyd
2012) and ASP (Gebser et al. 2012) but have in-
cluded summaries in Appendix A For clarity, we
define some key terms. A normal rule is of the
form h ← b1, · · · , bn,not bn+1, · · · ,not bn+m

where h is the head atom, each bi is a literal, and
b1, · · · , bn,not bn+1, · · · ,not bn+m is the body. The
symbol not denotes negation as failure (Clark 1977). A
literal is an atom (a non-negated literal) or the negation of an
atom (a negated literal). A normal logic program is a set of
normal rules. A clause is a set of literals. A definite clause is
a clause with exactly one non-negated literal. A substitution
θ = {v1/t1, ..., vn/tn} is the simultaneous replacement of
each variable vi by its corresponding term ti. A clause C1

subsumes a clause C2 if and only if there exists a substitution
θ such that C1θ ⊆ C2 (Plotkin 1971). A definite theory
P subsumes a definite theory Q (P ⪯θ Q) if and only if
∀r2 ∈ Q, ∃r1 ∈ P such that r1 subsumes r2. A definite
theory P is a specialisation of a definite theory Q if and
only if Q ⪯θ P . A definite theory P is a generalisation of a
definite theory Q if and only if P ⪯θ Q.

Polar Programs
To learn normal programs, we need to go beyond definite
programs and standard subsumption. To do so, we introduce
polar programs, which are normal programs where predicate
symbols have polarities. We first define top symbols, which
are head predicate symbols that are only used positively in a
program:

Definition 1 (Top symbols). Let P be a normal program.
Then top(P ) is the inclusion-maximal subset of the head
predicate symbols occurring in P satisfying the following
two conditions:

• if p ∈ top(P ), then p does not occur in a negated literal
in P

• if p ∈ top(P ) and p is in the body of a rule r then the
head predicate symbol of r is in top(P )

We define defs(P) as the set of all head predicate symbols in
P that are not in top(P).

Example 1. To illustrate top symbols, consider the program:

P =


p← g, q
p← w,not s
g ← q, p
s← l


In this program, top(P ) = {p, g} and defs(P ) = {s}.
In a normal program P , the polarity of every head predi-
cate symbol p is positive (pos(p)) or negative (neg(p)). The
polarity of a symbol in top(P) is positive. By contrast, the po-
larity of a symbol in defs(P) depends on whether the symbol
is used positively or negatively:

Definition 2 (Polarity). Let P be a normal program, r be
a rule in P , p be the head predicate symbol of r, body+(r)

and body−(r) be the predicate symbols that appear in non-
negated and negated body literals in r respectively, and q in
defs(P ) be a predicate symbol in the body of r. Then the
polarity of q is as follows:

(1) if q ∈ body+(r) and pos(p) then pos(q)

(2) if q ∈ body−(r) and pos(p) then neg(q)

(3) if q ∈ body+(r) and neg(p) then neg(q)

(4) if q ∈ body−(r) and neg(p) then pos(q)

Example 2. Consider the program P from Example 1. The
polarities of the head predicate symbols are pos(p), pos(g),
and neg(s).
We define a polar program:
Definition 3 (Polar program). A normal program P is polar
if and only if the polarity of every head predicate symbol in
P is exclusively positive or negative.
Example 3. The following program is not polar because the
polarity of odd is neither positive nor negative:

{ odd(X)← succ(Y,X), not odd(Y)}
Example 4. The following stratified program is not polar
because the polarity of inv1 is positive and negative:{ f← inv1, not inv1

inv1 ← inv2
inv2 ← w

}
Example 5. The following program is polar because only
pos(unconnected) and neg(inv1) hold:{

r1 : unconnected(A,B)← not inv1(A,B)
r2 : inv1(A,B)← edge(A,B)
r3 : inv1(A,B)← edge(A,C), inv1(C,B)

}
The rules of a polar program P are positive (P+) or negative
(P−) depending on the polarity of their head symbols.
Example 6. Consider the program P from Example 5. Then
P+ = {r1} and P− = {r2, r3}.
We can compare positive rules using standard subsumption.
For negative rules, we need to flip the order of comparison.
To do so, we introduce polar subsumption:
Definition 4 (Polar subsumption). Let P and Q be polar
programs. Then P polar subsumes Q (P ≼⋄ Q) iff P+ ⪯θ

Q+ and Q− ⪯θ P−.

Example 7. To understand the intuition behind Def-
inition 4, consider the following polar programs:

P =

{
r1: f← not inv1
r2: inv1 ← a, b

}
Q =

{
r3: f← not inv1
r4: inv1 ← a

}
Note that P ≼⋄ Q because r1 ⪯θ r3 where r1 ∈ P+ and
r3 ∈ Q+, and r4 ⪯θ r2 where r2 ∈ P− and r4 ∈ Q− .

P =

{
r1: f← not inv1
r2: inv1 ← b
r3: inv1 ← a

}
Q =

{
r4: f← not inv1
r5: inv1 ← b

}
Note that Q ≼⋄ P because r4 ⪯θ r1 where r1 ∈ P+ and
r4 ∈ Q+, and r2 ⪯θ r5 where r2 ∈ P− and r5 ∈ Q−.
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We show that polar subsumption implies entailment. Note,
the properties of negation we require to prove the following
two theorems hold in the commonly used semantics for NAF
(such as stable and well-founded) when unstratified usage
of negation does not occur. Both stratified and polar logic
programs do not allow for unstratified usage of negation.

Theorem 1 (Entailment property). Let P and Q be polar
programs such that P ≼⋄ Q. Then P |= Q.

Proof. For any r2 in Q+ the implication trivially follows
from properties of ≤θ. Now let r1 in P− and r2 in Q− such
that r2 ≤θ r1; this implies r2 |= r1. By contraposition, we
derive not r1 |= not r2.

We also show that polar programs can express all concepts
expressible as stratified programs:

Theorem 2. Let S be a stratified logic program. Then there
exists a polar program P such that for all p ∈ top(S), S |=
∀x⃗.p(x⃗) iff P |= ∀x⃗.p(x⃗) (See Appendix C).

Thus, we do not lose expressivity by learning polar programs
rather than stratified programs.

Learning From Failures (LFF)
LFF searches a hypothesis space (a set of hypotheses) for a
hypothesis that generalises examples and background knowl-
edge. In the existing literature, an LFF hypothesis is a definite
(monotonic) program. LFF uses hypothesis constraints to re-
strict the hypothesis space. Let L be a language that defines
hypotheses. A hypothesis constraint is a constraint expressed
in L. Let C be a set of hypothesis constraints written in a
language L. A hypothesis H is consistent with C if, when
written in L, H does not violate any constraint in C. We
denote as HC the subset of the hypothesis space H which
does not violate any constraint in C.

LFFN
We extend LFF to learn polar programs, which we call the
learning from failures with negation (LFFN) setting. We
define the LFFN input:

Definition 5 (LFFN input). A LFFN input is a tuple
(E+, E−, B,H, C) where E+ and E− are sets of ground
atoms denoting positive and negative examples respectively;
B is a normal logic program denoting background knowl-
edge;H is a hypothesis space of polar programs, and C is a
set of hypothesis constraints.

To be clear, an LFFN hypothesis is a polar (non-monotonic)
program and the hypothesis space is a set of polar programs.
We define an LFFN solution:

Definition 6 (LFFN solution). Given an input tuple
(E+, E−, B,H, C), a hypothesis H ∈ HC is a solution
when H is complete (∀e ∈ E+, B ∪H |= e) and consistent
(∀e ∈ E−, B ∪H ̸|= e).

If a hypothesis is not a solution then it is a failure. A hy-
pothesis is incomplete when ∃e ∈ E+, H ∪B ̸|= e; incon-
sistent when ∃e ∈ E−, H ∪ B |= e; partially complete

when ∃e ∈ E+, H ∪ B |= e; and totally incomplete when
∀e ∈ E+, H ∪B ̸|= e.

Let cost : H 7→ N be a function that measures the cost of
a hypothesis. We define an optimal solution:

Definition 7 (Optimal solution). Given an input tuple
(E+, E−, B,H, C), a hypothesis H ∈ HC is optimal when
(i) H is a solution and (ii) ∀H ′ ∈ HC , where H ′ is a solution,
cost(H) ≤ cost(H ′).

Our cost function is the number of literals in the hypothesis.

LFFN Constraints

An LFF learner learns hypothesis constraints from failed hy-
potheses. Cropper and Morel (2021) introduce hypothesis
constraints based on subsumption. A specialisation constraint
prunes specialisations of a hypothesis. A generalisation con-
straint prunes generalisations. The existing LFF constraints
are only sound for monotonic programs, i.e. they can incor-
rectly prune optimal solutions when learning non-monotonic
programs, and are thus unsound for the LFFN setting. The
reason for unsoundness is that entailment is not a conse-
quence of subsumption in a non-monotonic setting, even in
the propositional case, as the following examples illustrate.

Example 8. Consider the programs:

P =


a.
f← not inv1
inv1 ← b
inv1 ← a

 Q =

{ a.
f← not inv1
inv1 ← b

}

Note that P ⪯θ Q and Q |= f but P ̸|= f . Similarly, we
have the following:

P ′ =

{ a.
f← not inv1
inv1 ← a, b

}
Q′ =

{ a.
f← not inv1
inv1 ← a

}
Note that Q′ ⪯θ P ′ and P ′ |= f but Q′ ̸|= f .

To overcome this limitation, we introduce constraints that
are optimally sound for polar programs (Definition 2) based
on polar subsumption (Definition 4). In the LFFN setting,
Theorem 1 implies the following propositions:

Proposition 1 (Generalisation soundness). Let (E+, E−,
B,H, C) be a LFFN input, H1, H2 ∈ HC , H1 be inconsis-
tent, and H2 ≼⋄ H1. Then H2 is not a solution.

Proposition 2 (Specialisation soundness). Let (E+, E−,
B,H, C) be a LFFN input, H1, H2 ∈ HC , H1 be incomplete,
and H1 ≼⋄ H2. Then H2 is not a solution.

To summarise, polar subsumption allows us to soundly prune
the hypothesis space when learning non-monotonic programs.
In this next section, we introduce an algorithm that uses polar
subsumption to efficiently learn polar programs.

Algorithm
We now describe our NOPI algorithm. To aid our explanation,
we first describe POPPER (Cropper and Morel 2021).
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POPPER. POPPER takes as input an LFF input1 and learns
hypotheses as definite programs without NAF. To generate
hypotheses, POPPER uses an ASP program P where each
model (answer set) of P represents a hypothesis. POPPER
follows a generate, test, and constrain loop to find a solu-
tion. First, it generates a hypothesis as a solution to P with
the ASP system Clingo (Gebser et al. 2019). Then, POP-
PER tests this hypothesis given the background knowledge
against the training examples, typically using Prolog. If the
hypothesis is a solution, POPPER returns it. Otherwise, the
hypothesis is a failure: POPPER identifies the kind of fail-
ure and builds constraints accordingly. For instance, if the
hypothesis is inconsistent, POPPER builds a generalisation
constraint. POPPER adds these constraints to P to constrain
subsequent generate steps. This loop repeats until the solver
finds a solution or there are no more models of P .

NOPI

NOPI builds on POPPER and follows a generate, test, and
constrain loop. The two key novelties of NOPI are its ability
to (i) learn polar programs and (ii) use non-monotonic gen-
eralisation and specialisation constraints to efficiently prune
the hypothesis space. We describe these advances in turn.

Polar Programs To learn polar programs, we extend the
generate ASP program to generate normal logic programs, i.e.
programs with negative literals. To only generate polar pro-
grams, we add the rules and constraints of Definitions 1 and 2
to the ASP program to eliminate models where a predicate
symbol has multiple polarities. The complete ASP encoding
is in Appendix F, but we briefly explain it at a high-level.
If a predicate symbol p occurs in the body of a rule with
head symbol q we say q calls p, which we name the call
relation. A predicate can be called positively or negatively.
We compute the transitive closure of the call relation tracking
the number of negative calls on each path. If a symbol has
an even number of negative calls on a path to a top symbol
we say its associated rules are positive, otherwise they are
negative. If any rule is labeled both positive and negative then
the program is non-polar. We ignore background knowledge
predicates when computing the call relation.

Polar Constraints NOPI uses two types of constraints to
prune models and thus prune hypotheses. We refer to these
constraints as polar specialisation and polar generalisation
constraints. These constraints differ from those used by POP-
PER because (i) they use additional literals to assign polarity
to rules, and (ii) they use polar subsumption (Definition 4)
rather than standard subsumption. Polarity is important when
learning polar programs because a polar generalisation con-
straint prunes generalisations of positive polarity rules and
specialisations of negative polarity rules. A polar specialisa-
tion constraint prunes the specialisations of positive polarity
rules and generalisations of negative polarity rules.

Example 9. Reconsider the Zendo scenario from the in-
troduction (Figures 1 and 2). The following hypothesis is

1An LFF input is the same as an LFFN input except the hypoth-
esis space contains only definite (monotonic) programs.

incomplete as every positive example contains at least one
cone:

h1 =

{
r1 : f(S)← scene(S), not inv1(S)
r2 : inv1(S)← cone(S,A)

}
Since h1 is incomplete, we can use a polar specialisation
constraint to prune the hypothesis:

h2 =


r1 : f(S)← scene(S), not inv1(S)
r2 : inv1(S)← cone(S,A)
r3 : inv1(S)← contact(S,A, ), red(A),

not blue(A)


The hypothesis h2 is a superset of h1 as it includes the addi-
tional rule r3. In h2, the symbol inv1 is negative because it
is used negatively in r1. Therefore, the rule r3 implies that
h2 is a specialisation of h1.

The polar specialisation constraint also prunes h3:

h3 =

{
r4 : f(S)← scene(S), not inv1(S),

contact(S,A, ),red(A), blue(A)
r2 : inv1(S)← cone(S,A)

}
The rule r4 in h3 adds literals to r1 in h1, so h3 is a speciali-
sation of h1. By contrast, a polar specialisation constraint
does not prune the following hypothesis:

h4 =

{
r1 : f(S)← scene(S), not inv1(S)
r5 : inv1(S)← cone(S,A), not red(A)

}
Notice that the rule r5 has an additional negated body literal
compared to r2. The symbol of this literal is neither positive
nor negative, so we can ignore the occurrence of not. Thus,
h4 is a generalisation of h1 as the new literal occurs in the
body of r2 whose head symbol has negative polarity.

Experiments
To evaluate the impact of combining negation and PI, our
experiments aim to answer the question:

Q1 Can negation and PI improve learning performance?

To answer Q1, we compare the performance of NOPI against
POPPER, which cannot negate invented predicate symbols.
Comparing NOPI against different systems with different bi-
ases will not allow us to answer the question, as we would be
unable to identify the reason for any performance difference.
To answer Q1, we use tasks where negation and PI should be
helpful, such as learning the rules of Zendo (Bramley et al.
2018). We describe the tasks in the next section.

We introduced sound constraints for polar programs to
prune non-optimal solutions from the hypothesis space. To
evaluate whether these constraints improve performance, our
experiments aim to answer the question:

Q2 Can polar constraints improve learning performance?

To answer Q2, we compare the performance of NOPI with
and without these constraints.

We introduced NOPI to go beyond existing approaches by
combining negation and PI. Our experiments, therefore, aim
to answer the question:

Q3 How does NOPI compare against existing approaches?
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To answer Q3, we compare NOPI against POPPER, ALEPH,
and METAGOLSN . We describe these systems below.

Questions Q1-Q3 focus on tasks where negation and PI
should help. However, negation and PI are not always nec-
essary. In such cases, can negation and PI be harmful? Our
experiments try to answer the question:

Q4 Can negation and PI degrade learning performance?

To answer Q4, we evaluate NOPI on tasks where negation
and PI should be unnecessary.

Reproducibility. Experimental code may be found in the
following repository: github.com/Ermine516/NOPI

Domains We briefly describe our domains. The precise
problems are found in Appendix D.

Basic (B). Non-monotonic learning tasks introduced by
Siebers and Schmid (2018) and Purgał, Cerna, and Kaliszyk
(2022), such as learning the definition of a leap year.

Zendo (Z). Bramley et al. (2018) introduce Zendo tasks
similar to the one in the introduction.

Graphs (G). We use commonly used graph problems
(Evans and Grefenstette 2018; Glanois et al. 2022), such
as dominating set, independent set, and connectedness.

Sets (S). These set-based tasks include symmetric differ-
ence, decomposition into subsets, and mutual distinctness.

Systems We compare NOPI against POPPER (Cropper and
Morel 2021; Cropper and Hocquette 2023), ALEPH (Srini-
vasan 2001), and METAGOLSN (Siebers and Schmid 2018).
We give NOPI and POPPER identical input. The only ex-
perimental difference is the ability of NOPI to negate in-
vented predicate symbols. ALEPH can learn normal logic
programs but uses a different bias than NOPI so the compar-
ison should be interpreted as indicative only. Also, we use
the default ALEPH settings, but there are likely to be bet-
ter settings on these datasets (Srinivasan and Ramakrishnan
2011). METAGOLSN can learn normal logic programs but
requires metarules to define the hypothesis space. We use the
metarules used by Siebers and Schmid (2018) supplemented
with a general set of metarules (Cropper and Tourret 2020).

Experimental Setup We use a 300s learning timeout for
each task and round accuracies and learning times to inte-
ger values. We plot 99% confidence intervals. Additional
experimental details are in Appendix B.

Q1. We allow all the systems to negate the given back-
ground relations. For instance, in the Zendo tasks, each sys-
tem can negate colours such red. Therefore, any improve-
ments from NOPI are not from the use of negation but from
the combination of negation and PI.

Q2. We need a baseline to evaluate our polar constraints.
As discussed in the Problem Setting section, POPPER uses
unsound constraints when learning polar programs. If a pro-
gram h is not a solution and has a negated invented symbol,
the only sound option for POPPER is to prune h from the
hypothesis space, but, importantly, not its generalisations or
specialisations. To evaluate our polar constraints, we compare
them against this simpler (banish) approach, which we call

NOPIbn. In other words, to answer Q2, we compare NOPI
against NOPIbn.2

Results
Q1. Can negation and PI improve performance? Table 1
shows the predictive accuracies of NOPI and POPPER. The
results show that NOPI vastly outperforms POPPER regarding
predictive accuracies. For instance, for all red (Z2) POPPER
learns:

z(A)←piece(A,B), contact(B,C), red(C), rhs(C)
z(A)←piece(A,B), contact(B,C), upright(C), lhs(B)
z(A)←piece(A,B), contact(B,C), lhs(C), lhs(B)
z(A)←piece(A,B), coord1(B,C), size(B,C), upright(B)


By contrast, NOPI learns:{

z(A)← scene(A), not inv1(A)
inv1(A)← piece(A,B), not red(B)

}
Table 2 shows the corresponding learning times. The results
show that NOPI rarely needs more than 40s to learn a solution.
One of the more difficult problems (30s to learn) is largest
is red (Z6), which involves inventing two predicate symbols
and having two layers of negation, which, as far as we are
aware, goes beyond anything in the existing literature:{ zendo(A)← scene(A), piece(A,B), not inv1(B,A)

inv1(A,B)← piece(B,C), size(C,D), not inv2(D,A)
inv2(A,B)← size(B,C), red(B), A ≤ C

}
POPPER sometimes terminates in less than a second. The rea-
son is that on some problems, because of its highly efficient
search, POPPER almost immediately proves that there is no
monotonic solution.

Overall, the results from this section suggest that the an-
swer to Q1 is that combining negation and PI can drastically
improve learning performance.

Q2. Can polar constraints improve performance? Ta-
ble 3 shows the learning times of NOPI and NOPIbn. The
results show that NOPI has lower learning times than NOPIbn.
In other words, the results show that polar constraints can
drastically reduce learning times. A wilcoxon signed-rank test
confirms the significance of the differences at the p < 10−8

value. For simpler tasks, there is little benefit from the polar
constraints as the overhead of constructing and adding them
to the solver negates the pruning benefits. For more difficult
tasks, the difference is substantial. For instance, the learn-
ing times for NOPI and NOPIbn on the sym. difference (S4)
task are 31s and 72s respectively, a 57% reduction. Overall,
the results suggest that the answer to Q2 is that our polar
constraints can drastically reduce learning times.

Q3. How does NOPI compare against existing ap-
proaches? Table 1 shows the predictive accuracies of the
systems. As is clear, NOPI overwhelmingly outperforms the
other systems. This result is expected. Besides METAGOLSN ,
the other systems cannot learn normal logic programs with PI.
ALEPH can learn programs with NAF and sometimes learns
reasonable solutions. However, ALEPH cannot perform PI so,

2Appendix Table 6 compares sound and unsound constraints.
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Task NOPI POPPER ALEPH METAGOLSN

B1 100 ± 0 82 ± 0 50 ± 0 0 ± 0
B2 100 ± 0 0 ± 0 50 ± 0 100 ± 0
B3 100 ± 0 82 ± 0 82 ± 0 100 ± 0
Z1 100 ± 0 0 ± 0 60 ± 0 0 ± 0
Z2 100 ± 0 55 ± 0 67 ± 0 0± 0
Z3 100 ± 0 0 ± 0 65 ± 0 0 ± 0
Z4 100 ± 0 55 ± 0 58 ± 0 0± 0
Z5 100 ± 0 0 ± 0 21 ± 0 0 ± 0
Z6 100 ± 0 0 ± 0 45 ± 0 0 ± 0
G1 100 ± 0 0 ± 0 50 ± 0 0 ± 0
G2 100 ± 0 24 ± 0 47 ± 0 0 ± 0
G3 100 ± 0 0 ± 0 12 ± 0 0 ± 0
G4 100 ± 0 20 ± 0 100 ± 0 0 ± 0
G5 100 ± 0 0 ± 0 50 ± 0 0 ± 0
G6 100 ± 0 0 ± 0 21 ± 0 0 ± 0
G7 100 ± 0 0 ± 0 50 ± 0 0 ± 0
G8 100 ± 0 0 ± 0 50 ± 0 0 ± 0
S1 100 ± 0 0 ± 0 50 ± 0 0 ± 0
S2 100 ± 0 0 ± 0 50 ± 0 0 ± 0
S3 92 ± 0 0 ± 0 57 ± 0 0 ± 0
S4 100 ± 0 0 ± 0 50 ± 0 0 ± 0
S5 100 ± 0 57 ± 0 23 ± 0 0 ± 0
S6 100 ± 0 0 ± 0 0 ± 0 0 ± 0

Table 1: Mean predictive accuracies (10 runs).

due to its restricted language, it struggles to generalise. In
many cases, ALEPH simply memorises the training examples.
Because it relies on user-supplied metarules, METAGOLSN

can only learn normal logic programs of a very restricted
syntactic structure and thus struggles on almost all our tasks.
Overall, the results from this section suggest that the an-
swer to Q3 is that NOPI performs well compared to other
approaches on problems that need negation and PI.

Q4. Can negation and PI degrade performance? The
Appendix includes tables showing the predictive accuracies
and learning times of the systems. The results show that NOPI
performs worse than POPPER on these tasks. The Blumer
bound (Blumer et al. 1987) helps explain why. According to
the bound, given two hypotheses spaces of different sizes,
searching the smaller space should result in higher predictive
accuracy compared to searching the larger one if the target
hypothesis is in both. NOPI considers programs with negation
and PI and thus searches a drastically larger hypothesis space
than POPPER and the other systems. The tasks in Q4 do not
need negation and PI, thus explaining the difference.

Conclusions and Limitations
We have introduced an approach that combines negation and
PI. Our approach can learn polar programs, including strati-
fied Datalog programs (Theorem 2). We introduced generali-
sation and specialisation constraints for this non-monotonic
fragment and showed that they are optimally sound (Theo-
rem 1). We introduced NOPI, an ILP system that can learn
normal logic programs with PI, including recursive programs.
We have empirically shown on multiple domains that (i)
NOPI can outperform existing approaches, and (ii) our non-
monotonic constraints can reduce learning times.

Task NOPI POPPER ALEPH METAGOLSN

B1 20 ± 0 timeout 20 ± 0 timeout
B3 3 ± 0 0 ± 0 18 ± 2 1 ± 0
Z1 2 ± 0 0 ± 0 7± 1 timeout
Z2 12 ± 0 1 ± 0 95 ± 2 timeout
Z3 2 ± 0 0 ± 0 27 ± 1 timeout
Z4 22 ± 1 0 ± 0 20 ± 1 timeout
Z5 15 ± 1 0 ± 0 24 ± 1 timeout
Z6 67 ± 4 0 ± 0 149 ± 24 timeout
G1 4 ± 0 0 ± 0 32 ± 2 timeout
G2 2 ± 0 0 ± 0 0 ± 0 timeout
G3 9 ± 0 16 ± 0 1 ± 0 timeout
G4 12 ± 0 0 ± 0 1 ± 0 timeout
G5 8 ± 0 0 ± 0 0 ± 0 timeout
G6 19 ± 3 0 ± 0 12 ± 1 timeout
G7 58 ± 8 0 ± 0 12 ± 1 timeout
G8 71 ± 9 0 ± 0 38 ± 1 timeout
S2 3 ± 0 0 ± 0 1 ± 0 timeout
S4 28 ± 2 0 ± 0 0 ± 2 0 ± 0
S5 43 ± 3 0 ± 0 23 ± 3 timeout
S6 3 ± 0 0 ± 0 1 ± 0 timeout

Table 2: Mean learning times (10 runs). We show tasks where
the times of NOPI and POPPER differ by more than 1 second.

Task NOPI NOPIbn Change

B3 2 ± 0 4 ± 0 -50%
Z4 11 ± 1 49 ± 2 -78%
Z5 13 ± 1 29 ± 1 -55%
Z6 30 ± 1 115 ± 9 -74%
G2 1 ± 0 9 ± 0 -89%
G3 18 ± 1 23 ± 1 -22%
G4 20 ± 3 68 ± 4 -71%
G5 3 ± 0 11 ± 0 -73%
G6 23 ± 1 33 ± 3 -27%
G7 56 ± 5 93 ± 9 -40%
G8 63 ± 5 103 ± 9 -39%
S3 3 ± 0 13 ± 0 -77%
S4 31 ± 2 72 ± 9 -57%
S5 35 ± 2 53 ± 5 -34%
S6 4 ± 0 8 ± 1 -50%

Table 3: Mean learning time (125 runs). We show tasks where
the times differ by more than 1 second.

Limitations and Future Work
Inefficient constraints. NOPI sometimes spends 30% of
learning time building polar constraints. This inefficiency is
an implementation issue rather than a theoretical one. There-
fore, our empirical results likely underestimate the perfor-
mance of NOPI, especially the improvements from using
polar constraints.

Unnecessary negation and PI. Our results show that com-
bining negation and PI allows NOPI to learn programs that
other approaches cannot. However, the results also show that
this increased expressivity can be detrimental when the com-
bination of negation and PI is unnecessary. Thus, the main
limitation of this work and direction for future work is to
automatically detect when a problem needs negation and PI.
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