
Computing the Why-Provenance for Datalog Queries via SAT Solvers

Marco Calautti1, Ester Livshits2, Andreas Pieris2,3, Markus Schneider2

1Department of Computer Science, University of Milan
2School of Informatics, University of Edinburgh

3Department of Computer Science, University of Cyprus
marco.calautti@unimi.it, ester.livshits@ed.ac.uk, apieris@inf.ed.ac.uk, m.schneider@ed.ac.uk

Abstract

Explaining an answer to a Datalog query is an essential task
towards Explainable AI, especially nowadays where Datalog
plays a critical role in the development of ontology-based
applications. A well-established approach for explaining a
query answer is the so-called why-provenance, which essen-
tially collects all the subsets of the input database that can
be used to obtain that answer via some derivation process,
typically represented as a proof tree. It is well known, how-
ever, that computing the why-provenance for Datalog queries
is computationally expensive, and thus, very few attempts can
be found in the literature. The goal of this work is to demon-
strate how off-the-shelf SAT solvers can be exploited towards
an efficient computation of the why-provenance for Datalog
queries. Interestingly, our SAT-based approach allows us to
build the why-provenance in an incremental fashion, that is,
one explanation at a time, which is much more useful in a
practical context than the one-shot computation of the whole
set of explanations as done by existing approaches.

1 Introduction
Datalog has emerged in the 1980s as a logic-based query lan-
guage from Logic Programming and has been extensively
studied since then (Abiteboul, Hull, and Vianu 1995). The
name Datalog reflects the intention of devising a counter-
part of Prolog for data processing. It essentially extends
the language of unions of conjunctive queries, which cor-
responds to the select-project-join-union fragment of rela-
tional algebra, with the important feature of recursion, much
needed to express some natural queries. Among numerous
applications, Datalog has been heavily used in the context
of ontological query answering. In particular, for several
important ontology languages based on description logics
and existential rules, ontological query answering can be re-
duced to the problem of evaluating a Datalog query (see,
e.g., (Eiter et al. 2012; Benedikt et al. 2022)), which in turn
enables the exploitation of efficient Datalog engines such as
Soufflé (Jordan, Scholz, and Subotic 2016), VLog (Urbani,
Jacobs, and Krötzsch 2016), RDFox (Nenov et al. 2015), and
DLV (Leone et al. 2006), to name a few.

As for any other query language, explaining why a result
to a Datalog query is obtained is crucial towards transpar-

Copyright c© 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ent data-intensive applications. A well-established approach
for providing such explanations to query answers is the so-
called why-provenance (Buneman, Khanna, and Tan 2001).
Its essence is to collect all the subsets of the input database
that as a whole can be used to derive a certain answer. More
precisely, for Datalog queries, the why-provenance of an an-
swer tuple t̄ is obtained by considering all the possible proof
trees T of the fact Ans(t̄), with Ans being the answer pred-
icate of the Datalog query in question, and then collecting
all the database facts that label the leaves of T . Recall that
a proof tree of a fact α w.r.t. a database D and a set Σ of
Datalog rules forms a tree-like representation of a way for
deriving α by starting from D and executing the rules oc-
curring in Σ (Abiteboul, Hull, and Vianu 1995).

Despite its wide acceptance, why-provenance for Dat-
alog queries comes with two weaknesses: it is computa-
tionally very expensive, and it may provide counterintuitive
explanations. The first weakness is manifested by the fact
that, although why-provenance for Datalog queries has been
around for decades, only a couple of works have considered
implementing it for recursive queries (Zhao, Subotic, and
Scholz 2020; Esparza, Luttenberger, and Schlund 2014). An
attempt to change this state of affairs was made in (Elha-
lawati, Krötzsch, and Mennicke 2022) by focusing on the
more practical setting of computing the why-provenance of
a given query answer (a.k.a. on-demand why-provenance),
instead of computing the why-provenance for all the query
answers. Concerning the second weakness, it has been ob-
served that there are proof trees that correspond to unnatu-
ral derivation processes, e.g., derivations where an atom is
derived from itself (Bourgaux et al. 2022). Now, an expla-
nation witnessed via such an unnatural proof tree, might be
classified as a counterintuitive one as it does not correspond
to an intuitive derivation process that can be extracted from
the proof tree; this is further discussed in Section 3.

The main goal of this work is to tackle the two weaknesses
of why-provenance for Datalog queries discussed above. In
particular, we place our work in the more practical setting
of on-demand why-provenance, and target an efficient im-
plementation that provides conceptually meaningful expla-
nations for the given query answer. To this end, we intro-
duce the novel class of unambiguous proof trees that corre-
spond to conceptually meaningful derivation processes, un-
like arbitrary proof trees, which in turn ensures the concep-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10459



tual relevance of the obtained explanations. We then show
that unambiguous proof trees, besides their conceptual ad-
vantage, also help to exploit off-the-shelf SAT solvers to-
wards an efficient computation of the why-provenance for
Datalog queries. Moreover, our SAT-based approach allows
us to build the why-provenance of a query answer in an in-
cremental fashion, i.e., one explanation at a time, which is
much more useful in practice than the one-shot computa-
tion of the whole set as done in (Elhalawati, Krötzsch, and
Mennicke 2022). Finally, we experimentally confirm the ef-
ficiency of our approach with a dedicated benchmark, and
we further show that, in general, it outperforms the machin-
ery proposed in (Elhalawati, Krötzsch, and Mennicke 2022).
The experimental scenarios and the source code are given at
https://gitlab.com/aaai24whyprov/datalog-why-provenance.

2 Preliminaries
We consider the disjoint countably infinite sets C and V of
constants and variables, respectively. We may refer to con-
stants and variables as terms. For brevity, given an integer
n > 0, we may write [n] for the set of integers {1, . . . , n}.

Relational Databases. A schema S is a finite set of relation
names (or predicates) with associated arity. We write R/n
to say that R has arity n ≥ 0; we may write ar(R) for n.
A (relational) atom α over S is an expression of the form
R(t̄), where R/n ∈ S and t̄ is an n-tuple of terms. By abuse
of notation, we may treat tuples as the set of their elements.
A fact is an atom that mentions only constants. A database
over S is a finite set of facts over S. The active domain of a
database D, denoted dom(D), is the set of constants in D.

Syntax and Semantics of Datalog Programs. A (Datalog)
rule σ over a schema S is an expression of the form

R0(x̄0) :– R1(x̄1), . . . , Rn(x̄n)

for n ≥ 1, where Ri(x̄i) is a (constant-free) relational atom
over S for i ∈ {0, . . . , n}, and each variable in x̄0 occurs in
x̄k for some k ∈ [n]. We refer to R0(x̄0) as the head of σ,
denoted head(σ), and to the expression that appears on the
right of the :– symbol as the body of σ, denoted body(σ),
which we may treat as the set of its atoms.

A Datalog program over a schema S is defined as a finite
set Σ of Datalog rules over S. A predicate R occurring in
Σ is called extensional if there is no rule in Σ having R in
its head, and intensional if there exists at least one rule in
Σ with R in its head. The extensional (database) schema of
Σ, denoted edb(Σ), is the set of all extensional predicates in
Σ, while the intensional schema of Σ, denoted idb(Σ), is the
set of all intensional predicates in Σ. Note that, by definition,
edb(Σ) ∩ idb(Σ) = ∅. The schema of Σ, denoted sch(Σ), is
the set edb(Σ) ∪ idb(Σ), which is in general a subset of S
since some predicates of S may not appear in Σ.

An elegant property of Datalog programs is that they have
three equivalent semantics: model-theoretic, fixpoint, and
proof-theoretic (Abiteboul, Hull, and Vianu 1995). We re-
call the proof-theoretic semantics of Datalog programs since
it is closer to the notion of why-provenance. To this end, we
need the key notion of proof tree of a fact. For a database D

and a Datalog program Σ, let base(D,Σ) = {R(t̄) | R ∈
sch(Σ) and t̄ ∈ dom(D)ar(R)}, the facts that can be formed
using predicates of sch(Σ) and constants of dom(D).
Definition 2.1. (Proof Tree) Consider a Datalog program
Σ, a database D over edb(Σ), and a fact α over sch(Σ). A
proof tree of α w.r.t. D and Σ is a finite labeled rooted tree
T = (V,E, λ), with λ : V → base(D,Σ), such that:
1. If v ∈ V is the root, then λ(v) = α.
2. If v ∈ V is a leaf, then λ(v) ∈ D.
3. If v ∈ V is a node with n ≥ 1 children u1, . . . , un,

then there is a rule R0(x̄0) :– R1(x̄1), . . . , Rn(x̄n) ∈ Σ
and a function h :

⋃
i∈[n] x̄i → C such that λ(v) =

R0(h(x̄0)), and λ(ui) = Ri(h(x̄i)) for each i ∈ [n].
Essentially, a proof tree of a factαw.r.t.D and Σ indicates

that we can derive α starting from D end executing the rules
of Σ. Now, given a Datalog program Σ and a database D
over sch(Σ), the semantics of Σ on D, denoted Σ(D), is

{α | there is a proof tree of α w.r.t. D and Σ},
that is, the set of facts that can be proven using D and Σ.

Datalog Queries. It is now straightforward to recall the syn-
tax and the semantics of Datalog queries. A Datalog query
is a pair Q = (Σ, R), where Σ is a Datalog program and R
a predicate of idb(Σ). Now, for a database D over edb(Σ),
the answer to Q over D is defined as the set

Q(D) =
{
t̄ ∈ dom(D)ar(R) | R(t̄) ∈ Σ(D)

}
,

that is, the set of tuples t̄ of dom(D)ar(R) such that the fact
R(t̄) can be derived using D and Σ.

Why-Provenance for Datalog Queries. As discussed in the
introduction, why-provenance is a standard way of explain-
ing query results. It essentially collects all the subsets of the
database (without unnecessary atoms) that allow to prove (or
derive) a query result. We now formalize this simple idea.
Given a proof tree T = (V,E, λ) (of some fact w.r.t. some
database and Datalog program), the support of T is the set

support(T ) = {λ(v) | v ∈ V is a leaf of T} ,
which is essentially the set of facts that label the leaves of
the proof tree T . Note that support(T ) is a subset of the un-
derlying database since, by definition, the leaves of a proof
tree are labeled with database atoms. The formal definition
of why-provenance for Datalog queries follows.
Definition 2.2. (Why-Provenance for Datalog) Consider a
Datalog query Q = (Σ, R), a database D over edb(Σ), and
a tuple t̄ ∈ dom(D)ar(R). The why-provenance of t̄ w.r.t. D
and Q is defined as the family of sets of facts

{support(T ) | T is a proof tree of R(t̄) w.r.t. D and Σ},
which we denote by why(t̄, D,Q).

Intuitively speaking, a set of factsD′ ⊆ D that belongs to
why(t̄, D,Q) should be understood as a “real” reason why
the tuple t̄ is an answer to the query Q over the database D,
i.e., D′ explains why t̄ ∈ Q(D). By “real” we mean that all
the facts of D′ are used in order to derive t̄ as an answer.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10460



3 Unambiguous Proof Trees
The standard notion of why-provenance defined above relies
on arbitrary proof trees. However, as discussed in (Bourgaux
et al. 2022), there are proof trees that are counterintuitive.
For example, such a proof tree is one where a fact is derived
from itself, that is, it contains two nodes labeled with the
same fact and one is a descendant of the other. Now, a mem-
ber of why(t̄, D,Q), witnessed via such an unnatural proof
tree, might be classified as a counterintuitive explanation of
t̄ as it does not correspond to a natural derivation process
that can be extracted from the proof tree. Therefore, we need
refined classes of proof trees that overcome the conceptual
limitations of arbitrary proof trees. Some refined classes of
proof trees have been recently discussed in (Bourgaux et al.
2022): non-recursive proof trees, minimal-depth proof trees,
and hereditary minimal-depth proof trees. Roughly speak-
ing, a non-recursive proof tree is a proof tree that does not
contain two nodes labeled with the same fact and one is a de-
scendant of the other, a minimal-depth proof tree is a proof
tree that has the minimum depth among all the proof trees of
the same fact, and a hereditary minimal-depth proof tree is
minimizing the depth of each of its subtrees. Although non-
recursive and (hereditary) minimal-depth proof trees form
well-justified notions that deserve our attention, there are
still proof trees from those classes that can be classified as
counterintuitive. In fact, there are proof trees that are non-
recursive and (hereditary) minimal-depth, but they are am-
biguous in the way some facts are derived. Here is a simple
example that illustrates this phenomenon.
Example 3.1. Consider the Datalog program Σ

A(x) :– S(x)

A(x) :– A(y), A(z), T (y, z, x)

that encodes the path accessibility problem (Cook 1974).
The predicate S represents source nodes,A represents nodes
that are accessible from the source nodes, and T represents
accessibility conditions, that is, T (y, z, x) means that if both
y and z are accessible from the source nodes, then so is x.
We further consider the database

D = {S(a), S(b), T (a, a, c), T (b, b, c), T (c, c, d)}.

The following is a proof tree of the fact A(d) w.r.t. D and Σ
that is non-recursive and (hereditary) minimal-depth, but it
suffers from the ambiguity issue described above:A(d)

A(c)
A(a)
S(a)

A(a)
S(a)

T (a, a, c)
A(c)

A(b)
S(b)

A(b)
S(b)

T (b, b, c)
T (c, c, d)

Indeed, there are two nodes labeled with the fact A(c), but
their subtrees differ, and thus, it is ambiguous how A(c) is
derived. Hence, the database D, which belongs to the why-
provenance of (d) w.r.t. D and Q due to the above proof
tree, might be classified as a counterintuitive explanation

since it does not correspond to an intuitive derivation pro-
cess where each fact is derived once due to a unique rea-
son. Indeed, the intuitive explanations that one expects are
the following: d is accessible from a via c (i.e., the subset
{S(a), T (a, a, c), T (c, c, d)} of D), or d is accessible from
b via c (i.e., the subset {S(b), T (b, b, c), T (c, c, d)} of D).

This leads to the class of unambiguous proof trees, where
all occurrences of a fact must be proved via the same deriva-
tion. Two rooted trees T = (V,E, λ) and T ′ = (V ′, E′, λ′)
are isomorphic, denoted T ≈ T ′, if there exists a bijection
h : V → V ′ such that, for each v ∈ V , λ(v) = λ′(h(v)),
and for each u, v ∈ V , (u, v) ∈ E iff (h(u), h(v)) ∈ E′.
Let T [v] be the subtree of the proof tree T rooted at node v.
The formal definition of unambiguous proof trees follows.

Definition 3.2. (Unambiguous Proof Tree) Consider a
Datalog program Σ, a database D over edb(Σ), and a fact
α over sch(Σ). An unambiguous proof tree of α w.r.t. D and
Σ is a proof tree T = (V,E, λ) of α w.r.t. D and Σ such
that, for all v, u ∈ V , λ(v) = λ(u) implies T [v] ≈ T [u].

Why-provenance relative to unambiguous proof trees is
defined in the obvious way: for a Datalog queryQ = (Σ, R),
a databaseD over edb(Σ), and a tuple t̄ ∈ dom(D)ar(R), the
why-provenance of t̄ w.r.t.D andQ relative to unambiguous
proof trees is the family of sets of facts

{support(T ) | T is an unambiguous proof tree of
R(t̄) w.r.t. D and Σ},

denoted whyUN(t̄, D,Q). The main concern of this work is
to efficiently compute the why-provenance of a tuple rela-
tive to unambiguous proof trees. To this end, we are going
to exploit off-the-shelf SAT solvers and report encouraging
results; this is the subject of the next two sections. To the best
of our knowledge, this is the first time that SAT solvers are
used for computing the why-provenance. Let us stress that
focusing on unambiguous proof trees, apart from their con-
ceptual advantage discussed above, was crucial towards our
encouraging results as it is unclear how a SAT-based imple-
mentation can be made practical for ambiguous proof trees.

4 From Why-Provenance to SAT
In this section, we show that the why-provenance of a tuple
relative to unambiguous proof trees can be extracted from
the satisfying truth assignments of a Boolean formula.

Compactly Representing Unambiguous Proof Trees
The construction of the Boolean formula relies on a charac-
terization of the existence of an unambiguous proof tree of
a fact α w.r.t. D and Σ via the existence of a so-called com-
pressed directed acyclic graph (DAG) of α w.r.t. D and Σ,
which, intuitively speaking, is a compact representation of
an unambiguous proof tree of α w.r.t. D and Σ. We proceed
to formalize the notion of compressed DAG and give the
characterization in question. Recall that a DAG G is rooted
if it has exactly one node, the root, with no incoming edges.
A node of G is a leaf if it has no outgoing edges. The defini-
tion of compressed DAG follows.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10461



Definition 4.1. (Compressed DAG) Consider a Datalog
program Σ, a database D over edb(Σ), and a fact α over
sch(Σ). A compressed DAG of α w.r.t. D and Σ is a rooted
DAG G = (V,E), with V ⊆ base(D,Σ), such that:

1. The root of G is α.
2. If β ∈ V is a leaf node, then β ∈ D.
3. If β ∈ V has n ≥ 1 outgoing edges (β, γ1), . . . , (β, γn),

then there is a rule R0(x̄0) :– R1(x̄1), . . . , Rm(x̄m) ∈
Σ and a function h :

⋃
i∈[m] x̄i → C such that β =

R0(h(x̄0)) and {γi}i∈[n] = {Ri(h(x̄i)) | i ∈ [m]}.
For a compressed DAG G = (V,E), the support of G is

defined analogously to the support of a proof tree, that is,

support(G) = {v ∈ V | v is a leaf of G}.

The desired characterization follows.

Proposition 4.2. For a Datalog program Σ, a database D
over edb(Σ), a fact α over sch(Σ), and a databaseD′ ⊆ D,
the following are equivalent:

1. There exists an unambiguous proof tree T of α w.r.t. D
and Σ such that support(T ) = D′.

2. There exists a compressed DAG G of α w.r.t. D and Σ
such that support(G) = D′.

Note that the above characterization relies on the fact that
we focus on unambiguous proof trees. More precisely, un-
ambiguity allows us to use a single node in the compressed
DAG as a representative for all the (possibly exponentially
many) nodes in the proof tree labelled with the same fact.

Constructing the Boolean Formula
We start by introducing the so-called downward closure of a
fact w.r.t. a database and a Datalog program, taken from (El-
halawati, Krötzsch, and Mennicke 2022), that will play a key
role in the construction of the Boolean formula.

Downward Closure. Roughly, the downward closure of a
fact α w.r.t. a database D and a Datalog program Σ is a hy-
pergraph that encodes all possible compressed DAGs of α
w.r.t. D and Σ. For our purposes, a (directed) hypergraph
H is a pair (V,E), where V is the set of its nodes and E is
the set of its hyperedges, i.e., pairs of the form (u, T ), where
u ∈ V and T is a non-empty subset of V . For u, v ∈ V , we
say that u reaches v inH if either u = v, or there exists a se-
quence of hyperedges (u1, T1), . . . , (un, Tn) with u1 = u,
v ∈ Tn, and ui ∈ Ti−1 for each i ∈ {2, . . . , n}. For a node
u, we write H↓u for the hypergraph (V ′, E′) obtained from
H where V ′ contains u and all nodes reachable from u, and
E′ collects all the hyperedges mentioning only nodes of V ′.

For a Datalog program Σ and a database D over edb(Σ),
the graph of rule instances (GRI) of D and Σ is the hyper-
graph gri(D,Σ) = (V,E), with V ⊆ base(D,Σ), such that

1. D ⊆ V , and
2. if there exists a rule R0(x̄0) :– R1(x̄1), . . . , Rn(x̄n) in

Σ and a function h :
⋃
i∈[n] x̄i → C such that αi =

Ri(h(x̄i)) ∈ V , for i ∈ [n], then α0 = R0(h(x̄0)) ∈ V
and (α0, {α1, . . . , αn}) ∈ E.

Intuitively, gri(D,Σ) encodes all compressed DAGs of all
factsαw.r.t.D and Σ. Since we are interested in finding only
compressed DAGs of a specific fact α, we do not need to
consider gri(D,Σ) in its entirety, but only the subhypergraph
of gri(D,Σ) containing α and all nodes reachable from it.
This leads to the notion of downward closure.

Definition 4.3. (Downward Closure) Consider a Datalog
program Σ, a database D over edb(Σ), and a fact α occur-
ring in gri(D,Σ). The downward closure of α w.r.t. D and
Σ, denoted down(α,D,Σ), is the hypergraph gri(D,Σ)↓α.

The downward closure simply keeps from gri(D,Σ) the
part that is relevant to derive the fact in question. The key
property of the downward closure, which is easy to verify, is
summarized by the following technical lemma.

Lemma 4.4. Consider a Datalog program Σ, a database D
over edb(Σ), a fact α over sch(Σ), and a compressed DAG
G = (V,E) of α w.r.t.D and Σ. Then, for every node β ∈ V
with outgoing edges (β, γ1), . . . , (β, γn) in G, we have that
(β, {γ1, . . . , γn}) is a hyperedge of down(α,D,Σ).

The Boolean Formula. Fix a Datalog query Q = (Σ, R),
a database D over edb(Σ), and a tuple t̄ ∈ dom(D)ar(R).
We construct in polynomial time in D a Boolean formula
φ(t̄,D,Q) such that the why-provenance of t̄ w.r.t. D and Q
relative to unambiguous proof trees can be computed from
the truth assignments that make φ(t̄,D,Q) true. In what fol-
lows, assume that down(R(t̄), D,Q) = (V,E).

The set of variables of φ(t̄,D,Q) is the union of three dis-
joint sets VN , VH , and VE of variables. Each variable in
VN corresponds to a node of down(R(t̄), D,Q), i.e., VN =
{xα | α ∈ V }, each variable in VH corresponds to a hyper-
edge of down(R(t̄), D,Q), i.e., VH = {ye | e ∈ E}, and
each variable in VE corresponds to a “standard edge” that
can be extracted from a hyperedge of down(R(t̄), D,Q),
i.e., VE = {z(α,β) | (α, T ) ∈ E with β ∈ T}.

The key idea is that the variables of VN and VE that be-
come true via a satisfying truth assignment of φ(t̄,D,Q), in-
duce the nodes and the edges of a compressed DAG G for
R(t̄) w.r.t. D and Q, which, by Proposition 4.2, implies
that support(G) ∈ whyUN(t̄, D,Q). The Boolean formula
φ(t̄,D,Q) is a conjunction of the form

φgraph ∧ φroot ∧ φproof ∧ φacyclic .

We proceed to discuss each of the subformulas. In the fol-
lowing, we use A⇒ B as a shorthand for ¬A ∨B.

The formula φgraph is in charge of guaranteeing consis-
tency between the truth assignments of the variables in VN
and the variables in VE , i.e., if an edge between two nodes
is part of G, then the two nodes must belong to G as well:

φgraph =
∧

z(α,β)∈VE

(z(α,β) ⇒ xα) ∧ (z(α,β) ⇒ xβ).

The formula φroot guarantees that the atomR(t̄) is a node
of G, is the root of G, and no other node v of G can be the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10462



root (i.e., v must have at least one incoming edge):

φroot = xR(t̄) ∧

 ∧
z(α,R(t̄))∈VE

¬z(α,R(t̄))

 ∧
∧

xα∈VN
with α 6=R(t̄)

xα ⇒ ∨
z(β,α)∈VE

z(β,α)

 .

We now discuss φproof . Roughly, this formula is in charge
of guaranteeing that, whenever an intensional atom α is a
node of G, then it must have the correct children in G, i.e.,
its children are the ones coming from some hyperedge of
down(R(t̄), D,Q) and no other nodes are its children (this
is needed to guarantee that G is a compressed DAG). This
is achieved with two subformulas. The first part is in charge
of choosing some hyperedge (α, T ) of down(R(t̄), D,Q),
for each intensional atom α, while the second guarantees
that for each selected hyperedge (α, T ) (one per intensional
atom α), all and only the nodes in T are children of α in G:

φproof =
∧

xα∈VN with
α intensional

xα ⇒ ∨
y(α,T )∈VH

y(α,T )

∧
∧

ye∈VH
with e=(α,T )

 ∧
z(α,β)∈VE

ye ⇒ `e,β

 ,

where, for a hyperedge e = (α, T ), `e,β denotes z(α,β) if
β ∈ T , and ¬z(α,β) otherwise. Let us clarify that, although
we are interested in choosing exactly one hyperedge (α, T )
for each intensional atom α, the above formula uses a dis-
junction rather than an exclusive or. This is not a problem
since a truth assignment that makes two variables y(α,T1)

and y(α,T2) true is not a satisfying assignment. This is be-
cause the second conjunct of φproof , e.g., requires that the
variables z(α,β) with β ∈ T1 are true, while all others must
be false. Hence, since T1 6= T2, when considering the hy-
peredge (α, T2), this subformula will not be satisfied.

We finally discuss φacyclic , which is in charge of check-
ing that G, namely the graph whose edges correspond to the
true variables in VE , is acyclic. Checking the acyclicity of
a graph via a Boolean formula is a well-studied problem in
the SAT literature with a plethora of encodings. For our con-
struction, we employ an encoding based on vertex elimina-
tion (Rankooh and Rintanen 2022).

This completes the construction of our Boolean formula,
which is in CNF, and we can prove it can be constructed in
polynomial time in D; the latter relies on the fact that the
hypergraph down(R(t̄), D,Σ) can be constructed in poly-
nomial time in D. Now, a truth assignment τ to the vari-
ables of φ(t̄,D,Q) naturally gives rise to a database denoted
db(τ). Formally, for a truth assignment τ from the vari-
ables of φ(t̄,D,Q) to {0, 1}, we write db(τ) for the database
{α ∈ D | xα ∈ VN and τ(xα) = 1}, i.e., the database
collecting all facts in D having a corresponding variable in

φ(t̄,D,Q) that is true w.r.t. τ . Let [[φ(t̄,D,Q)]] be the family{
db(τ) | τ is a satisfying assignment of φ(t̄,D,Q)

}
.

We can then show the correctness of our formula:
Proposition 4.5. Consider a Datalog query Q = (Σ, R), a
database D over edb(Σ), and a tuple t̄ ∈ dom(D)ar(R). It
holds that whyUN(t̄, D,Q) = [[φ(t̄,D,Q)]].

5 Why-Provenance via SAT Solvers
Proposition 4.5 provides a way for computing the why-
provenance of a tuple relative to unambiguous proof trees
via off-the-shelf SAT solvers. But how does this machinery
behave when applied in a practical context? In particular, we
are interested in the incremental computation of the why-
provenance by enumerating its members. The goal of this
section is to provide an answer to this question.

Implementation Details
Before presenting our experimental results, let us first briefly
discuss some interesting aspects of the implementation. In
what follows, fix a Datalog queryQ = (Σ, R), a databaseD
over edb(Σ), and a tuple t̄ ∈ dom(D)ar(R).

Constructing the Downward Closure. Recall that the con-
struction of φ(t̄,D,Q) relies on the downward closure of R(t̄)
w.r.t. D and Σ. It turns out that the hyperedges of the down-
ward closure can be computed by executing a slightly modi-
fied Datalog queryQ↓ over a slightly modified databaseD↓.
In other words, the answers to Q↓ over D↓ coincide with
the hyperedges of the downward closure. To construct the
downward closure we can exploit a state-of-the-art Datalog
engine, that is, version 2.1.1 of DLV (Adrian et al. 2018).
Note that our approach differs form the one in (Elhalawati,
Krötzsch, and Mennicke 2022), which uses existential rules.
The advantage of using a pure Datalog query to build the
downward closure is that we can use the same Datalog en-
gine to both answer and explain queries.

Constructing the Formula. Recall that φ(t̄,D,Q) is ex-
pressed as a conjunction of four formulas, where each for-
mula is responsible for a certain task. As it might be ex-
pected, the heavy task is to verify that the graph in ques-
tion is acyclic (performed by the formula φacyclic). Check-
ing the acyclicity of a directed graph via a Boolean formula
is a well-studied problem in the SAT literature. For our im-
plementation, we employ the technique of vertex elimina-
tion (Rankooh and Rintanen 2022). The advantage of this
approach is that the number of Boolean variables needed
to encode φacyclic is generally orders of magnitude smaller
than other standard encodings, such as plain transitive clo-
sure. In paricular, the number of variables is O(n · δ), where
n is the number of nodes of the graph, and δ is the so-called
elimination width of the graph, which, intuitively speaking,
is related to how connected the graph is.

Incrementally Constructing the Why-Provenance. Recall
that we are interested in the incremental computation of the
why-provenance, which is more useful in practice than com-
puting the whole set at once. To this end, we need a way

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10463



Scenario Databases #Rules

TClosure Dbitcoin(235K), Dfacebook(88.2K) 2

Doctors-i,
D1(100K) 6

i ∈ [7]

Galen
D1(26.5K), D2(30.5K), 14
D3(67K), D4(82K)

Andersen
D1(68K), D2(340K), D3(680K), 2

D4(3.4M), D5(6.8M)

CSDA
Dhttpd(10M), Dpostgresql(34.8M), 2

Dlinux(44M)

Table 1: Experimental scenarios. For each database D, we
give in parenthesis the number of tuples occurring in D.

to enumerate all the members of the why-provenance with-
out repetitions. This is achieved by adapting a standard tech-
nique from the SAT literature for enumerating the satisfying
assignments of a Boolean formula, called blocking clause.
We initially collect in a set S all the facts of D occurring
in the downward closure of R(t̄) w.r.t. D and Σ. Then, af-
ter asking the SAT solver for an arbitrary satisfying assign-
ment τ of φ(t̄,D,Q), we output the database db(τ), and then
construct the “blocking” clause ∨α∈S`α, where `α = ¬xα
if α ∈ db(τ), and `α = xα otherwise. We then add this
clause to the formula, which expresses that no other satisfy-
ing assignment τ ′ should give rise to the same member of
the why-provenance. This will exclude the previously com-
puted explanations from the computation. We keep adding
such blocking clauses each time we get a new member of
the why-provenance until the formula is unsatisfiable.

Experimental Evaluation
We now proceed to experimentally evaluate the SAT-based
approach discussed above. To this end, we consider a variety
of scenarios from the Datalog literature consisting of a query
Q = (Σ, R) and a family of databases D over edb(Σ). All
the considered scenarios are summarized in Table 1.

Experimental Setup. For each scenario s consisting of the
query Q = (Σ, R) and the family of databases D, and for
each D ∈ D, we have computed Q(D) using DLV and
selected 100 tuples t̄1s,D, . . . , t̄

100
s,D from Q(D) uniformly at

random. Then, for each i ∈ [100], we constructed the down-
ward closure of R(t̄is,D) w.r.t. D and Σ by first comput-
ing the adapted query Q↓ and database D↓ via a Python 3
implementation and then using DLV for the actual com-
putation of the downward closure. Then, we constructed
the Boolean formula φ(t̄is,D,D,Q) via a C++ implementa-
tion. Finally, we ran the state-of-the-art SAT solver Glu-
cose (see, e.g., (Audemard and Simon 2018)), version 4.2.1,
with the above formula as input, to enumerate the members
of whyUN(t̄is,D, D,Q). All the experiments have been con-
ducted on a laptop with an Intel(R) Core(TM) i7-10750H
CPU @ 2.60GHz, and 32GB of RAM, running Fedora Linux
37. We used Python 3.11.2, and the C++ code has been com-
piled with g++ 12.2.1, using the -O3 optimization flag.

bitcoinD

10
0

Ti
m

e
 (

s)

facebookD
10

-1

(a) TClosure

10
0

10
-1

1D 2D 3D 4D

(b) Galen

1D 2D 3D 4D 5D

10
0

10
1

10
2

Ti
m

e
 (

s)

(c) Andersen

httpdD postgresqlD linuxD

10
2

10
3

(d) CSDA

Doc-1

0.66
0.64
0.62
0.60

0.56
0.54

0.58

0.52
Doc-2 Doc-3 Doc-4 Doc-5 Doc-6 Doc-7

Ti
m

e
 (

s)

(e) Doctors-i, i ∈ [7]

Figure 1: Building the downward closure and the formula.

Experimental Results. Concerning the construction of the
downward closure and the formula, each plot in Figure 1 cor-
responds to one of our scenarios, where, for each database of
the scenario, we report a box-plot collecting all the runtimes
relative to the 100 tuples associated to that database. An ex-
ception to this are the Doctors scenarios, which, for the sake
of presentation, have been grouped in a single plot, where
the database is implicitly the only one available (i.e.,D1). In
each box-plot, the bottom and the top borders represent the
first and third quartile, i.e., the runtime under which 25% and
75% of all the runtimes occur, respectively, and the orange
line represents the median runtime. Moreover, the bottom
and the top whisker represent the minimum and maximum
runtime, respectively, while the triangle denotes the average
runtime. All times are expressed in seconds, and we use log-
arithmic or linear scale, depending on the scenario.

We can see that in most of the scenarios, the runtime is in
the order of some seconds, and we have observed that almost
all the time is spent for computing the downward closure.
Considering Andersen, for the databases having size up to
half a million facts, the total time is in the order of some sec-
onds, whereas for the very large databases (3.4M and 6.8M
facts), the total time is between half a minute and a minute.
This is quite encouraging considering the complexity of the
query, the large size of the databases, and the limited power

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10464



bitcoin

Ti
m

e
 (

m
s)

D Dfacebook

10
-2

10
0

10
2

10
4

(a) TClosure

10
3

2D 3D 4D1D

10
-1

10
-2

10
-3

10
0

10
1

10
2

(b) Galen

10
-2

2D 3D 4D 5D1D
10

-3

Ti
m

e
 (

m
s)

(c) Andersen

httpdD postgresqlD linuxD

10
3

10
-1

10
-2

10
-3

10
0

10
1

10
2

(d) CSDA

Doc-1

Ti
m

e
 (

m
s)

10

10

10

10

10

Doc-2 Doc-3 Doc-4 Doc-5 Doc-6 Doc-7

-2

-1

0

1

2

(e) Doctors-i, i ∈ [7]

Figure 2: Incremental computation of the why-provenance.

of our machine. The CSDA scenario is the most demanding
one due to the extremely large databases. Note, however, that
it would be similarly demanding even for query answering.

For the incremental computation of the why-provenance,
we give in Figure 2 the times required to build an expla-
nation, that is, the time between the current member of the
why-provenance and the next one (the delay). Each plot is
associated with a scenario where, for each database of the
scenario, a box-plot collects the delays of constructing the
members of the why-provenance for all the 100 randomly
chosen tuples for that database; for each tuple, we let the ex-
ecution stop at 10K explanations or at a 5 minutes timeout.
The box-plots have the same meaning as in Figure 1. Note
that the Doctors-based scenarios are grouped in one plot.
Most of the delays are below 1 millisecond, with most of
the medians in the order of microseconds. Therefore, once
we have the formula in place, incrementally computing the
members of the why-provenance is extremely fast.

Comparative Evaluation. We conclude by comparing our
approach with the one of (Elhalawati, Krötzsch, and Men-
nicke 2022), which, to the best of our knowledge, is the only
one in the literature for constructing the why-provenance of

D

Ti
m

e
 (

s)

2 D3 D4D

SAT-based

10

10

10
-1

10

Rule-based

1

10

0

1

2

3

(a) Galen

Doc-1 Doc-2 Doc-6Doc-3 Doc-4 Doc-5 Doc-7

SAT-based
Rule-based

10

10
0

1

(b) Doctors-i, i ∈ [7]

Figure 3: Comparison between SAT-based and rule-based.

a given tuple.1 We point out that for a query Q, a database
D, and a tuple t̄ ∈ Q(D), the technique of (Elhalawati,
Krötzsch, and Mennicke 2022), which we call rule-based,
constructs the set why(t̄, D,Q) via a rewriting of Q into
a set of existential rules, unlike our approach that incre-
mentally constructs whyUN(t̄, D,Q) via a SAT solver. Since
whyUN(t̄, D,Q) ⊆ why(t̄, D,Q), one may think that com-
puting why(t̄, D,Q) is more demanding. However, com-
puting whyUN(t̄, D,Q) requires checking for unambiguity.
Hence, a comparison will help us to clarify whether unam-
biguous proof trees provide any computational advantage.

We use VLog 0.9.0 for the rule-based implementation,
and we perform the comparison over the Galen and Doctors-
based scenarios as these are the only ones considered in (El-
halawati, Krötzsch, and Mennicke 2022), and thus, we have
access to the rewritten set of existential rules; the authors
did not release the tools needed to perform the rewriting.
The comparison is shown in Figure 3 where we consider,
for each scenario consisting of Q and D, database D ∈ D,
and tuple t̄ from the 100 randomly selected ones in Q(D),
the end-to-end runtime for constructing whyUN(t̄, D,Q) and
why(t̄, D,Q) using the SAT-based and the rule-based imple-
mentation, respectively; we set a 5 minutes timeout for both
approaches, and we use box-plots as usual.

Our SAT-based implementation consistently outperforms
the rule-based one. In particular, for the Galen scenario, in
most cases, the rule-based implementation does not finish in
less than 5 minutes, with the worst case occurring with the
largest database, where 41 out of the 100 runs time out. Inter-
estingly, the time for building the downward closure in both
approaches is comparable. Thus, the performance difference
is indeed due to the combination of relying on unambiguous
proof trees and exploiting a SAT solver.

6 Future Steps
From our analysis, it is clear that our future efforts should
focus on improving the construction of the downward clo-
sure. It will be also interesting to understand whether our
SAT-based approach can be used for more expressive query
languages such as ontology-mediated queries.

1Note that (Elhalawati, Krötzsch, and Mennicke 2022) proposes
an alternative approach based on systems of equations. However, it
is outperformed or on par with the one based on existential rules.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10465



Acknowledgements
We thank the anonymous referees for their feedback. This
work was funded by the European Union - Next Generation
EU under the MUR PRIN-PNRR grant P2022KHTX7 “DIS-
TORT”, and by the EPSRC grant EP/S003800/1 “EQUID”.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Adrian, W. T.; Alviano, M.; Calimeri, F.; Cuteri, B.; Dodaro,
C.; Faber, W.; Fuscà, D.; Leone, N.; Manna, M.; Perri, S.;
Ricca, F.; Veltri, P.; and Zangari, J. 2018. The ASP System
DLV: Advancements and Applications. Künstliche Intell.,
32(2-3): 177–179.
Audemard, G.; and Simon, L. 2018. On the Glucose
SAT Solver. Int. J. Artif. Intell. Tools, 27(1): 1840001:1–
1840001:25.
Benedikt, M.; Buron, M.; Germano, S.; Kappelmann, K.;
and Motik, B. 2022. Rewriting the Infinite Chase. PVLDB,
15(11): 3045–3057.
Bourgaux, C.; Bourhis, P.; Peterfreund, L.; and Thomazo,
M. 2022. Revisiting Semiring Provenance for Datalog. In
KR.
Buneman, P.; Khanna, S.; and Tan, W. C. 2001. Why and
Where: A Characterization of Data Provenance. In ICDT,
316–330.
Cook, S. A. 1974. An Observation on Time-Storage Trade
Off. J. Comput. Syst. Sci., 9(3): 308–316.
Eiter, T.; Ortiz, M.; Simkus, M.; Tran, T.; and Xiao, G. 2012.
Query Rewriting for Horn-SHIQ Plus Rules. In AAAI.
Elhalawati, A.; Krötzsch, M.; and Mennicke, S. 2022.
An Existential Rule Framework for Computing Why-
Provenance On-Demand for Datalog. In RuleML+RR.
Esparza, J.; Luttenberger, M.; and Schlund, M. 2014. FP-
solve: A Generic Solver for Fixpoint Equations over Semir-
ings. In CIAA, 1–15.
Jordan, H.; Scholz, B.; and Subotic, P. 2016. Soufflé: On
Synthesis of Program Analyzers. In CAV, 422–430.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri,
S.; and Scarcello, F. 2006. The DLV system for knowledge
representation and reasoning. ACM Trans. Comput. Log.,
7(3): 499–562.
Nenov, Y.; Piro, R.; Motik, B.; Horrocks, I.; Wu, Z.; and
Banerjee, J. 2015. RDFox: A Highly-Scalable RDF Store.
In ISWC, 3–20.
Rankooh, M. F.; and Rintanen, J. 2022. Propositional En-
codings of Acyclicity and Reachability by Using Vertex
Elimination. In AAAI, 5861–5868.
Urbani, J.; Jacobs, C.; and Krötzsch, M. 2016. Column-
Oriented Datalog Materialization for Large Knowledge
Graphs. In AAAI, 258–264.
Zhao, D.; Subotic, P.; and Scholz, B. 2020. Debugging
Large-scale Datalog: A Scalable Provenance Evaluation
Strategy. ACM Trans. Program. Lang. Syst., 42(2): 7:1–7:35.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10466


