
CTO-SLAM: Contour Tracking for Object-Level Robust 4D SLAM

Xiaohan Li1, Dong Liu1, Jun Wu2*

1Institute of Advanced Technology, University of Science and Technology of China
2Fudan University

li2xh@mail.ustc.edu.cn, dongeliu@ustc.edu.cn, wujun@fudan.edu.cn

Abstract

The demand for 4D ( 3D+time ) SLAM system is increas-
ingly urgent, especially for decision-making and scene un-
derstanding. However, most of the existing simultaneous lo-
calization and mapping ( SLAM ) systems primarily assume
static environments. They fail to represent dynamic scenar-
ios due to the challenge of establishing robust long-term spa-
tiotemporal associations in dynamic object tracking. We ad-
dress this limitation and propose CTO-SLAM, a monocular
and RGB-D object-level 4D SLAM system to track mov-
ing objects and estimate their motion simultaneously. In this
paper, we propose contour tracking, which introduces con-
tour features to enhance the keypoint representation of dy-
namic objects and coupled with pixel tracking to achieve
long-term robust object tracking. Based on contour track-
ing, we propose a novel sampling-based object pose initial-
ization algorithm and the following adapted bundle adjust-
ment ( BA ) optimization algorithm to estimate dynamic ob-
ject poses with high accuracy. The CTO-SLAM system is
verified on both KITTI and VKITTI datasets. The experi-
mental results demonstrate that our system effectively ad-
dresses cumulative errors in long-term spatiotemporal as-
sociation and hence obtains substantial improvements over
the state-of-the-art systems. The source code is available at
https://github.com/realXiaohan/CTO-SLAM.

Introduction
Simultaneous Localization and Mapping ( SLAM ) defines
the problem of generating a map and estimating cam-
era poses when robots enter unknown environment. Visual
SLAM system is the one that relies solely on the on-board
cameras. Because images can provide abundant information,
visual SLAM has received extensive attention and devel-
oped rapidly over the past few decades. Most of the existing
SLAM approaches typically operate under the assumption of
a strictly static scene and usually consider dynamic objects
as outliers (Mur-Artal and Tardós 2017; Engel, Koltun, and
Cremers 2017). Thus, They lack enough ability to handle dy-
namic scenes. While the static assumption remains valid for
the scene with controlled environments, it greatly restricts
the applicability of SLAM in scenarios involving demand-
ing settings, urban autonomous driving for example.
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Rich static structure is certainly beneficial for estimating
ego-motion. However, having a comprehensive understand-
ing of the dynamic environment is of paramount importance
for meeting the evolving demands of emerging applications,
such as AR/VR or autonomous driving. The predominant
approach that tackles dynamic environments involves de-
tecting and tracking dynamic objects apart from SLAM sys-
tem. These methods deal with dynamic environments by
utilizing traditional object tracking methods (Bârsan et al.
2018; Rosinol et al. 2020). The camera poses and dynamic
object poses are then optimized in a unified bundle adjust-
ment framework. Nevertheless, the accuracy of dynamic ob-
ject motion estimation is relatively poor, which tends to de-
grade the accuracy of ego-motion estimation when jointly
optimized. Some researchers have taken initial strides to-
ward addressing the object tracking and visual SLAM to-
gether, which introduces additional complexity to the prob-
lem. Part of the systems are tailored to adapt to specific en-
vironments, leveraging different priors to constrain the so-
lution space. However, priors required systems are hard to
fulfill the needs of real world applications. A minor group
of researchers tracks and estimates dynamic object motion
with optical flow inside a feature-based SLAM (Zhang et al.
2020). This certainly provides a rather accurate object mo-
tion estimation in some scenarios but is sensitive to lighting
changes and occlusion. Moreover, it fails to build a sparse
map. In summary, due to the difficulty of establishing long-
term data association, existing methods cannot achieve ro-
bust and accurate motion estimation for dynamic objects.

Inspired by the pixel tracking methods that track ev-
ery pixel in images (Jiang et al. 2021; Li, Zhou, and Liu
2023), we seek to develop a long-term spatiotemporal asso-
ciation within SLAM. Since pixel tracking can effectively
learn spatiotemporal information, it has advantages over op-
tical flow or appearance-based methods in handling sparse
points, withstanding occlusion, and providing robust cor-
respondence for extended periods. However, pixel tracking
lacks the ability to select robust pixels for tracking and to
establish reliable 2D-3D correspondences, which is partic-
ularly important in dynamic SLAM. Because keypoints lo-
cated at the object surface often share similar textures, we
explore those situated at the object contour with semantic
information to track, referred to as contour keypoints.

In this paper, we propose CTO-SLAM, a 4D visual SLAM
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system that tracks and estimates camera motion and dy-
namic object motion simultaneously. Notably, our approach
does not rely on any additional prior information for object
motion estimation. In order to integrate dynamic objects and
camera in a unified system, we present a dynamic object
motion initialization algorithm to generate the poses when
they are first observed. Then, we propose contour tracking to
track contour keypoints with pixel tracking. In the backend,
the structure of dynamic objects are optimized in a novel
contour tracking based bundle adjustment optimization pro-
cess. We verified the performance of our CTO-SLAM in
KITTI and VKITTI datasets. The experiment results show
the effectiveness and potential of our proposed methods, fur-
ther reinforcing their value and applicability in practical ap-
plications. Finally, we explore the limitation of jointly op-
timizing dynamic object motion and camera ego-motion. In
summary, our main contributions are listed as follows.
• The first 4D SLAM system that integrates contour track-

ing with sparse SLAM system to accurately track dy-
namic objects and create a strictly sparse map.

• The proposed sampling-based dynamic object motion
initialization algorithm accurately provides poses when
dynamic objects are first observed. The following con-
tour tracking based bundle adjustment achieves robust
and precise estimation of object motion in long duration.

• We discuss the limitation of classical bundle adjustment
for jointly optimizing object motion and camera ego-
motion thoroughly. Then, we propose dense then sparse
method incorporating multi-objects tracking strategies.

Related Work
Based on the objectives in dealing with dynamic objects, re-
search on dynamic SLAM is primarily categorized into three
groups. The first and most extensively studied group aims
to build an almost absolute static map for ensuring the ac-
curacy of ego-motion estimation. Early works (Alcantarilla
et al. 2012; Tan et al. 2013) explored dynamic objects and
regarded them as outliers. More recent approaches seek to
enrich the static structures by filtering and inpainting meth-
ods (Zhang, Fu, and Liu 2022; Li et al. 2022; Zhang et al.
2023). DynaSLAM (Xiao et al. 2019) utilizes deep learning
models to identify and eliminate dynamic objects from the
scene, then inpaint the background with multiview geome-
try. The above work can provide accurate static maps but
fails to help robot navigation in complex dynamic scenes.

The second category is SLAM-MOT (Ballester et al.
2021; Ren et al. 2022), which utilizes moving objects track-
ing ( MOT ) method in an independent thread. (Wang et al.
2007) first developed a system that integrates a filtering-
based SLAM with MOT to support navigation in dynamic
scenes. Later, (Xu et al. 2019) fuses geometric and semantic
information to model and track dynamic objects, leading to
a dense mapping of indoor scenes.

The last yet growing category aims to tightly integrate
both static structures and dynamic objects in a unified frame-
work to achieve a better scene understanding. CubeSLAM
(Yang and Scherer 2019) generated 3D bounding box pro-
posals relying on 2D bounding boxes and vanishing points

to estimate pose. Moreover, this system operates under the
assumption that objects keep a constant velocity within a
predetermined duration and utilizes geometric information
of objects to refine pose estimation. ClusterSLAM (Huang
et al. 2019) is a backend with a prior-free manner to track
and estimate the motion of the dynamic objects. However,
it is not a comprehensive SLAM system and the efficacy is
intricately linked to the quality of data association. Later on,
they developed ClusterVO (Huang et al. 2020) to make a
full SLAM system, which incorporates a probability-based
model for object points to address the challenges of seg-
mentation inaccuracies. ClusterVO achieves commendable
tracking results in both indoor and outdoor settings, but the
accuracy of object motion estimation is rather unpromising.
Recently, VDO-SLAM (Zhang et al. 2020) applied dense
optical flow to optimize the points residing on dynamic ob-
jects and put cameras, objects, and points in a bundle ad-
justment framework. This work yields favorable outcomes,
but its real-time implementation is hindered by the compu-
tational complexity and fails to create a strictly sparse map.

Beyond dynamic SLAM, research on object motion esti-
mation plays a pivotal role in addressing the challenges of
dynamic SLAM. Methods based on optical flow or scene
flow fail to find long-term correspondence and cannot seam-
lessly integrate with feature-based SLAM. Recently, there
has been significant progress in the development of pixel
tracking to estimate the motion of points over extended du-
rations. For the sake of efficiency and simplicity, these meth-
ods typically concentrate on a sparse selection of points
and treat them as statistically independent entities. TAP-Vid
(Doersch et al. 2022) addresses the problem of tracking any
physical point in a video. The method computes a cost vol-
ume independently for each pair of frames, which introduces
a straightforward baseline approach for this task.

In this paper, we delve into the spatiotemporal informa-
tion of dynamic objects and propose a dynamic object-aware
sparse visual SLAM system. It achieves robust ego-motion
and object motion tracking, as well as consistent static and
dynamic mapping in a novel SLAM formulation.

Notation
Coordinate Frames and Points
We denote T k

wc and T k
wo ∈ SE(3) as camera pose and ob-

ject pose in world space W at time k, where k ∈ T is the
set of time steps. The calligraphic capital letters are used
to represent sets of indices. We denote P k

Wi
as the homoge-

neous coordinates of the ith 3D world point at time k, where
P k
Wi

∈ E3 and i ∈ U represents the set of 3D points in world
coordinate W . If an image is captured at time k, the pixel co-
ordinate origin lies in the top left corner of the image, and
the pixel pki ∈ E2 projected from world coordinate is:

pki = π(T k
wcP

k
i ) = KT k

wciP
k
Wi

, (1)
where π(·) is the projection function according to pinhole
camera model and K is the intrinsics matrix of the camera.

Object and 3D Point Motions
Assume a keypoint P k−1

Wi
is detected on the dynamic ob-

ject contour at time k − 1, the pixel match at time k is de-
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termined with the contour tracking and the corresponding
3D point is calculated with depthmap and K, denoted as
P k
Wi

. For contour keypoint, the motion between P k−1
Wi

and
P k
Wi

includes both camera ego-motion and object motion
T k
wo = T k

wc · (T k
oc)

−1. The projection of contour keypoint
from object coordinates to pixel coordinates is:

pki = K(T k
wc)

−1T k
woP

k
Oi

, (2)

where O denotes the object coordinates. A contour keypoint
moves from time k − 1 to time k and the projection from
object coordinates to world coordinates is:

P k
Wi

= T k
woP

k
oi = T k−1

wo T
Ok−1

Ok
P k
Oi

. (3)

Since most of the dynamic objects are rigid in autonomous
driving, cars for example, the contour keypoints remain un-
changed in object coordinates. With this constrain, we have:

P k
Oi

= (T k
wo)

−1P k
Wi

= (T k−1
wo )−1P k−1

Wi
. (4)

Combine equations 3 and 4, the projection of a contour key-
point from object coordinates to world coordinates between
time k − 1 to time k is:

P k
Wi

= T k−1
wo T k−1

o T k
o P

k
Oi

= T k−1
wo T k−1

o T k
o (T

k−1
wo )−1P k−1

Wi
.

(5)

Equation 5 serves as the cornerstone of our dynamic object
motion estimation. It articulates the transformation of the
rigid object pose, solely concerning the points residing on
the object contour. Remarkably, this equation obviates the
requirement to incorporate the object’s 3D pose as a random
variable during the estimation process. In the context of our
paper, we denote Mk

k−1 := T k−1
wo T k−1

o T k
o (T

k−1
wo )−1 as the

motion of object in global reference frame.
In this section, we present a novel contour tracking based

4D SLAM system that effectively captures the movements
of both the camera and dynamic objects, while accurately
reconstructing the static and dynamic elements of the envi-
ronment. A comprehensive illustration of the entire system
is in Fig. 1. Similar to feature-based SLAM, the proposed
system comprises three primary components: image prepro-
cessing, tracking, and mapping. Through the integration of
these components, our proposed system achieves robust es-
timation of camera motion and object motions over a long-
term period, enabling a detailed understanding of the spatial
structures and temporal dynamics of the environment. CTO-
SLAM takes monocular or RGB-D image streams as input.
Specifically, we implement a depthNet (Casser et al. 2019)
to generate depthmap for monocular setup.

Pre-processing
Instance-level semantic segmentation plays a crucial role
in segmenting and identifying potentially movable objects
within a scene. This semantic understanding serves as a
valuable prior in separating points belonging to static and
potentially moving objects. By aligning the masks with in-
tersection over union ( IoU ), the system is able to determine
which instance represents the truly dynamic object, enhanc-
ing our ability to track and monitor each object’s motion.

Furthermore, the masks provide a precise boundary delin-
eating the object’s body-frame. It ensures robust tracking of
contour keypoints, allowing for more accurate and reliable
tracking results.

Ego-motion Tracking
The core contribution is the proposed novel tracking method
that can robustly track and estimate the motion of both static
background and dynamic objects simultaneously. To sum
up, there are two different tracking threads in this module.
One is the ego-motion tracking thread with sub-modules
of dense prediction, feature detection and pose estimation.
The other is the object motion tracking thread including
sub-modules of dynamic object pose initialization, contour
tracking and object motion estimation. This part first ex-
plains the camera tracking thread in detail.

Dense prediction The accuracy of camera pose estima-
tion is essential for the object pose estimation according to
equation 5. To achieve a more accurate camera pose estima-
tion, we first modify a dense optical flow based pose estima-
tion network called DROID-SLAM (Teed and Deng 2021)
to generate the coarse pose guess after pre-processing. The
coarse guess performs as prior which is then optimized in
feature-based SLAM bundle adjustment.

Camera Pose Estimation Our system develops upon the
widely-used ORB-SLAM II (Mur-Artal and Tardós 2017).
After we carefully segment the absolute dynamic object, the
camera pose guess is refined from all detected 3D-2D static
point correspondences. The rest process including tracking
and optimization is similar to ORB-SLAM II which we
present the details in supplementary material.

Mapping
The mapping thread first builds a global map that maintains
the poses and keypoints of both static and dynamic struc-
tures. The local map is extracted from the global map with a
sliding window. Both the global and local maps are updated
via a batch optimization process. Moreover, the maintenance
of the global map is depicted in Fig. 1 through the blue ar-
rows. It links the global map with various components in-
cluding camera pose, dynamic poses, static keypoints and
contour keypoints from the tracking thread. With the robot
exploring dynamic environment, the map keeps updating
with time and creates a 4D map.

Object Motion Tracking
In this part, we provide a comprehensive introduction for the
object motion tracking thread which includes three modules,
dynamic pose initialization, object contour tracking and dy-
namic pose estimation. Firstly, dynamic object pose initial-
ization estimates the 6DoF pose when it is first seen, which
provides a robust foundation for the following tracking pro-
cess. Then, contour tracking is applied to track contour key-
points. We extract keypoints associated with semantic infor-
mation, light and wheel for example, in the edge of dynamic
objects. Next, the pixel tracking method is applied to estab-
lish a robust and effective spatiotemporal association in 2D
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Figure 1: Overview of the proposed CTO-SLAM. This system first performs instance segmentation and locates the real dynamic
objects. The static background is first used to estimate a prior by employing a PoseNet. The camera pose prior is then refined
by tracking the static keypoints. Object motions are initialized when they are first observed and then the incremental poses are
estimated from contour tracking. Finally, object poses are optimized in a novel contour tracking based bundle adjustment. The
system outputs camera poses, static structure, tracks of dynamic objects, and estimates of their motions over time.

image plane over a long period. Notably, CTO-SLAM sys-
tem is the first to apply pixel tracking in SLAM area based
on our current knowledge. Finally, a novel contour tracking
based bundle adjustment is designed to optimize the pose
from the above two modules within a sliding window.

Dynamic Pose Initialization
Dynamic object pose initialization is crucial for accurately
positioning objects in the global map when they are first
observed. Most of the existing methods initialize dynamic
object poses with learning-based ways. However, learning-
based ways are limited in generation and hard to adapt to
complex autonomous driving scenarios. Hence, we propose
object pose initialization to robustly estimate a 6DoF pose
when the dynamic object is first seen.

The pipeline of object pose initialization is depicted in
Fig. 2. Since almost all the dynamic objects in autonomous
driving scenarios lie on the ground, it is reasonable to as-
sign pitch and roll angle to zero. Then, the mission for the
dynamic object pose initialization is to find the best yaw an-
gle. Thus, we first fit the ground using RANSAC ground
fitting algorithm and generate the ground equation, denoted
as n1x + n2y + n3z + d = 0, where n⃗ = [n1, n2, n3] is
the normal vector of the fitted plane and d is the distance.
With the ground equation, we adjust the current camera pose
to ensure that the ground is horizontally aligned with world
coordinates and has a 0 height. While the ground is estab-
lished, we first project the dynamic object’s mask onto world
coordinates and sample the yaw angle discretely across a
two-dimensional projection plane, ranging from 0 to 180 de-
grees. For each sample, a bounding box is calculated with
minimal area that encompasses the entire 2D projection re-

Feature
Projection

Ground 
Fitting

Yaw 
Sampling Pose 

Generation

Yaw 
Estimation

Figure 2: Pipeline of dynamic object pose initialization.

gion. This bounding box is then utilized as the top view of
the cuboid structure, enabling the estimation of the cuboid’s
parameters [tx, ty, yaw, l, w]. Subsequently, the cuboid is
oriented to enclose all 3D points along the yaw direction,
thereby determining the remaining two parameters [tz, h].
Finally, the initial pose of dynamic object is generated.

Dynamic Object Tracker
Mask Propagation Strategies Ideally, for each detected
object in frame k, the labels of all its points should be
aligned with the labels of their correspondences in frame
k − 1. However, the association is affected by the noise,
image boundaries and occlusions. To overcome this, we as-
sign all the points with the label that appears most in their
correspondences and propagate the masks if they surpass a
predetermined threshold of 2D IoU. Moreover, if the most
frequent label in the last frame is 0, it means that the object
starts to move, appears in the scene at the boundary, or reap-
pears from occlusion. In this case, the object is assigned a
new label and re-detect contour points for tracking.

Object Motion Estimation Objects normally appear as
small portions in the scene, which is hard to get sufficient
sparse features for robust and accurate tracking with feature-
based SLAM system. Thanks to the proposed contour track-
ing, CTO-SLAM is able to set a robust long-term spatiotem-
poral association and hence track the contour keypoints with
a high accuracy. The pipeline of our dynamic object motion
estimation is depicted as Fig. 3. Different from camera pose
estimation, contour tracking is first utilized to track multi-
objects with a small amount number of contour keypoints. A

Pose
Initialization

Contour
Tracking

Semantic 
points

Tracking/
Matching

PnP 
Solver

Bundle 
Adjustment

Periodically
Local Bundle 
Adjustment

Figure 3: Pipeline of our dynamic object motion estimation.
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simple but effective PnP ( Perspective-n-Point ) algorithm
(Lu 2018) is then applied to give an initial guess of the object
motion. PnP is a classical way to solve the pose when 2D-
3D point correspondences are known between consecutive
frames. Specifically, P3P only requires three 2D-3D corre-
spondences to calculate the motion. Benefiting from the ef-
fective spatiotemporal association of our contour tracking,
the estimation of dynamic object motion requires a min-
imum of four 2D-3D correspondences, as an extra corre-
spondence to verify the calculated pose. In our paper, we
uniformly extract ten contour keypoints for an object and
make a robust guess with RANSAC. Moreover, a cost func-
tion based on re-projection error is constructed to optimize
the object motion estimation. When the initial guess is gen-
erated from PnP Solver, the re-projection error of a contour
keypoint in frame Ik is:

ei(Ok−1
TOk

) = p̃ki − π(T k−1
wo (Ok−1

TOk
)P k

Oi
)

= p̃ki − π(T k
woP

k
Oi
),

(6)

where T k
wo ∈ SE(3). Parameterize Oξk ∈ se(3) with Lie-

algebra. The least squares cost function is expressed as:

Oξ∗∨k = argmin
Oξ∗∨k

m∑
i

H(·)(e⊤i (Oξk)Σ−1
ik ei(

Oξk)), (7)

where m is the number of contour keypoint correspon-
dences. The motion Mk

k−1 can be recovered afterwards. Due
to occlusion, the number of contour points gradually de-
creases and leads to tracking failure. To ensure the robust-
ness of P3P, new contour keypoints are detected and added
to the map when previous contour keypoints are occluded.

Object Motion Optimization SLAM problem is usually
transformed into a factor graph optimization, aiming to en-
hance the accuracy of both camera and object motions. In
the object tracking thread, we design a contour tracking
based factor graph framework to further refine the object
poses over a period of time. To represent the dynamic scene,
the camera pose is first fixed and object motion is opti-
mized with a sliding window. Besides, the object motion
initialization algorithm is periodically called to correct and
align the ground over every 5 keyframes. Finally, all contour
keypoints, camera poses, object poses and sampling-based
poses are integrated to form a factor graph and optimized
within it. Because object poses generated by heuristic meth-
ods typically exhibit higher accuracy (Henein et al. 2020),
we increase the weight of sampling-based poses in factor
graph for better optimization.

Experiments
To assess the performance of CTO-SLAM, we first evaluate
the ego-motion estimation process, then analyze the perfor-
mance of multi-object tracking and finally discuss the limita-
tion of jointly optimizing ego-motion and dynamic motion.
The experiment is performed on two datasets: Virtual KITTI
dataset ( VKITTI ) (Cabon, Murray, and Humenberger
2020) and KITTI Tracking dataset (Geiger et al. 2013). Both
datasets are for outdoor scenarios and rich in dynamic ob-
jects, lighting changes and occlusions. To gauge the effec-
tiveness of our CTO-SLAM, we compare its results with

some sota methods, including DynaSLAM (Bescos et al.
2018), ORB-SLAM II (Mur-Artal and Tardós 2017) and Dy-
naSLAM II (Bescos et al. 2021), allowing us to gain insights
into the strengths and weaknesses of CTO-SLAM with these
existing approaches. To address the non-deterministic na-
ture of the proposed system, particularly in processes like
RANSAC, each sequence is executed five times, and the me-
dian is taken as the result.

Datasets
The KITTI Tracking dataset serves as a valuable resource
for evaluating CTO-SLAM. The VKITTI dataset is derived
from the KITTI tracking benchmark. Because the lighting
intensity remains relatively constant in the VKITTI dataset
and there is an accurate distinction between static back-
grounds and dynamic objects, we utilize this dataset to ex-
plore the effectiveness of jointly optimizing camera poses
and dynamic object poses. All these two datasets provide
groundtruth for both camera motion and dynamic object mo-
tions. Moreover, for the error metric, it is the same with
(Sturm et al. 2012).

Ego-Motion Estimation
We test our dense then sparse method on KITTI Tracking
datasets. Fig. 4 provides the qualitative evaluation of KITTI
Tracking datasets and Tab. 1 provides the quantitative eval-
uation. In addition, we compare our method with the sota
feature-based SLAM system including ORB-SLAM2, Dy-
naSLAM and DynaSLAM II in ego-motion estimation. Re-
sults of DynaSLAM and DynaSLAM II are obtained di-
rectly from their paper. From the result, it demonstrates that
the proposed CTO-SLAM gains competitive accuracy over
the compared methods. Specifically, our CTO-SLAM shows
an average accuracy improvement of 20% compared to the
three methods in relative pose error ( RPE ). For absolute
trajectory error ( ATE ), CTO-SLAM has an average im-
provement of 55% compared with ORB-SLAM2, 28% with
DynaSLAM and 32% with DynaSLAM II respectively.

Dynamic Object Motion Estimation
We present the evaluation of our proposed dynamic object
motion estimation. The quantitative results are shown in Tab.
2. Due to the excessively large errors in CubeSLAM, which
render it devoid of comparative value, we solely choose Dy-
naSLAM II to compare with. From the result, it is evident
that the CTO-SLAM exhibits an average accuracy improve-
ment of 33% compared to DynaSLAM II in ATE, indicating
that our CTO-SLAM system performs better than the state-
of-the-art SLAM system in dynamic environments.

Ablation Study
Contour Tracking Compared to traditional methods that
track appearance-based feature points, pixel tracking meth-
ods excel in finding long-term spatiotemporal associations
and recovering from occlusion. To illustrate the exceptional
accuracy of matching dynamic points with contour tracking,
we compare the keypoint tracking trajectories over an ex-
tended time in 2D image plane with SIFT (Ng and Henikoff
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Method ORB-SLAM2 DynaSLAM DynaSLAM II CTO-SLAM

Sequence RPE(m/s) ATE(m) RPE(m/s) ATE(m) RPE(m/s) ATE(m) RPE(m/s) ATE(m)

00 0.04 1.32 0.04 1.35 0.04 1.29 0.03 1.18
01 0.05 1.95 0.05 2.42 0.05 2.31 0.05 1.20
02 0.04 0.95 0.04 1.04 0.04 0.91 0.04 0.83
03 0.07 0.74 0.07 0.78 0.06 0.69 0.04 0.48
04 0.07 1.44 0.07 1.52 0.07 1.42 0.07 1.08
05 0.06 1.23 0.06 1.22 0.06 1.34 0.02 0.10
06 0.02 0.19 0.02 0.19 0.02 0.19 0.02 0.17
07 0.05 2.47 0.05 2.69 0.05 3.10 0.05 1.52
08 0.08 1.40 0.08 1.29 0.10 1.68 0.07 1.18
09 0.06 4.00 0.06 3.55 0.06 5.02 0.06 3.31
10 0.07 1.68 0.07 1.84 0.07 1.30 0.08 2.11
11 0.04 0.97 0.04 1.05 0.04 1.03 0.04 0.86
13 0.04 1.18 0.04 1.18 0.04 1.10 0.05 1.34
14 0.03 0.13 0.03 0.13 0.03 0.12 0.04 0.23
18 0.05 0.89 0.05 1.00 0.05 1.09 0.05 0.70
19 0.05 2.31 0.05 2.35 0.05 2.25 0.02 0.31
20 0.11 16.80 0.05 1.10 0.07 1.36 0.06 1.19

Average 0.05 2.33 0.05 1.45 0.05 1.54 0.04 1.05

Table 1: Comparison versus ORB-SLAM II, DynaSLAM and DynaSLAM II for ego-motion estimation on KITTI Tracking
datasets. Bold numbers indicate the better result.
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Figure 4: Qualitative results of sequence from KITTI Tracking dataset in ego-motion estimation. The gray dashed line represents
groundtruth and the blue line represents the trajectory estimated from the proposed dense then sparse method.
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Sequence ObjectId (class) DynaSLAM II Ours

0003 1 (car) 0.69 0.47

0011 0 (car) 1.05 0.66
35 (car) 1.25 0.30

0018 3 (car) 1.13 0.93
0019 63 (car) 0.86 0.37

0020
0 (car) 0.56 0.42

12 (car) 1.18 1.17
122 (car) 0.87 0.80

Average 0.95 0.64

Table 2: Evaluation of dynamic object motion on KITTI
Tracking datasets. Bold numbers indicate the better results.

2003) and ORB (Rublee et al. 2011) which are widely used
in keypoints matching. The qualitative result is depicted in
Fig. 5. Upon analyzing the trajectories with multi-object
tracking, it is evident that the SIFT and ORB encounter cer-
tain incorrect matches, especially with occlusion ( black car
in the back ). This impacts significantly on the accuracy of
motion estimation. However, the trajectory of contour track-
ing based matches exhibits a higher level of accuracy. These
trajectories closely align with the actual motion of dynamic
objects within the 2D image plane.

Limitation of Bundle Adjustment with Objects Most
SLAM systems assume that ego-motion estimation could
benefit from jointly optimizing static background and dy-

SIFT

Contour Tracking

ORB

Figure 5: Trajectories of the multi-object tracking with dif-
ferent methods. The top comes from ORB, the middle comes
from SIFT and the bottom comes from contour tracking.

Metric RPE(m/s) ATE(m)

Sequence mean rmse mean rmse

01-Full 0.00160 0.00210 0.11860 0.13200
02-Full 0.00040 0.00061 0.00700 0.00930
06-Full 0.00500 0.00673 0.03660 0.04700
18-Full 0.00200 0.00280 0.08838 0.10220

01-BK 0.00077 0.00099 0.05340 0.05890
02-BK 0.00046 0.00072 0.00945 0.01220
06-BK 0.00575 0.00719 0.03231 0.03498
18-BK 0.00222 0.00312 0.09625 0.11154

01-IN 0.00033 0.00039 0.01600 0.00175
02-IN 0.00035 0.00057 0.00685 0.00893
06-IN 0.00015 0.00018 0.00058 0.00092
18-IN 0.00185 0.00258 0.08139 0.09390

Table 3: Results of ego-motion estimation on VKITTI
datasets with respect to different richness of static structures.
Bold numbers indicate the better results.

namic objects with bundle adjustment. However, the opti-
mized camera ego-motion is highly related to the accuracy
of object motion. Due to the dynamic objects have more
complex motion and are hard to establish long-term data as-
sociation, the accuracy of dynamic motion estimation with
feature-based methods is rather lower than that of camera
pose estimation. Thus, the lower accuracy of pose estima-
tion for moving objects will unavoidably degrade the accu-
racy of camera pose estimation when bundle adjustment op-
timization is applied. In this paper, we design several experi-
ments to explore the limitations of dynamic objects. The ex-
perimental settings are categorized based on the richness of
static structures, ranging from minimal to maximal. Specif-
ically, we utilized images that contain both foreground and
background elements ( Full ), images that solely consist of
static backgrounds ( BK ), and images where dynamic fore-
ground objects are inpainted into static backgrounds ( IN )
using E2FGVI (Li et al. 2022). The quantity results of cam-
era motion estimation are shown in Tab. 3. The experimental
results indicate that as the static structure is enriched, the ac-
curacy of camera motion estimation improves significantly.

Conclusion
We propose an object-level 4D SLAM system incorporating
a unique method for tracking object contours and optimizing
among cameras, objects, and 3D points. The foundational
contour tracking module establishes robust long-term spa-
tiotemporal associations. It excels in scenarios with high dy-
namics and effectively complements feature-based SLAM
systems ( ORB-SLAM II ). The introduced contour track-
ing based optimization framework tightly integrates cam-
eras, objects, static keypoints and contour keypoints, achiev-
ing high-precision localization of dynamic objects. Experi-
ments reveal the exemplary accuracy of CTO-SLAM in both
camera ego-motion and object motion estimation.

Acknowledgments
This work was supported by National Key R&D Program
of China under Grant 2020YFA0711400, National Natural

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10329



Science Foundation of China under Grants 61931014 and
U21A20452, the Fundamental Research Funds for the Cen-
tral Universities under No. WK3490000006, and the Key-
Area Research and Development Program of Guangdong
Province under Grant 2018B010115002.

References
Alcantarilla, P. F.; Yebes, J. J.; Almazán, J.; and Bergasa,
L. M. 2012. On combining visual SLAM and dense scene
flow to increase the robustness of localization and mapping
in dynamic environments. In 2012 IEEE International Con-
ference on Robotics and Automation, 1290–1297. IEEE.
Ballester, I.; Fontán, A.; Civera, J.; Strobl, K. H.; and
Triebel, R. 2021. DOT: Dynamic object tracking for visual
SLAM. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), 11705–11711. IEEE.
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