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Abstract

Multi-agent trajectory prediction is crucial for various practi-
cal applications, spurring the construction of many large-scale
trajectory datasets, including vehicles and pedestrians. How-
ever, discrepancies exist among datasets due to external factors
and data acquisition strategies. External factors include geo-
graphical differences and driving styles, while data acquisi-
tion strategies include data acquisition rate, history/prediction
length, and detector/tracker error. Consequently, the proficient
performance of models trained on large-scale datasets has lim-
ited transferability on other small-size datasets, bounding the
utilization of existing large-scale datasets. To address this lim-
itation, we propose a method based on continuous and stochas-
tic representations of Neural Stochastic Differential Equations
(NSDE) for alleviating discrepancies due to data acquisition
strategy. We utilize the benefits of continuous representation
for handling arbitrary time steps and the use of stochastic rep-
resentation for handling detector/tracker errors. Additionally,
we propose a dataset-specific diffusion network and its train-
ing framework to handle dataset-specific detection/tracking
errors. The effectiveness of our method is validated against
state-of-the-art trajectory prediction models on the popular
benchmark datasets: nuScenes, Argoverse, Lyft, INTERAC-
TION, and Waymo Open Motion Dataset (WOMD). Improve-
ment in performance gain on various source and target dataset
configurations shows the generalized competence of our ap-
proach in addressing cross-dataset discrepancies.

Introduction
Trajectory prediction stands as one of the most crucial chal-
lenges to corroborate the safety of autonomous driving sys-
tems. Its objective of predicting future trajectories allows au-
tonomous agents to respond optimally to actively changing
environments. As a response, a number of large-scale tra-
jectory datasets such as nuScenes, Argoverse, WOMD, Lyft,
INTERACTION, and TrajNet++ have been established (Cae-
sar et al. 2020; Chang et al. 2019; Zhan et al. 2019; Houston
et al. 2021; Ettinger et al. 2021; Kothari, Kreiss, and Alahi
2021) to pursue a data-driven approach towards constructing
a reliable motion forecasting system (Li et al. 2021; Tang
et al. 2021; Bae and Jeon 2023; Wu et al. 2023; Ge, Song,
and Huang 2023; Shi et al. 2022; Liang et al. 2021).
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(a) nuScenes (b) Argoverse (c) WOMD

Figure 1: Unique uncertainty manifested across each trajec-
tory prediction dataset due to discrepancy in data acquisition
strategy. The red dotted line and darkgreen solid line repre-
sent past and future trajectories. The two main sources of dis-
crepancy are time step configuration difference and tracklet
noise. Tracklet errors are uniquely shown as lateral position
error in nuScenes, ID switch in Argoverse, and longitudinal
position error in WOMD, all of which our framework han-
dles in a dataset-wise exclusive manner.

History
(s)

Prediction
horizon (s)

Frequency
(Hz)

Training
size

nuScenes 2 6 2 30k
Argoverse 2 3 10 200k
WOMD 1 8 10 500k
TrajNet++ 3.2 4.8 2.5 250k

Table 1: Various temporal configurations during data acqui-
sition across trajectory datasets. These discrepancies - 1)
past/future time length and 2) data acquisition rate - severely
limit cross-dataset transferability.

One well-known issue with data-driven models is their
limited performance when discrepancies in data distribu-
tions are manifested between training and test data. There-
fore, to construct a trajectory prediction system on a specific
environment, the optimal way is to collect data from that
environment. However, recent models require abundant data
for optimal performance, which require a cumbersome pro-
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cess of acquiring such an amount of data. In that sense,
adequate utilization of existing large-scale datasets grants an
advantage in circumventing this hurdle. Recent approaches
have attempted to overcome such challenge by proposing
domain adaptation (Xu et al. 2022; Wang et al. 2022b) or
increasing model generalizability via multi-source dataset
training (Wang et al. 2022a). Compared to these efforts
in handling domain gaps, the dataset-specific discrepancies
caused by disparity between each data acquisition strategy
have been excluded from being considered as a domain gap
and have been less visited. Our work shows that adequate
handling of these dataset-specific discrepancies unlocks a
collective potential from cross-dataset motion patterns.

In doing so, we focus on two representative distinctions
across datasets. First is the time step configuration difference,
including observed/predicted time lengths and sampling fre-
quencies as shown in Tab. 1. This results in the discrepancy
of feature manifold of input/output trajectory in the feature
space. For instance, a model trained on the WOMD dataset,
which is to predict 8 seconds of future from 1 second of
past with 10Hz, learns a mapping function between the past
1-second motion feature and the future 8-second motion fea-
ture. However, when evaluating this model on the nuScenes
dataset which involves predicting 6 seconds into the future
from 2 seconds of observed data in 2Hz, the model struggles
to map past trajectory features to future ones accurately.

Secondly, trajectory datasets are obtained by detecting and
tracking surrounding agents from the sensor data taken from
the ego-agent. As a result, the tracked results (tracklets) are
prone to both sensor noise and also inaccurate detection and
tracking results (Saleh et al. 2021; Park and Park 2020), and
it adversely affects prediction performance (Weng, Ivanovic,
and Pavone 2022). Moreover, each dataset manifests unique
tendencies of tracklet errors. It is because they use different
types of sensors and detector/tracker configurations in the
acquisition process. Their unique tendencies of tracklet er-
rors are shown in Fig. 1. The tracklet noise is also influenced
by the time step configuration, for different sampling rates
exhibit unique noise patterns. Namely, tracklet noise tends to
be more severe with smaller Δ𝑡, as shown in Fig. 1, where
Argoverse has more severe tracklet noise than nuScenes with
the same past length.

To address these disparities holistically, we adapt the con-
tinuous and stochastic representation of Neural Stochastic
Differential Equation (NSDE). Rather than dealing with time
series data discretely as conventional approaches, we lever-
age NSDE to handle time series data in a continuous space.
Additionally, we show the capability of stochastic represen-
tation in handling the tracklet errors. Specifically, we propose
a dataset-specific diffusion network of NSDE and its training
method to enhance robustness against dataset-specific track-
let errors. Our contributions are summarized as follows:

• We utilize a continuous representation of NSDE for trajec-
tory prediction to diminish internal discrepancies across
datasets collected in arbitrary temporal configurations.

• We propose a framework of dataset-specific diffusion net-
work and its training method to handle unique tracklet
errors across datasets.

• The proposed methods are validated against state-of-the-
art prediction methods including regression-based and
goal-conditioned method, the two mainstreams of trajec-
tory prediction methodology.

• We validate our methods across five datasets: nuScenes,
Argoverse, WOMD, Lyft, and INTERACTION, and show
consistent improvement in prediction accuracy with state-
of-the-art prediction models.

Related Works
Trajectory Prediction
Trajectory prediction involves predicting the future paths of
road agents based on observed past trajectories and environ-
mental information, such as HD maps (Wang et al. 2023; Park
et al. 2022).With its increasing interest, a number of large-
scale trajectory datasets have been established (Kothari,
Kreiss, and Alahi 2021; Malinin et al. 2021). These datasets
acquire trajectories by detecting and tracking surrounding
agents using sensor input installed on ego-agent. HD map in-
formation can be obtained from pre-built HD maps or derived
from sensor data (Hu et al. 2023). The introduction of large-
scale datasets has resulted in improved performance of data-
driven trajectory prediction models. Various methods have
been proposed to capture agent interactions or better relation-
ship between HD maps (Meng et al. 2022; Salzmann et al.
2020). The methodology for motion forecasting based on
these datasets’ patterns could be broadly classified into two
categories: regression-based and goal prediction-based mod-
els. Regression-based models predict the entire trajectory at
once, while goal prediction-based models initially predict the
endpoints, followed by conditional generation of motion path
for each end points. However, despite the rapid advancements
in the past few years, prediction in cross-domain scenarios
remains relatively underexplored, as all these methods have
been individually trained and evaluated on each pre-existing
large-scale dataset.

Cross-Domain Trajectory Prediction
Recent research has highlighted the presence of domain dis-
crepancies among various trajectory datasets (Gilles et al.
2022). Analyzing datasets such as nuScenes, Argoverse, In-
teraction, and Shift, it has been confirmed that transferability
between datasets is limited. From a general domain adapta-
tion perspective, approaches have been proposed to address
such discrepancies (Xu et al. 2022; Wang et al. 2022a,b).
Besides, trajectory datasets exhibit discrepancies due to var-
ious factors. For instance, geographical (external) factors can
lead to variations in driving environments and agent density,
resulting in different driving patterns. To tackle such discrep-
ancies related to road structure curvature, one method (Ye,
Zhou, and Wang 2023) proposed a domain normalization
technique using Frenet coordinates. However, the methods
mentioned above do not consider discrepancies arising from
differenct data acquisition strategies including varing time
step configuration and tracklet errors. While these domain
adaptation papers all set up cross-domain experiments, they
restricted the time steps to an overlap of all dataset time steps.
For example, in (Gilles et al. 2022), they used a common time
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step configuration of 1 second past and 3 seconds future,
which is shared by the datasets. Additionally, although they
acknowledged that detection/tracking errors during dataset
collection could affect transferability (Ivanovic et al. 2022;
Weng et al. 2022), the different tendencies of error in cross-
domain environments are yet to be addressed.

Neural Differential Equation (NDE)
The proposal of Neural Ordinary Differential Equations
(NODE) (Chen et al. 2018) has made significant strides in
applying continuous representation to time series data, mak-
ing it intuitive for various tasks like predicting continuous
functions (Anumasa and Srijith 2022; Norcliffe et al. 2020)
or other applications that need continuous time series repre-
sentation (Cao et al. 2023; Park et al. 2021). Neural ODEs
have been employed in encoder-decoder structures and have
been used to represent the latent space of entire time series
data in continuous form (Qian, Kacprzyk, and van der Schaar
2022). Therefore, motion forecasting has been deemed as an
epitome of a pattern recognition task solvable via NODEs
for its temporally coordinated time series structure. The first
work to utilize NODEs for motion forecasting was social
ODE (Wen, Wang, and Metaxas 2022) which applied Neu-
ral ODEs to pedestrian trajectory prediction to enable in-
teraction modeling. Moreover, the MTP-GO (Westny et al.
2023) constructed a graph-based NODE model for trajectory
prediction. Nevertheless, these prior works have not fully
leveraged the continuous characteristics of neural ODEs and
lack the incorporation of stochastic nature of NSDE model-
ing, thereby our method substantially differs from previous
frameworks based on NODEs.

Method
Preliminaries
Problem Definition Given 𝑁 agents, a position of a road
agent 𝑛 ∈ {1, ..., 𝑁} at a specific time 𝑡 can be denoted as x𝑛𝑡
for the past, and y𝑛𝑡 for the future. In general, trajectory pre-
diction aims to predict future trajectory Y = { y𝑛

Δ𝑡
, ..., y𝑛

𝑇𝑓
}

from map information 𝑀 (optional) and observed history
trajectory X = { x𝑛−𝑇𝑝

, ..., x𝑛−Δ𝑡 , x
𝑛
0 } with fixed time step Δ𝑡,

history length 𝑇𝑝 , and prediction horizon 𝑇 𝑓 . In our problem
definition, we assume that we have large-scale source dataset
{X𝑠𝑟 ,Y𝑠𝑟 } and small-scale target dataset

{
X𝑡𝑔,Y𝑡𝑔

}
. Be-

cause each dataset has own time step configuration (𝑇𝑝 , 𝑇 𝑓 ,
andΔ𝑡), we design a model that can handle arbitrary time-step
sampled trajectory Y =

{
y𝑛𝑡

}
𝑡∈ (0,𝑇𝐹 ] and X =

{
x𝑛𝑡

}
𝑡∈[−𝑇𝑃 ,0]

where 𝑇𝐹 and 𝑇𝑃 are maximum values of prediction horizon
and history length across datasets. From now, we omit the
superscript 𝑛 for simplicity.

Neural Stochastic Differential Equation Neural Ordi-
nary Differential Equation (NODE) is an approach that mod-
els the derivative of hidden state h𝑡 employing neural net-
works to model the transition of features over time. Neural
Stochastic Differential Equation (NSDE) introduces stochas-
ticity by incorporating a term resembling Brownian motion
into the transition of the hidden state (Li et al. 2020; Tzen

and Raginsky 2019). This can be represented as follows:

𝑑h𝑡 = 𝑓 (h𝑡 , 𝑡)𝑑𝑡 + 𝑔(h𝑡 , 𝑡)𝑑𝑊𝑡

Here, 𝑊 represents the standard Brownian motion, while 𝑓

and 𝑔 respectively denote the drift and diffusion functions and
are parametrized by neural networks. The stochastic noise
term acts as a regularizer, mitigating perturbations present in
the data. With the above derivatives, we can get a hidden state
at a specific time t with initial value problem (IVP) solvers.

Thanks to its continuous nature across time, NDE is known
as effective for handling irregularly sampled time series
data (Anumasa and Srijith 2022; Kidger et al. 2020). There-
fore, we use NSDE to encode and decode temporal trajec-
tory, which is originally performed with discrete networks
like transformer (Vaswani et al. 2017), or LSTM (Hochreiter
and Schmidhuber 1997) in previous methods.

Proposed Framework
ModelingTime-WiseContinuous Latent Following con-
ventions in both NDE and trajectory prediction, our model
follows an encoder-decoder (sequence-to-sequence) struc-
ture as shown in Fig. 2. At first, we encode past trajectories
of agents with SDE-GRU. We adopt ODE-RNN structure to
handle incoming irregularly sampled data, where ODE is re-
placed with SDE. When the input positions is not observed at
a time stamp, the latent is continuously translated via NSDE.
If the agent position at time t (x𝑡 ) is observed, the latent
vector (h𝑡 ) is updated using encoded incoming data (hx𝑡 ) via
GRU following (De Brouwer et al. 2019; Rubanova, Chen,
and Duvenaud 2019). How to obtain next step latent from
current input and latent is as:

𝑑h𝑡 = 𝑓 (h𝑡 , 𝑡)𝑑𝑡 + 𝑔(h𝑡 , 𝑡)𝑑𝑊𝑡

h′𝑡+Δ𝑡 = h𝑡 + 𝑓 (h𝑡 , 𝑡)Δ𝑡 + 𝑔(h𝑡 , 𝑡)
√
Δ𝑡𝑊𝑡

h𝑡+Δ𝑡 = GRU(h′𝑡+Δ𝑡 , hx𝑡 )
(1)

Here, GRU cell is represented as:

r𝑡 = 𝜎(𝑊𝑟 (h′𝑡+Δ𝑡 ⊕ hx𝑡 )) + b𝑟 )
z𝑡 = 𝜎(𝑊𝑧 (h′𝑡+Δ𝑡 ⊕ hx𝑡 )) + b𝑧)
g𝑡 = tanh(𝑊𝑔 ((r𝑡 ⊙ h′𝑡+Δ𝑡 ) ⊕ hx𝑡 )) + b𝑔)
h𝑡+Δ𝑡 = z𝑡 ⊙ h𝑡 + (1 − z𝑡 ) ⊙ g𝑡

(2)

where r𝑡 , z𝑡 , g𝑡 correspond to reset gate, update gate, update
vector and ⊕, ⊙ correspond to concatenation, element-wise
product. Here, we omit the superscript past for Eqs. 1, 2 for
simplicity. Then, integrating latent feature from −𝑇𝑝 to 0, we
get a latent feature of each agent at current time step (𝑡 = 0):

h𝑝𝑎𝑠𝑡

0 =

∫ 0

−𝑇𝑃
GRU(SDEsolve(h𝑝𝑎𝑠𝑡

𝑡 , 𝑡), hx𝑡 )𝑑𝑡

h 𝑓 𝑢𝑡

0 = E(h𝑝𝑎𝑠𝑡

0 ,M)
(3)

After encoding past trajectory as a single feature per agent,
remaining part of encoder E is performed such as encoding
with map information M.

In case of decoder, it has different network design depend-
ing on whether the base model is regression-based model or
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Figure 2: Overall network architecture of the proposed SDE-GRU-based encoder-decoder model. Agent features are extracted
from the input trajectory for all observed time steps hx𝑡 . SDE-GRU encoder then integrates the learnable parameter ℎ𝑝𝑎𝑠𝑡

−𝑇𝑝
from

−𝑇𝑝 to 0 along with feature updates via NSDE at unobserved time steps and GRU gating at observed past trajectory time steps.
Followed by an additional encoding operation with encoder E, the SDE decoder similarly integrates the encoded feature from
time 0 to 𝑇𝐹 . MLP decoder D then predicts the corresponding future motion.

goal-conditioned model. Unlike the past feature which needs
to be updated as data coming as t passes, there is no incom-
ing data for future decoding. Therefore, in regression-based
model, hidden state at future time step can be obtained by
vanilla SDE solver without GRU update. However, in case
of goal-conditioned method, we propose a multi-scale-goal
updating method as depicted in the right part of Fig 2. The
goal-conditioned decoder predicts trajectory both from h0
and goal feature. Goal is predicted at the last time step for
each dataset configuration: GGG𝑇1

𝑓
, GGG𝑇2

𝑓
. Here, 𝑇1

𝑓
is a time step

which is smaller one between {𝑇 𝑠𝑟
𝑓
, 𝑇

𝑡𝑔

𝑓
}, and𝑇2

𝑓
is the larger

one which is identical with𝑇𝐹 . To adopt this multi-scale goal-
conditioned, we additionally utilize SDE-RNN which can be
represented as:

h𝑡∈ (0,𝑇𝐹 ] =


SDEsolve(GRU(h0,GGG𝑇1

𝑓
)) 0 < 𝑡 ≤ 𝑇1

𝑓

SDEsolve(GRU(h𝑇1
𝑓
,GGG𝑇2

𝑓
)) 𝑇1

𝑓 < 𝑡 ≤ 𝑇𝐹

(4)
Finally, a mlp decoder D is utilized to decode future position
Ŷ = {x𝑡 }𝑡∈ (0,𝑇𝐹 ] from hidden state {h𝑡 }𝑡∈ (0,𝑇𝐹 ] .

HandlingTrackletUncertainty As elaborated in previous
sections, the tendencies of tracklet error are unique across
datasets. Although the NSDE is known to be robust to data
perturbation, it is troublesome to account for each and every
uncertainty tendency at once. With this motivation, we adopt
the concept of SDE-Net (Kong, Sun, and Zhang 2020). The
SDE-Net utilizes both in-distribution data (ind) and out-of-
distribution data (ood) to train the diffusion network. They

accomplish this by training the diffusion net to assign 0 to
ind and 1 to ood in the SDE derivative computation. With
this approach, the model accomplishes two things: 1. Uncer-
tainty measurement of previously unseen ood data, 2. Larger
weighting of brownian motion term 𝑑𝑊𝑡 for uncertain sam-
ples when solving SDE. Its objective is the following:

min
𝜽𝑔

Eh𝑡∼𝑃ind𝑔 (h𝑡 , 𝑡) + max
𝜽𝑔

Eh̃𝑡∼𝑃ood
𝑔
(
h̃𝑡 , 𝑡

)
(5)

Compared to the SDE-Net, our method differs in two as-
pects. Firstly, we focus on detecting and utilizing trajectory
samples with tracklet error within a dataset, rather than ad-
dressing cross-dataset distribution. To this end, we define ind
as a clean trajectory and ood as trajectory containing tracklet
error. During training, the ego-agent’s trajectory is used for
clean data since it is obtained from GPS and localization
information, thus free from tracklet errors originating from
occlusion or ID switch. For ood data, Gaussian noise is added
to the ego-agent’s trajectory. It is based on the fact that most
multi-object trackers are based on recursive Bayesian filters,
so they produce Gaussian state uncertainty (Ivanovic et al.
2022). This way, the encoder NSDE is trained to assign larger
weight on Brownian motion term 𝑑𝑊𝑡 for noisy trajectory
data, and smaller weight for clean data. Since the Browninan
motion term of NSDE is known to act as a regularizer (Liu
et al. 2019), our method fosters robustness by intensifying
regularization effect on noisy trajectory samples through dif-
fusion network-driven Brownian motion weighting.

Secondly, we address the tracklet error variation across
datasets by using separate diffusion networks per dataset. In
the NSDE formulation, the drift net aims to achieve high
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Figure 3: Visual representation of the proposed uncertainty
training framework. We use a shared drift net and separated
diffusion nets for source and target datasets. Unlike non-ego
agents, ego-agents’ trajectories with noise perturbation are
additionally fed to the diffusion nets. The outputs from both
drift networks and diffusion networks are utilized to solve
the stochastic differential equation. In addition, diffusion net-
works are separately trained to perform in-distribution (ind)
and out-of-distribution (ood) classification of ego-agent tra-
jectories with and without perturbation. As a result, brownian
motion 𝑑𝑊𝑡 takes larger weight on the subsequent SDE in-
tegration for uncertain samples.

prediction accuracy via system control, while the diffusion
net captures aleatoric uncertainty. To leverage multi-source
learning for prediction accuracy, we share the drift net across
datasets and allocate distinct diffusion networks for each
dataset. Ultimately, the derivative of NSDE encoder and its
training objective is formulated as follows:

𝑑h𝑡 = 𝑓 (h𝑡 , 𝑡)𝑑𝑡 + 𝑔(h𝑡 , 𝑡)𝑑𝑊𝑡 , 𝑔 =

{
𝑔𝑠𝑟 if X𝑠𝑟

𝑔𝑡𝑔 if X𝑡𝑔 (6)

min
𝜽𝑔𝑠𝑟

Eh𝑡∼𝑃𝑠𝑟
𝑒𝑔𝑜

𝑔 (h𝑡 , 𝑡) + max
𝜽𝑔𝑠𝑟

Eh̃𝑡∼𝑃𝑠𝑟
𝑒𝑔𝑜

𝑔
(
h̃𝑡 , 𝑡

)
+min

𝜽𝑔𝑡𝑔
Eh𝑡∼𝑃𝑡𝑔

𝑒𝑔𝑜
𝑔 (h𝑡 , 𝑡) + max

𝜽𝑔𝑡𝑔
Eh̃𝑡∼𝑃𝑡𝑔

𝑒𝑔𝑜
𝑔
(
h̃𝑡 , 𝑡

)
(7)

Here, 𝑔𝑠𝑟 and 𝑔𝑡𝑔 are diffusion networks for source and target
dataset, respectively. h𝑡 and h̃𝑡 corresponds to hidden states
encoded from clean ego-agent trajectories and noise-injected
ego-agent trajectories. Figure. 3 illustrates the proposed un-
certainty training framework.

Training Details In addition to the objective of Eq. 7, pre-
diction loss between Ŷ and GT Y is also used in order to
train the overall encoder-decoder structured model. In detail,

the prediction loss trains the decoder SDE to learn a con-
tinuous transition function between the encoded feature h0
and future timestep hidden states {h𝑡 }𝑡∈ (0,𝑇𝐹 ] and encoder
SDE to produce a continuous representation of the observed
trajectory 𝑋 , thus enabling the model to handle arbitrary
time lengths and steps. Additionally, if the baseline model
is a goal-conditioned model, goal prediction loss between
predicted goal position Ĝ and gt goal G is used. For the
implementation of SDE methods, torchsde (google-research
2021) is used. For the initial latent value (h𝑝𝑎𝑠𝑡

−𝑇𝑝
), we assign

a learnable parameter. Please refer to the supplementary ma-
terials for additional details on the training procedure and
model implementation.

Experiment
Experiment Setup
Our goal is enhancing performance in target dataset via ad-
ditional training on a large-scale source dataset. To assess
whether the prediction model alleviates limited transferabil-
ity across datasets, we jointly train with training set of both
dataset and evaluate on validataion set of target dataset. In
detail, the regression-based prediction model is trained only
with nuScenes train set (N), jointly with nuScenes + Ar-
goverse train sets (N+A) or nuScenes + WOMD train sets
(N+W), then validated on nuScenes val set, with a widely
used metric, mADE10. To evaluate the model’s generalizabil-
ity on different target datasets, we additionally report training
on WOMD. As for the goal-conditioned model, its improve-
ment on nuScenes and Lyft validation sets are evaluated.
Specifically, for nuScenes validation, we compare training
only on nuScenes train set (N) and jointly with nuScenes
+ INTERACTION train sets (N+I). We additionally report
its improvement on Lyft validation set by comparing only
training on Lyft train set (L) and jointly with Lyft + INTER-
ACTION train sets (L+I).

To enable discrete baseline models to be applied to two
different time-step configured data, we have re-arranged both
trajectory datasets. We create empty time series data that can
contain both dataset time steps, then scatter each data to each
time step. For example, with nuScenes (2/6s, 2Hz) as target
and Argoverse (2/3s, 10Hz) as source, we create 81 bins
(2/6s, 10Hz) of empty data. Then, nuScenes data is scattered
with 5 time step intervals for overall lengths, while only the
first 50 time steps are filled for Argoverse data.

Datasets and Baseline Models
We use nuScenes (30k) and Lyft (160k) as small-scale target
dataset for their relatively smaller sizes. We utilize INTER-
ACTION, Argoverse (200k) and WOMD (500k) datasets as
largse-scale datasets for additional training. To utilize com-
mon information among datasets, we use past/future trajecto-
ries and lane centerline information only. Additionally, while
these datasets have both vehicle and pedestrian trajectory
data, we only train and evaluate vehicle trajectories for sim-
plicity. To show the effectiveness of our framework, we select
HiVT (Zhou et al. 2022) and MUSE-VAE (Lee et al. 2022)
as the latest regression and goal prediction-based trajectory
prediction method and show that even the state-of-the-art
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Train Set N N+A gain N+W gain
vanilla
HiVT 1.045 0.966 7.56% 0.950 9.09%

HiVT +
ODE-RNN 1.058 0.935 11.62% 0.913 13.71%

HiVT +
latentSDE 1.044 0.943 9.67% 0.912 12.64%

HiVT +
ours 1.044 0.913 12.55% 0.893 14.46%

Table 2: Effectiveness on regression-based method. All dig-
its represent mADE10 on nuScenes val set trained on each
dataset and the corresponding gain.N,A, andW respectively
denote nuScenes, Argoverse, and WOMD. Lower is better.

method has room for improvement with the fusion of our
proposed SDE framework.

Results
Effectiveness in Multi-Source Training
Table. 2 shows the improvements due to multi-source training
on the regression-based model. We compare our method with
original discrete models, as well as ODE-RNN (Rubanova,
Chen, and Duvenaud 2019) and LatentSDE (Li et al. 2020)
adaptations. Compared to training with N, the baseline
model’s mADE has improved 7.56% for N+A, and 9.09% for
N+W. This improvement signifies an underfitted result when
the model is only trained with nuScenes, a relatively smaller
dataset that is comprised of only 30k training data. However,
further performance gain has been limited since the discrete
temporal encoding of vanilla HiVT is incapable of efficiently
handling the cross-dataset discrepancy. By adopting ODE-
RNN as the temporal encoder/decoder, the use of additional
training data has brought about much more performance im-
provement (11.62% for N+A, 13.71% for N+W) thanks to
its continuous modeling of latent transition across time. Al-
though adopting latentSDE is known to be robust against data
perturbation, its performance gain slightly decreases com-
pared to ODE-RNN (9.67% for N+A and 12.64% for N+W).
It is because the single diffusion network of latentSDE failed
to address different type of tracklet error across datasets.
Finally, with our proposed method, mADE10 improves to
0.913 for N+A, and 0.893 for N+W. These improvements
correspond to 12.55%/14.46% compared to nuScenes only
training (N), and 5.49%/6% compared to vanilla HiVT (0.966
→ 0.913 and 0.950 → 0.893) which empirically show the
effectiveness of the proposed methods.

Table. 3 shows the effectiveness of our method on the goal-
conditioned model. We conduct experiments on two different
target validation datasets: N and L. For each case, we com-
pare the performance gain when using I set as additional
training data. The use of our method resulted in significant
improvement in performance gain compared to the vanilla
MUSE-VAE model. Specifically, its performance gains on
both validation sets are threefold compared to the vanilla
MUSE-VAE method, demonstrating the importance of im-

Valid set Train set museVAE museVAE + Ours

N
N 2.304 2.333
N+I 2.178 1.953
gain 5.47% 16.29%

L
L 1.179 1.191
L+I 1.073 0.827
gain 8.90% 30.56%

Table 3: Effectiveness on goal-conditioned method on two
different target datasets. All digits represent mADE10 on
nuScenes and Lyft val set trained on each dataset and the cor-
responding gain. N, L, and I respectively denote nuScenes,
Lyft, and INTERACTION. The lower is better.

Valid set Train set HiVT HiVT + Ours

W
W (5%) 0.9454 0.9445

W (5%) + A 0.9286 0.8496
gain 1.78% 10.05%

Table 4: Additional experiment of regression-based method
on WOMD validation set as target dataset, again showing
effectiveness on different target dataset. All digits represent
mADE10 on nuScenes val set trained on each dataset and the
corresponding gain. W and A respectively denote Waymo
and Argoverse. The lower is better.

proved transferability of our method across different types
of backbone prediction models. In addition, similar to the
goal-conditioned model’s generalized improvement on two
different target sets, the regression-based method also shows
improvement in performance on a different target validation
set. Table 4 reports the regresssion-based method’s perfor-
mance on W set as target set. Use of only 5% of W set is
compared to additional use of A set to assume a situation
where only a small amount of training data within target
set distribution is available. The use of our method over the
baseline HiVT again shows significant improvement in per-
formance gain.

Effect of Target Dataset Size
Previous experiments have been conducted with the size of
target dataset as 30k, the size of nuScenes train set. However,
30k is still a considerably large-scale dataset, and collecting
a labeled dataset of an equivalent size could still be consid-
ered a cumbersome work. Therefore, we have also conducted
the same experiments with smaller sizes of target dataset to
show the effectiveness of our model even when the available
target dataset is smaller. By randomly dropping a ratio of
nuScenes train set, we construct the target datasets size of
20k, 15k, 10k, 3k, and 0 (no target dataset is used). Argo-
verse dataset is used as the source dataset. In the case of 0
target dataset setting, we share diffusion net and maintain the
uncertainty training objective in Eq. 7. In Fig. 4, mADE10
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Figure 4: Prediction accuracy according to the size of the
target dataset. The target dataset is nuScenes, and the source
is Argoverse. X-axis denotes the amount of nuScenes training
set used during training. The Y-axis bars indicate mADE10
of both models, and the grey line indicates the accuracy gap
between baseline HiVT and the proposed method.

of the baseline and our method are plotted with bar graph,
and their difference is plotted as line graph. The effectiveness
of the proposed method gradually increases in the range of
30k to 15k, and exponentially increases with the smaller tar-
get dataset sizes. Such larger improvements on smaller target
datasets show that our proposed method effectively promotes
transferability across datasets. Indeed, at an extreme with no
target dataset for training, mADE of the baseline diverges
over 14 while ours remain reasonable at 1.26. These results
show that our proposed NSDE temporal networks’s advan-
tage of effective cross-dataset discrepancy handling is even
more valued for smaller target datasets.

Effectiveness of Continuous Representation
We compare our NSDE with the baseline HiVT model equip-
ping with other methods for handling dataset-wise unique
time step configuration as reported in Tab. 5. First method
is random dropping (RD) where some portion of time steps
is randomly dropped during training. We expect RD to be
equivalent to stochastic noise injection, thus improving gen-
eralizability. However, RD shows minimal improvement of
only 0.006 since dropping time steps does not provide any ex-
tra time step data to a discrete temporal network. In that sense,
we experiment with manipulating source data (1/8s, 10Hz)
to target data’s time step configuration (2/6s, 2Hz) (S → T)
or vise-versa (T → S) through interpolation and extrapola-
tion. Converting target dataset to source dataset configuration
severely downgrads the prediction performance due to the
source data’s inaccurate information obtained from extreme
extrapolation to unseen future time steps. While converting
source dataset to target dataset slightly increases accuracy,
its improvement remains minimal due to inaccurate extrap-
olation of past trajectory. Lastly, we apply domain-adpation
method which is feature align loss L𝑎𝑙𝑖𝑔𝑛 between source

Baseline RD S → T T → S L𝑎𝑙𝑖𝑔𝑛 SDE
0.950 0.944 0.987 0.947 0.971 0.912

Table 5: The effectiveness of time-wise continuous repre-
sentation of NSDE compared to other methods. The digits
represent mADE10 on nuScenes val set for models trained
on N+W. Lower is better.

and target dataset following (Xu et al. 2022), where MMD
loss with RBF kernel is used for the distance function. While
the original paper tackled unsupervised domain adaptation
problem, we provide labels for the target dataset for a fair
comparison with other methods. However, applying L𝑎𝑙𝑖𝑔𝑛

hinder prediction loss from target dataset supervision and
had adverse effects on the prediction performance.

Uncertainty Handling Ability
Our NSDE intensifies SDE’s regularization effects by recog-
nizing uncertain samples and assigning them large browni-
nan motion weighting. Our method relies on the recognition
of uncertain samples, therefore we quantify the recognized
uncertainty to assess our method’s adequate operation. The
details of uncertainty quantification process are explained in
the supplementary materials. For a qualitative review, Fig. 5
plots uncertain samples in red lines and others in yellow,
thresholded by average standard deviation value of 0.06. In
the nuScenes samples (1st row), it shows that our model can
properly recognize uncertain samples due to tracking error
with sudden position change (left) and meandering motion
(right). Other dataset samples also show competent classi-
fication of samples with their dataset-specific uncertainties.
More samples can be found in supplementary material.

Here, we analyze whether the diffusion net-based
brownian-motion weighting indeed improve the model’s ro-
bustness against tracklet error. In doing so, we compare the
prediction results between our method (green) and the base-
line (blue) on ood samples as in Fig. 5. Among 10 predictions
for both models, only the most accurate predictions to GT
(magenta) are plotted. Predictions of our method are consis-
tently more accurate compared to the baseline’s predictions.
Such improvement is also quantitatively compared in Tab. 6
where mADE10 is compared between predictions of base-
line and ours on normal samples (ind) and uncertain samples
(ood). Notably, our method exhibits larger accuracy gains
in ood, demonstrating superior robustness against uncertain
samples due to tracklet noise.

Ablation Studies
Ablation on model architecture appears in the upper part of
Tab. 7, with HiVT as baseline. First, we model the past feature
at time 0 (h𝑝𝑎𝑠𝑡

0 ) as Gaussian latent following general NDE
methods. After obtaining mean and variance from h𝑝𝑎𝑠𝑡

0 as
in VAE, we sample past feature 𝐹 times. (𝐹 is the number
of prediction sample, here, set as 10). This approach severly
worsen the performance since non-probability sampling is
much better for multi-modal trajectory prediction (Bae, Park,
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Figure 5: Prediction results against uncertain trajectory in-
puts. The dotted line is past trajectories of road actors. Among
the yellow normal trajectories, the red ones are samples rec-
ognized as uncertain by the SDE-Net framework. Their GT
future paths are plotted in magenta, prediction from baseline
(HiVT) and ours are plotted in blue and green, respectively.
Among 10 predictions of both models, most closest ones
to the GT are plotted. Each row represents nuScenes (1st),
Argoverse (2nd), and WOMD (3rd).

and Jeon 2022). Second, we adjust the number of layers of
drift and diffusion network of encoder NSDE and decoder
NSDE. Their number of layer is originally set as 4, and we
reduce them as two. Comparing the results between encoder
and decoder, model capacity decline resulted in larger per-
formance drop for the encoder. We believe such discrepancy
comes from higher complexity of encoder’s task, as the en-
coder needs to translate past features while also considering
incoming data on certain timesteps via GRU.

The lower part of Tab. 7 shows ablation on uncertainty
training. Our model is comprised of shared drift network
along with separate diffusion networks and we ablate each
component. Although we lose multi-source training for tem-
poral encoding when separating drift network, performance
drop is relatively small since other components of the model
are still shared. In case of sharing diffusion network, how-

thres: 0.01/0.06 ind ood
Baseline 0.580 1.414

Ours 0.551 1.333
gain 0.029 0.081

Table 6: Prediction accuracy (mADE10) against normal sam-
ples (ind) and uncertain samples (ood) in nuScenes val set.
Baseline HiVT and the proposed methods trained on N+A
are compared. Lower is better.

Experiments mADE10

Model
architecture

Gaussian latent 1.225
Encoder f/g layers=2 0.927
Decoder f/g layers=2 0.918

Uncertainty
training

w/o share Drift net 0.934
w/o separate Diff net 0.944
w/o Luncertain 0.940
Full model 0.913

Table 7: Ablation studies on N+A training.

ever, the performance drop is larger since a single diffusion
network is insufficient to handle disparate types of noises. In-
deed, noise in argoverse is more severe compared to nuScenes
as shown in the second row in Fig. 5, so the diffusion network
is dominated by argoverse data’s distribution and results in
wrong Brownian noise injection. In addition, we remove the
uncertainty training objective in Eq. 7, which has also re-
sulted in a considerable performance drop. The above results
consistently reveal that uncertainty handling plays a crucial
role during cross-domain trajectory prediction.

Conclusion
In this paper, we introduce a novel approach to addressing the
challenges posed by discrepancies in trajectory datasets. By
leveraging continuous and stochastic representations within
NSDE, the proposed method tackles two key issues: vary-
ing time step configurations and different patterns of de-
tection/tracking noise across datasets. The continuous rep-
resentation effectively handles diverse time intervals, en-
abling seamless adaptation to different dataset structures,
while the stochastic aspect accommodates the inherent uncer-
tainties arising from tracklet errors. Through experimenta-
tion on nuScenes, Argoverse, Waymo, INTERACTION, and
WOMD, our NSDE consistently improved upon both regres-
sion and goal prediction-based the state-of-the-art methods.

We not only highlight the importance of dataset-specific
considerations in trajectory prediction but also introduce
a practical solution that bridges the gap between diverse
data sources. These contributions underscore the method-
ology’s potential for advancing the reliability and safety of
autonomous mobility systems, offering a promising avenue
for further research and development in the field.
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