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Abstract

AI powered code-recommendation systems, such as Copi-
lot and CodeWhisperer, provide code suggestions inside a
programmer’s environment (e.g., an IDE) with the aim of
improving productivity. We pursue mechanisms for leverag-
ing signals about programmers’ acceptance and rejection of
code suggestions to guide recommendations. We harness data
drawn from interactions with GitHub Copilot, a system used
by millions of programmers, to develop interventions that can
save time for programmers. We introduce a utility-theoretic
framework to drive decisions about suggestions to display
versus withhold. The approach, conditional suggestion dis-
play from human feedback (CDHF), relies on a cascade of
models that provide the likelihood that recommended code
will be accepted. These likelihoods are used to selectively
hide suggestions, reducing both latency and programmer ver-
ification time. Using data from 535 programmers, we per-
form a retrospective evaluation of CDHF and show that we
can avoid displaying a significant fraction of suggestions that
would have been rejected. We further demonstrate the impor-
tance of incorporating the programmer’s latent unobserved
state in decisions about when to display suggestions through
an ablation study. Finally, we showcase how using suggestion
acceptance as a reward signal for guiding the display of sug-
gestions can lead to suggestions of reduced quality, indicating
an unexpected pitfall.

Introduction
Code recommendation systems powered by large-scale neu-
ral language models, such as Github Copilot (Github 2022)
and Amazon CodeWhisperer (Amazon 2022), are aimed at
providing programmers with code suggestions to help im-
prove their productivity. These systems usually operate by
displaying the suggestion as ghost text—a grayed-out code
suggestion inline inside the IDE. Programmers can accept
the suggestion, browse through different suggestions, or re-
ject the suggestion (see Figure 1). The code suggestions
appear either at the explicit invocation of the programmer
or when the programmer pauses their cursor when writing
code. GitHub reported a recent randomized study with 95
participants who wrote a web server, where they found that
Copilot could potentially reduce task completion time by
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Figure 1: Operating mode of Copilot inside Visual Studio
Code showing how CDHF influences the interaction by se-
lectively hiding certain suggestions. Data collected by the
interaction is stored in telemetry and used to train CDHF to
create a feedback loop.

a factor of two (Kalliamvakou 2022). These and other re-
ports that the code-recommendation systems can improve
programmer productivity motivate our research to pursue
improvements to these systems.

Code-recommendation systems are powered by large lan-
guage models (LLMs) such as GPT that are trained on
standard language modeling objectives using the Common
Crawl data (Radford et al. 2019), and then fine-tuned on pub-
lic code repositories (Chen et al. 2021). The public roll-out
of the code recommendation models has attracted millions
of programmers, enabling a unique opportunity to leverage
the data of programmers interacting with the models. In this
work, we study GitHub’s Copilot which is used by millions
of programmers (Github 2022). For a set of programmers
within our organization who consented to have their usage
data collected, we collected telemetry data of Copilot sug-
gestions, along with their associated prompts and the pro-
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grammer’s action to accept or reject the suggestions. We
leverage this telemetry data to design mechanisms and inter-
ventions that can improve the interaction between program-
mers and Copilot.

Specifically, we seek to identify when to show a code sug-
gestion. We first define the expected utility of a displaying
a suggestion, a value that measures the impact of showing
a suggestion on the overall time to write a specific piece of
code. This value provides an optimal criterion for when to
show a suggestion. However, computing the utility of sug-
gestions is difficult and not currently feasible. Instead, we
rely on the result that suggestion utility increases the more
likely a suggestion is to be accepted and decreases with in-
creasing latency to generate a suggestion—two quantities
we can reliably estimate and control, respectively. We de-
velop a procedure, named conditional suggestion display
from human feedback (CDHF) which guides whether to
show or hide suggestions. At each pause in keystrokes,
CDHF decides whether if it is worthwhile to generate a sug-
gestion and if the programmer is likely to accept the gen-
erated suggestion. CDHF employs a cascade of models that
predict acceptance of suggestions. The optimization proce-
dure guarantees that any suggestion that was hidden (or not
generated) would have been rejected if it was shown with a
probability of at least p, where, e.g., p can be 0.99.

Using data from programming sessions of 535 program-
mers with feedback on 168k suggestions, we perform a ret-
rospective evaluation of CDHF. We show that we can hide
25% of suggestions that were shown while guaranteeing that
95% of them would have been rejected. Further, we avoid
generating 13% of these suggestions. The results show that
CDHF would increase the acceptance rate by 7.2%. The pro-
cedure allows for controlling a trade-off that balances the
number of suggestions that are displayed with increases in
latency, controlled with a parameter that halts generations.
We note that a minimal version of CDHF has been imple-
mented in a newer version of GitHub Copilot (Zhao 2023)
following the presentation of earlier versions of our work
to GitHub. Our paper provides a roadmap for building and
fielding better forms of suggestion display.

Beyond decisions about displaying recommendations, we
examine the feasibility of using suggestion acceptance as
a reward signal to select which suggestions to display and
show how partial completions can be prioritized over the
generations of complete code segments. While we investi-
gate Copilot in this work, we believe our insights extend to
other AI models and non-code-based tasks. Please refer to
the arXiv version of this work for an appendix (Mozannar
et al. 2023).

Related Work
The closest related work to ours is the procedure to selec-
tively hide suggestions in (Sun et al. 2022) (quality estima-
tion before completion, QEBC). In distinction to this work,
QEBC (Sun et al. 2022) is not based on human feedback of
accepting suggestions but rather is based on constructing a
learned estimator of the quality of code completions from
datasets of paired code segments and model completions.
Our CDHF estimator uses real programmer behavior data

and is based on data from a code-recommendation system in
current use (Copilot) as opposed to custom-trained ones in
(Sun et al. 2022). Different metrics and datasets have been
proposed to evaluate the performance of code recommenda-
tion models, but these typically assess how well the model
can complete code in an offline setting without developer
input rather than evaluating how well it assists program-
mers in situ (Ziegler et al. 2022; Li et al. 2022; Evtikhiev
et al. 2022; Dakhel et al. 2022). Integrating human prefer-
ences when training machine learning models has long been
studied in the literature (Knox and Stone 2008; MacGlashan
et al. 2017). In particular, reinforcement learning from hu-
man feedback (RLHF) has been used to improve LLMs used
as conversational chatbots (Ziegler et al. 2019; Bai et al.
2022), notably ChatGPT (OpenAI 2022). In contrast, CDHF
uses human feedback collected organically through teleme-
try. The objective is fast inference to reduce latency and hid-
ing suggestions rather than updating the LLM. Further re-
lated work can be found in the appendix. Our theoretical
formulations build on earlier work on harnessing machine
learning and utility to guide AI versus human-powered con-
tributions in human-AI interactive settings (Horvitz 1999),
which we apply to our setting.

Problem Setting
Copilot. We consider Copilot, which is a commonly used
and exemplary tool of AI-powered code recommendations
used by millions of programmers (Github 2022). Copilot is
powered by a large language model (LLM) to provide code
suggestions to programmers within an IDE whenever the
programmer pauses their typing. An illustration of Copilot
suggesting code as an inline, single-colored snippet is dis-
played in Figure 1. The programmer can choose to accept
this suggestion via a keyboard shortcut (e.g., tab).

AI-Assisted Programming. We attempt a mathematical
formalization of programming with the help of a code rec-
ommendation model such as Copilot, which we dub AI-
Assisted Programming. The programmer wishes to complete
a certain task T , for example, to implement a logistic regres-
sion classifier. As the programmer writes code starting from
time 0, Copilot attempts to provide code suggestions at dif-
ferent times. At a given time t, Copilot1 uses a portion of the
code Xt to generate a prompt Pt, which is passed to the un-
derlying LLM. Copilot then generates a code suggestion St,
which is shown to the user at time t + τ where τ accounts
for the LLM latency. Once the suggestion is shown, the pro-
grammer must make an action at a certain time t′ > t + τ ,
the action is At′ ∈ { accept, reject}; the reject action is trig-
gered implicitly by continuing to type.

Telemetry. Copilot logs aspects of the interactions via
telemetry, which we leverage in our study. We refer to
event positions drawn from a discretization of times span-
ning a session. Specifically, whenever a suggestion is shown,
accepted or rejected, we record a tuple to the telemetry
database, (ti, Ai, Pi, Si), where ti represents the within-
session timestamp of the ith event (t0 = 0), Ai details

1We discuss implementation details of Copilot at a high level;
our work is based on the August 2022 version of Copilot.
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Figure 2: Schematic of telemetry with Copilot as a time-
line. For a given coding session, the telemetry contains a
sequence of timestamps and actions with associated prompts
and suggestions.

the action taken (augmented to include ‘shown’), and Pi

and Si capture the prompt and suggestion, respectively. Fig-
ure 2 displays a portion of timeline built from telemetry data
drawn from a coding session. Telemetry data from each pro-
grammer is stored in a database D = {(ti, Ai, Pi, Si)}ni=1
and represents a discretized representation of the interaction
and provides the human feedback data we leverage.

Programmer State. When faced with a suggestion, is a
programmer looking and verifying it, or rather engaged in
other activities such as thinking about their code or looking
at documentation? The state of the programmer is important
in the expected value of the recommendation. However, we
cannot answer this question as the telemetry does not capture
the programmer’s activities and thinking between two con-
secutive time stamps ti and ti+1, i.e., the space in between
the arrows in Figure 2 which we refer to as the programmer’s
latent state. In an earlier publication (Mozannar et al. 2022),
we describe a study of 21 participants focused on gaining
an understanding of sequences of states visited during the
writing of code, including latent states. The work employed
videos and interviews to acquire information about the la-
tent states. We showed in the work that including informa-
tion about latent states can significantly boost predictions
about accepting recommendations, motivating the collection
of data beyond that captured in telemetry.

In this work, we endeavor to understand the impact of the
programmer latent state denoted as ϕt and its effect on our
ability to leverage the telemetry (human feedback data) to
improve AI-code recommendation systems.

Theoretical Formulation of Suggestion Utility
A critical design question in programmer-Copilot interac-
tion is when should the model inject a suggestion into the
IDE? The version of that we Copilot provides a sugges-
tion when it detects a brief pause in the IDE. Alternative
interaction designs would require the programmer to ask
for suggestions using a keyboard shortcut or to enable a
mix of human and machine initiatives. Requiring the pro-
grammer to ask may lead to sub-optimal interactions be-
cause its success would rely on programmers having an ac-
curate mental model of Copilot abilities (Sarkar et al. 2022)
which can require long-term interactions with the model
(Bansal et al. 2019) or training (Mozannar, Satyanarayan,
and Sontag 2022). Second, requiring an explicit invocation
can disrupt the natural flow of programming, breaking a state
of flow achieved during intensive focus (Csikszentmihalyi

and Larson 2014). Designs requiring user initiative as well
as those automatically displaying content can burden users
with interruptions that decrease task performance (Bailey,
Konstan, and Carlis 2001; Cutrell, Czerwinski, and Horvitz
2001). We note that such costs can be inferred and accounted
for formally in utility-theoretic systems (Horvitz and Apaci-
ble 2003; Horvitz, Jacobs, and Hovel 1999).

Ideally, Copilot should display suggestions when the sug-
gestions provide net value to programmers. For example,
consider the task of completing a function and the time taken
to complete it as a proxy for the total effort. If the expected
time required to verify and edit Copilot’s suggestion exceeds
the time to write the code by themselves (counterfactual
cost), then Copilot should not show its suggestions. Con-
versely, if the expected time to write exceeds the time to
verify and edit, it may be useful to display the suggestion.
We now formalize this intuition with a utility-theoretic for-
mulation and, in the next section, discuss the methodology
to make it practical.

Programmer Model. At a given time instance time dur-
ing a session, Copilot extracts a prompt P from the code
file X and generates a code suggestion S. If this suggestion
is shown, we assume the programmer spends an expected
time E[verification|X,S, ϕ] to verify it and accepts the sug-
gestion with probability P(A = accept|X,S, ϕ). Once a
suggestion is accepted, the programmer may further edit
the suggestion with expected time E[editing|X,S, ϕ,A =
accept] to achieve their task. On the other hand, if the
programmer rejects the suggestion, they would have to
spend time writing code that achieves their task, denoted by
E[writing|X,S,A = reject]. Thus, the total time incurred
with showing a suggestion, denoted as E[S shown|X,S, ϕ],
is:

E[S shown|X,ϕ] = E[verification|X,S, ϕ] (1)
+ P(A = accept|X,S, ϕ) · E[editing|X,S, ϕ,A = accept]

+ P(A = reject|X,S, ϕ) · E[writing|X,S, ϕ,A = reject]

While editing and writing, Copilot may further make
more suggestions; thus, the editing time and writing time
should include interactions with future suggestions. Now, on
the other hand, if the suggestion is not shown, the program-
mer will spend time E[writing|X] writing code for their
task. We also need to factor in latency, the time cost τ to
compute a suggestion once we decide to create a suggestion.
Latency is only experienced by the programmer if their la-
tent state ϕ includes expecting a suggestion and waiting for
it. If the programmer is expecting a suggestion, we should
add τ to the total time when we show a suggestion; other-
wise, the programmer continues to write code not expecting
a suggestion.

We now define suggestion utility, a value that indicates
the change in programmers’ coding time due to showing the
suggestion.
Definition 1 (Suggestion Utility). The time impact δ, de-
noted as the suggestion utility, of showing S versus not
showing is defined as:

δ = E[writing|X,ϕ]︸ ︷︷ ︸
S not shown

−E[S shown|X,ϕ]︸ ︷︷ ︸
S shown

−E[τ |X,ϕ]︸ ︷︷ ︸
latency

(2)
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From the above, a suggestion S at a given time should
only be shown if δ > 0 (Equation 2), where the programmer
will spend less time to achieve their task if it is shown. An
optimal scheme to know when to show suggestions would be
to generate suggestions as frequently as possible, compute
their suggestion utility δ, and display them if δ > 0.

Feasibility of Estimating δ. Per Equation (1), computing
suggestion utility requires the computation of four quanti-
ties: (1) the expected time spent verifying a suggestion, (2)
the expected time editing a suggestion, (3) the expected time
to write a segment of code and (4) the probability of ac-
cepting a suggestion. One can attempt to build an estimator
for (1), by predicting from the prompt and suggestion the
time spent verifying a suggestion i which would be ti+1− ti
using standard regression estimators. Unfortunately, using
the same features and the dataset detailed in our experimen-
tal section, our best estimator is only able to achieve an
R2 = 0.13, which is not much better than a naive median
time estimate. This may be due to the high variance and un-
observed confounders governing verification time. Estimat-
ing editing and verification time (quantities 2 and 3 above)
is only more complex and challenging. Thus, we restrict our
methodology to seeing when we can evaluate δ using only
our estimator for the probability of acceptance (4).

Learning Programmer’s Acceptance Decisions. The
full conditional for the probability that the programmer ac-
cepts a suggestion is P(A = accept|X,S, ϕ). Given the
telemetry, we can only compute P(A = accept|X,S) where
the programmer’s latent state cannot be observed. Using
standard calibrated classification methods, we can estimate
the probability P(A = accept|X,S) by using the actions Ai

as the labels. We show that a simple mechanism of thresh-
olding the estimated probability that the programmer ac-
cepts a suggestion is equivalent under certain assumptions
to checking if δ < 0:
Proposition 1. Under assumptions that the programmer
spends more time writing code when they reject a sug-
gestion compared to when they accept a suggestion and
edit it, given specific code, suggestion, and latent state
(X,S, ϕ), if the programmer’s probability of accepting
P(A = accept|X,S, ϕ) a suggestion is below P∗, which is
defined as:

P∗ =
E[verification] + E[latency]

E[writing|A = reject]− E[editing|A = accept]
(3)

then the suggestion should not be shown. Note that P∗ is
defined as a function P∗(X,S, ϕ) evaluated pointwise.

The formal statement and proof are available in the ap-
pendix. The above proposition shows that comparing the
probability of acceptance to P∗ can guide when to show the
suggestion. We provide a graphical view of the analysis in
Figure 3, in the spirit of related analyses on utility-guided
interactive interfaces (Horvitz 1999). Practically, if we com-
pare the probability of acceptance to a constant lower bound
of P∗, we can guarantee that we hide suggestions only when
δ < 0.

Effect of Programmer Latent State. As mentioned pre-
viously, the programmer’s latent state is not available via

1.00.0
P(A|X,S, ϕ)

P*

write

Not Shown

Ti
m

e 

verify 

edit  

verify 

Figure 3: Graphical depiction of analysis of Proposition 1
when the latency is zero. The y-axis shows total time and the
x-axis is the programmer’s probability of accepting P(A =
accept|X,S, ϕ). At probability P∗, showing and not showing
the suggestion have equal time cost.

telemetry. Thus, we can only provide predictions of P(A =
accept|X,S) versus explicit consideration of the latent state,
P(A = accept|X,S, ϕ). In earlier work (Mozannar et al.
2022), we collected telemetry data of 21 programmers per-
forming various tasks and had participants retrospectively
label the telemetry with their latent state from a set of twelve
unique states (1096 suggestions). We use this data to build
predictive models with and without the latent state using
the same methodology in the experiments section. Using
a leave-one-out programmer evaluation strategy, the model
without the latent state achieves accuracy 61.9 ± 1.9 while
the model with the latent state achieves 83.6 ± 2.4, a sta-
tistically significant difference according to a paired t-test
(p = 6.9e− 7, t = 7.11); a similar result occurs when com-
paring areas under the receiver operating characteristic curve
(AUC). These results highlights an opportunity to gather ex-
ternal data beyond telemetry to build such predictive models
and indicates that acceptance may not simply be a property
of suggestions and code context.

Conditional Suggestion Display From Human
Feedback

In this section, we describe the CDHF method that can be
implemented using telemetry data to identify when to show
suggestions, as illustrated in Figure 1. We note from Equa-
tion (3) that the higher the probability of accepting the sug-
gestion and the lower the latency to generate the sugges-
tion, the more likely the suggestion is useful (δ > 0). Our
proposed approach is as follows: Each time the programmer
pauses typing, we decide using a predictor whether to show
a suggestion. Crucially, we do this using a two-stage scheme
to avoid generating suggestions when we know the program-
mer would reject them.

Display Decision. Let m(X,S) be a binary predictor that
denotes whether, at a given moment in the code X , we
should show the suggestion S; we call this the display de-
cision. If m(X,S) = 1, we display the suggestion; other-
wise, we do not. The most straightforward way to build such
a function m is to estimate the programmer’s probability of
accepting the suggestion: P(A = accept)|X,S) and then
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threshold the probability so that suggestions that fall below
a probability t are hidden. However, this will lead us to gen-
erate suggestions including those that will never be shown,
thus wasting computing resources. We propose to decom-
pose the function m so that we first decide using only the
code whether we can make the display decision without gen-
erating the suggestion S with a function r(X). If r(X) = 1,
we make the display decision using a stage 1 model m1(X)
without generating the suggestion, otherwise if r(X) = 0
we generate the suggestion S and make the display decision
with a stage 2 model m2(X,S) as follows:

m(X,S) = r(X) ·m1(X) + (1− r(X)) ·m2(X,S) (4)

This formulation allows us to avoid generating suggestions
when we can make an accurate display decision in advance
of knowing the suggestion. For example, in a setting where
the programmer has rejected the last 30 suggestions, they are
unlikely to accept the next suggestion.

Objective and Guarantees. Our objective in learning the
functions r,m1,m2 is to (1) hide as many suggestions that
would have been rejected and (2) maximize the number of
display decisions made without generating the suggestion to
reduce latency on the system. There is an inherent trade-off
between these two objectives as making decisions with ac-
cess to the suggestions would be more accurate. Moreover,
we want to make sure we do not hide suggestions that would
have been accepted, as this would limit the usefulness of the
code assistant. Therefore, we impose a constraint that, when-
ever we hide a suggestion, there is at least a probability p it
would have been rejected, a constraint on the true negative
rate (TNR). We translate the objectives and the constraint
into the following optimization problem:

max
r,m1,m2

λE[1−m(X,S)] + (1− λ)E[r(x)] (5)

s.t. P(A = reject|m(X,S) = 0) ≥ p (6)

Parameterization. We can control the trade-off between
the two objectives with a hyperparameter λ ∈ [0, 1]. Equiva-
lently, instead of controlling the trade-off with λ, we can set
a constraint on E[r(x)] := R and set λ = 1. We propose an
intuitive post-hoc procedure to solve the optimization prob-
lem (5): We first learn calibrated estimators of the proba-
bility of accepting suggestions P̂(A = accept|X,S) (with
suggestion) and P̂(A = accept|X) (without suggestion). We
then parameterize:

m1(X) = IP̂(A=accept|X)≥t1
,m2(X) = IP̂(A=accept|X,S)≥t2

and r(X) = IH(P̂(A=accept|X))≤tr
(H(.) is Shannon’s En-

tropy), and optimize jointly over the tuple of thresholds
t1, t2, tr over [0, 1]3. This is a fairly efficient procedure that
can achieve good results. We note that this procedure saves
latency indirectly by reducing the number of LLM calls
across the session and across different users, and that we
should still enable the user to see the suggestion with a spe-
cial keyboard shortcut to override the display decisions. In
the next section, we perform a retrospective evaluation of
CDHF.

Experiments
Our main aim with experiments is to understand how well
the CDHF procedure can make display decisions in a retro-
spective evaluation. Code is available2 and additional details
can be found in the appendix.

Dataset and Feature Engineering.
Dataset. To build and evaluate our methods, we extract a
large number of telemetry logs from Copilot users (mostly
software engineers and researchers) at Microsoft. Program-
mers provided consent for the use of their data, and its use
was approved by Microsoft’s ethics advisory board. Specif-
ically, for a two-week time period, we extracted all the
telemetry events for 535 users who coded in Python. This
totals 4,749 coding sessions, where a session is defined as
a continuous sequence of user actions with at most 30 min-
utes between consecutive events. These sessions are from
real-world usage of Copilot for daily tasks of the software
engineers and researchers, the data was collected prior to
the inception of our work. On average, each user contributes
nine sessions, with each session lasting 21 minutes (median,
12 minutes). Sessions contain an average of 97 events (show,
accept, and reject). This totals to almost 1,675 hours of cod-
ing with 168,807 shown events and 33,523 accept events,
yielding an acceptance rate of 21.4% (not meant to repre-
sent Copilot’s average acceptance rate).

Model Features. The telemetry dataset D described
above contains for each user a list of events in each of their
coding sessions; we denote Di,j to be the list of events for
the j’th session of the i’th user. The dataset D = {Di,j}
contains for each user i and session j, a list of events occur-
ring in the corresponding coding session. We extract only the
accept and reject events, as well as prompt and session fea-
tures of the corresponding shown events. For each prompt
and suggestion pair, we extract: the programmer id as one
hot vector, the length of the document, the previous five ac-
tions, suggestion features (e.g., suggestion length), previous
features of the last five suggestions shown, the confidence
reported by Copilot, an embedding using codeBERTa (Feng
et al. 2020) of prompt and suggestion, presence of Python
keywords (e.g., import, def try, etc.), and the output of
the Tree-sitter Parser (Kalliamvakou 2023). Finally, we ex-
tract features of the prompt, including its embedding, textual
features, and parser outputs. Figure 4 summarizes the feature
engineering. It is crucial to note that the features do not leak
any information about future events and can be computed as
soon as a suggestion is generated by Copilot. For the first
stage model (m1) in CDHF, suggestion features are omit-
ted while we include all features for the second stage model
(m2). This feature engineering incorporates past actions and
suggestions that the programmer has seen and allows us to
use regular ML algorithms instead of time-series methods.

Model Evaluation
Before we evaluate CDHF, we perform an evaluation of
the programmer acceptance model m2(X,S). We split the
telemetry dataset in a 70:10:20 split for training, validation,

2https://github.com/microsoft/coderec programming states
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class LogisticRegression:
def __init__(self, X, y, alpha=0.01, max_iter=1000):

self.X = X
self.y = y
self.alpha = alpha
self.max_iter = max_iter
self.theta = np.zeros(X.shape[1])
self.costs = []
self.theta_history = [

self.theta
]
self.cost_history = [

self.cost()
]

def cost(self):
return np.sum(self.y * np.log(self.h())

session

prompt

suggestion

Probability of programmer accepting suggestion
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Figure 4: Features used to build action prediction model in Experiments , including from the suggestion, prompt, and session.

and testing respectively. Importantly, we do this split in two
ways: (1) by randomly splitting over programmers so that no
single programmer is shared across the three splits and, (2)
by randomly splitting over sessions so that users in training
can also be seen in testing to allow for personalization.

Results. We evaluate different standard machine learning
models on this task and find that the best-performing model
is eXtreme Gradient Boosting (XGB) (Chen et al. 2015).
When we split across users, XGB is able to achieve 81.1%
(95% CI 80.7-81.6 ) accuracy and, more importantly, 0.780
(95% CI 0.775-0.786) AUC. In the appendix, we show met-
rics for different models evaluated, including deep networks
(Mozannar et al. 2023). The results indicate that the model
is able to distinguish between suggestions that are likely to
be accepted versus those likely to be rejected. The model is
also well calibrated: the expected calibration error is 0.10
(Naeini, Cooper, and Hauskrecht 2015).

We note a significant increase in AUC when we allow for
personalization: including programmer ID as a feature and
splitting across sessions, this leads to an AUC of 0.795 (95%
CI 0.789-0.801), a significant increase (basis of m2 model).
When we remove suggestion features from the model, the
resulting model (basis of m1 model) achieves an AUC of
0.631 (95% CI 0.624-0.638). The time to compute the fea-
tures needed for the models and performing inference on a
single data point can take 10ms with a GPU and less than
1ms on a CPU when omitting embeddings, in addition to la-
tency of sending and receiving information between server
and client. In the appendix, we show results for different ab-
lation of model features, sample complexity plots, and fea-
ture importance plots.

Retrospective Evaluation of CDHF

We train the models m1 and m2 using the training set per
the previous subsection. We set the thresholds t1, t2, tr on
the validation set for CDHF and evaluate on the test set.

Results. In Figure 5, we vary the desired TNR rate (accu-
racy when a suggestion is hidden) and plot how many sug-
gestions we can hide from those previously displayed while
guaranteeing the desired TNR rate. We show the behavior of
the CDHF method with different λ values, or, equivalently,
with different constraints on how often the m1 model (first
stage) is used: R := E[r(x)]. To illustrate what CDHF can
accomplish, we can hide 25.3% of suggestions that were
shown while guaranteeing that 94.7% of them would have
been rejected and avoid generating 12.9% of the sugges-
tions. If we have no concerns for latency, we can hide 52.9%
of suggestions while guaranteeing that 91.3% of them would
have been rejected. Figure 5 shows how we can achieve dif-
ferent trade-offs by selecting an operating point on any given
curve. CDHF is able to satisfy the constraint of FNR on the
test set with a violation of at most 0.3% i.e., a guarantee of
95% FNR on the validation set equates to 94.7-95.3% on the
test set.

Counterfactual Increase in Acceptance Rate. On the
test set, the acceptance rate of suggestions is 22.5%. Ret-
rospectively, if we had used CDHF to hide 52.9% of sug-
gestions, we could compute a counterfactual acceptance
rate. The counterfactual acceptance rate can be computed
as: S accepted·(1−% hidden·(1−TNR))

S shown·% not hidden = 22.5(1−0.529·0.087)
0.471 =

45.6%, which is a 23.1 point increase, a value we expect
to be an overestimate.
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Figure 5: Evaluation of CDHF for selectively hiding sug-
gestions. For a given constraint on FNR (accuracy when a
suggestion is hidden) on the x-axis, we show on the y-axis
the fraction of the total suggestions we can hide while guar-
anteeing the desired FNR. We plot these curves while vary-
ing how often the decision is made generating suggestions
(R:=E[r(x)], when R=0, we generate the suggestion then
decide to hide or not, when R=1, we decide to hide with-
out knowing the suggestion).

Discussion and Limitations. The retrospective evalua-
tion shows that CDHF has promise in reducing developer
time spent verifying suggestions or waiting for sugges-
tions. We note that our evaluation is retrospective. Although
GitHub has shown that conditional suggestion filters similar
to CDHF increase the acceptance rate of suggestions, a user
study is required to verify whether the method makes pro-
grammers more productive. As Goodhart’s law states, once
a metric becomes a target, it ceases to become a good mea-
sure; acceptance rate is no exception. Moreover, if CDHF
is not trained with sufficient data that captures the program-
mer’s use cases, it can make the programming experience
worse by hiding useful suggestions. Moreover, a rejected
suggestion may still be useful, which we do not account for
here. Finally, the optimization problem in (5) is amenable
to procedures inspired by learning to defer (Mozannar and
Sontag 2020) that can outperform the post-hoc procedure
proposed.

Which Suggestion to Show?
We focus in this study on the problem of when to display
suggestions. We did not tackle the question of which sug-
gestions to display among a candidate set. Given access to
telemetry data, which consists of contextualized suggestions
with accept and reject signals, one can interpret an accept
as the act of preferring a suggestion over no suggestion. It
is reasonable to harness the telemetry data as a preference
dataset and build a reward model of programmers’ prefer-
ences, which would be equivalent to estimating the program-
mer’s acceptance probability P̂(A = accept|X,S). Thus, a
reasonable procedure is to take a candidate set of sugges-
tions S and display the suggestion that maximizes the prob-

ability of acceptance across the set; this is essentially the
best-of-n baseline approach in RLHF (Rafailov et al. 2023).

Potential Bias Towards Short Suggestions. We hypoth-
esize that such a ranking scheme would not be productive
and can lead to poor suggestions of short length. Our ratio-
nale is the following: suppose the LLM is able to generate a
multi-line suggestion S for a user query that approximately
matches what the user desires. To maximize the probability
that the user accepts the suggestion, it would be advanta-
geous to split the suggestion S line-by-line and display it to
the user step-by-step. The reasoning is that it is more likely
for the first line of S to be correct rather than all of S being
correct, hence being more likely to be accepted.

Experiment. To test this hypothesis, we perform the fol-
lowing experiment: We learn a model m of suggestion ac-
ceptance given only the prompt and suggestion embeddings
with no session features on the telemetry data from the previ-
ous section. We then leverage the HumanEval dataset (Chen
et al. 2021), which consists of 164 Python problems, each
with an associated docstring and a ground truth function
body solution. Solutions have at least two lines and seven
median lines of code. Given the model m and each prob-
lem, we let the prompt be the concatenation of the doc-
string and the first k lines of the solution and let the can-
didate set of suggestions S be as follows: Given the solu-
tion S represented as an array of tokens of length N , we let
S = {S[: i]}Ni=1. For example, if the solution S was ”return
np.mean(x)”, then S = {”return”, ”return np.mean(x)”}.

Results. We vary the parameter k in the set {0, 1, 2, 3}
so that the prompt goes from the docstring to include lines
of the solution. When k = 0, the normalized length of
the highest-rated suggestion, according to the model across
the 164 problems, is almost uniform across [0, 1], a Kol-
mogorov–Smirnov test compared to the uniform distribu-
tion has a p-value of 0.53 (KS=0.06). Optimally, we want
the normalized length to cluster around 1 to include the full
solution. However, when k > 0, meaning that the prompt
includes lines of code, we find that for over 60 of the 164
problems, the highest-scored suggestion lies in [0, 0.2], and,
for at least 40 problems, it is the first token. This provides
some evidence that optimizing for acceptance can be biased
toward shorter suggestions since the highest-ranked sugges-
tion is often in the first few lines of the solution.

Limitations. However, there are important limitations in
our experiment. First, the model m is only trained on Copi-
lot suggestions. Thus, the bias towards short suggestions can
be due in part to Copilot potentially showing short sugges-
tions. Maximizing acceptance would not alleviate such a
bias. Second, while the use of embeddings of the sugges-
tions for the reward model led to accurate predictions of ac-
cepts (AUC=0.701), they might be biased in some ways as
compared to alliance on fine-tuning the language model.
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