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Abstract

We introduce a novel definition for a small set R of k points
being representative of a larger set in a metric space. Given
a set V (e.g., documents or voters) to represent, and a set C
of possible representatives, our criterion requires that for any
subset S comprising a θ fraction of V , the average distance
of S to their best θ · k points in R should not be more than a
factor γ compared to their average distance to the best θ · k
points among all of C. This definition is a strengthening of
proportional fairness and core fairness, but - different from
those notions - requires that large cohesive clusters be repre-
sented proportionally to their size.
Since there are instances for which - unless γ is polynomi-
ally large - no solutions exist, we study this notion in a re-
source augmentation framework, implicitly stating the con-
straints for a set R of size k as though its size were only
k/α, for α > 1. Furthermore, motivated by the application
to elections, we mostly focus on the ordinal model, where
the algorithm does not learn the actual distances; instead, it
learns only for each point v in V and each candidate pairs
c, c′ which of c, c′ is closer to v. Our main result is that the
EXPANDING APPROVALS RULE of Aziz and Lee is (α, γ)
representative with γ ≤ 1 + 6.71 · α

α−1
.

Our results lead to three notable byproducts. First, we show
that the EXPANDING APPROVALS RULE achieves constant
proportional fairness in the ordinal model, giving the first
positive result on metric proportional fairness with ordinal in-
formation. Second, we show that for the core fairness objec-
tive, the EXPANDING APPROVALS RULE achieves the same
asymptotic tradeoff between resource augmentation and ap-
proximation as the recent results of Li et al., which used
full knowledge of the metric. Finally, our results imply a
very simple single-winner voting rule with metric distortion
at most 44.

1 Introduction
Selecting representatives for a large set is a common and
central problem across a wide range of application areas. As
three paradigmatic applications, consider selecting a small
set of documents (such as pictures or text) representing a
much larger collection, selecting a committee of representa-
tives for a large population, or selecting locations for several
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public facilities to serve the population of a city. Naturally,
there are many ways of defining what it means for a candi-
date set to be “representative”; we discuss some key defini-
tions from past work in Section 5.

A commonly accepted notion of representation is based
on proportionality (Humphreys 1911; Moulin 2003): sub-
groups of the population should be represented in the se-
lected set proportionally to their size. That is, if a cohesive
subset S comprises a θ fraction of the documents/popula-
tion, then (at least) roughly a θ fraction of the representa-
tive set should be similar to the members of S. In terms of
documents, this implies that by examining the representa-
tive documents, a user can accurately assess the contents of
the document collection. For committee elections, it states
that large like-minded groups of the population should be
suitably represented in the committee. And for the location
of public facilities, it implies that dense population centers
should be sufficiently served with nearby facilities. Indeed,
notions of fairness or representation based on this intuition
have been studied extensively, as discussed in Section 5.

We are particularly interested in the common setting in
which the documents or candidates/population are embed-
ded in a metric space in which distances capture dissim-
ilarity. For documents, this is often the result of feature-
based embeddings applied to the documents, and for the
selection of public facilities, the metric is naturally derived
from geographic proximity or transportation times. For vot-
ers and candidates in elections, the idea of considering all
agents as embedded in a metric space, and their prefer-
ences being reflective of the distances, was first articulated
as single-peaked preferences (where the metric space is the
line, e.g., representing a one-dimensional left-to-right spec-
trum of opinions) (Black 1948; Moulin 1980), but also sub-
sequently generalized to other metrics (Barberà, Gul, and
Stacchetti 1993; Merrill and Grofman 1999).

Our first main contribution (in Section 2) is a natural and
novel definition of what it means for a set R of k points
to “represent” a larger set V in a metric space; our notion
is a strengthening of the notion of core fairness proposed
recently by Li et al. (2021).

Our second main contribution (in Section 4) is to show
that a natural algorithm (a special case of the EXPANDING
APPROVALS RULE of Aziz and Lee (2020)) achieves strong
representativeness guarantees for the new definition. It does
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so even though it works in the ordinal model (see Section 3),
in which the algorithm only learns, for each voter/documen-
t/citizen, the ranking of potential representatives by increas-
ing distances (but not the distances themselves). As immedi-
ate corollaries of our analysis, we obtain the first algorithm
with constant proportional fairness for metric costs in the or-
dinal model, an algorithm with ordinal information achiev-
ing — up to constants — the same parameter tradeoff for ap-
proximate core fairness as the one of Li et al. (2021) (which
had access to the full metric), as well as an extremely sim-
ple single-winner voting rule with constant metric distortion;
see Section 4.

Finally, we show that when the algorithm has access
to all the distances, a slight modification of the GREEDY
CAPTURE algorithm of Chen et al. (2019) provides im-
proved constants in the representativeness guarantees. Due
to space constraints, this result is deferred to the full version
(Kalayci, Kempe, and Kher 2023), as are all proofs missing
from the main body of this paper.

2 The Key Fairness Concepts
Our first main contribution is a new definition of a represen-
tative set in a metric space. Our definition is a strengthening
of the notion of core fairness proposed by Li et al. (2021),
and — as that definition does — naturally recovers an ap-
proximate median as a special case for k = 1.

We consider settings in which a set V should be “well
represented” by a subset of a set1 C; for examples, see Sec-
tion 1. We write n = |V | and m = |C| for the sizes of the
sets, and k < m for the size of the subset of C that is to be
selected. For concreteness in our nomenclature, we will re-
fer to V as voters and C as candidates throughout, although
we do not exploit any specific properties of this domain.

We assume that V ∪ C is embedded in a (pseudo-)metric
space (V ∪ C, d).2 The goal is to pick a set R ⊆ C of k
representatives to ensure that each sufficiently large subset
S ⊆ V is “well represented”, in a sense we define next. In
keeping with the voting-related nomenclature, we will refer
to R as a committee and to S as a coalition.

We write dsum(X,Y ) =
∑
x∈X,y∈Y d(x, y) for the sum

of distances between all pairs in X × Y . When X = {x} is
a singleton, we write dsum(x, Y ) = dsum({x} , Y ).

2.1 Proportional Representation
Recall that our goal is to ensure that all sufficiently large
coalitions of voters are well represented. Specifically, if a
coalition S comprises a θ fraction of all voters, at least a θ
fraction of the committee should be approximately closest to
S as a whole. To phrase this requirement cleanly, we recall

1V = C — the most natural case when selecting documents,
and a case corresponding to peer selection in the context of elec-
tions — is of course allowed.

2Recall that a metric is a non-negative function d on pairs sat-
isfying that d(x, x) = 0 for all x, symmetry (d(x, y) = d(y, x)
for all x, y), triangle inequality (d(x, z) ≤ d(x, y) +d(y, z) for all
x, y, z), and positivity (d(x, y) > 0 whenever x 6= y). A pseudo-
metric is allowed to violate positivity, i.e., multiple points of the
metric space can be at distance 0 from each other.

the definition of the Hare Quota p = dn/ke, the number
of voters/documents represented by any one selected candi-
date/document/facility. As articulated by Li et al. (2021) in
their definition of (approximate) core fairness, any coalition
S whose size is at least the Hare Quota should have at least
one roughly satisfactory representative inR. Our generaliza-
tion requires that, for any positive integer t, each member of
a coalition S of size |S| ≥ t · p should have at least t rep-
resentatives in R, such that no other t candidates are much
better for the coalition compared to their individual best t
members in R.

Definition 2.1 (γ-proportionally representative committee).
A committee R is called γ-proportionally representative if
for every coalition S ⊆ V of size at least t ·p, the committee
satisfies:∑

v∈S
min
R′

v⊆R
|R′

v|=t

dsum(v,R′v) ≤ γ · min
C′⊆C
|C′|=t

dsum(S,C ′). (1)

Definition 2.1 captures a notion of approximate stability:
no sufficienty large coalition S of voters could find an al-
ternative committee for themselves of corresponding size t
which they strongly prefer over their individually best size-
t subcommittees of R. Note that proportional representa-
tion (Definition 2.1) is a more demanding requirement than
approximate core fairness in the sense of Li et al. (2021),
as defined in Definition 2.3; we will elaborate on this in
more detail below. A positive feature of Definition 2.1 is
that it does not require a notion of “cohesive” coalitions
which must be represented. Rather, a requirement for all suf-
ficiently large coalitions is given; however, the requirements
for very spread-out coalitions are typically trivially satisfied,
because such coalitions do not have attractive alternatives to
deviate to.

While natural and intuitive, our definition of proportional
representation is unfortunately too demanding; Li et al.
(2021) already showed that there are instances for which
the (1,Ω(

√
n))-core3 is empty. Since Definition 2.1 has ad-

ditional constraints, we can in general not hope for γ =
o(
√
n).

Therefore, as in Li et al. (2021), we relax Definition 2.1
by allowing for resource augmentation — see Jiang, Mu-
nagala, and Wang (2020) for another example and discus-
sion of the use of resource augmentation to deal with im-
possibility of proportional representation. Specifically, for a
resource augmentation parameter α ≥ 1, we consider the
problem of selecting a committee of size k, but require the
weaker stability guarantee for a committee of (smaller) size
k/α, as captured by the following definition.

Definition 2.2 ((α, γ)-proportionally representative com-
mittee). For a resource augmentation parameter α ≥ 1, a
committee R is called (α, γ)-proportionally representative

3The instances described in Li et al. (2021) require n = Θ(k2).
In the full version (Kalayci, Kempe, and Kher 2023), we give a sim-
ple class of instances showing a slightly more fine-grained lower
bound of Ω(min(k, n/k)), thus giving a lower bound for the en-
tire range of k.
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if for every coalition S ⊆ V of size at least t · α · p, the
committee satisfies:∑

v∈S
min
R′

v⊆R
|R′

v|=t

dsum(v,R′v) ≤ γ · min
C′⊆C
|C′|=t

dsum(S,C ′). (2)

Definition 2.2 is a strengthening of the definition of ap-
proximate core in Li et al. (2021), defined as follows:
Definition 2.3 (Approximate Core). For a resource aug-
mentation parameter α ≥ 1, a committee R is in the (α, β)-
core if for every coalition S ⊆ V of size at least α · p, the
committee R satisfies:∑

v∈S
min
rv∈R

d(v, rv) ≤ β ·min
c∈C

dsum(S, c). (3)

Thus, the definition of the (α, β)-core4 is obtained by re-
quiring only the constraints for t = 1 in Definition 2.2.

After augmenting resources, the definition becomes less
stringent, and one may ask if approximation in the objec-
tive can be avoided, i.e., whether γ = 1 (or β = 1) can be
achieved. We show that this is in general not possible; in the
full version (Kalayci, Kempe, and Kher 2023), we prove the
following lower bound, which already holds for the weaker
notion of approximate core in the sense of Li et al. (2021):
Proposition 2.4. For every α ≥ 1, there are instances for
which the (α, 1 + 1/(2α))-core is empty, and so, no (α, 1 +
1/(2α))-proportional representation exists.

Furthermore, in the full version (Kalayci, Kempe, and
Kher 2023), we show that when α→ 1, a large blowup in γ
is unavoidable in general. Again, we show this lower bound
result already for the approximate core:
Proposition 2.5. There are α arbitrarily close to 1 and cor-
responding instances for which the (α, 1/(4(α − 1)))-core
is empty, and so, no (α, 1/(4(α − 1)))-proportional repre-
sentation exists.

Note that Proposition 2.5 provides an asymptotically
matching lower bound for Theorem 19 of Li et al. (2021).

While we cannot achieve α ≈ 1 or γ ≈ 1 without a
large blowup in the other parameter, we still seek to de-
sign (polynomial-time) algorithms for computing commit-
tees achieving a good tradeoff between α and γ; indeed, this
is the main goal of our work, studied in Section 4.

2.2 Proportional Representation, Core Fairness,
and Proportionally Fair Clustering

As discussed above, proportional representation is a natural
strengthening of the notion of core fairness. Another closely
related concept is proportional fairness, introduced in the
field of clustering by Chen et al. (2019), and studied further
by Micha and Shah (2020). Here, the setup is the same, and
the committee R is construed as cluster centers:
Definition 2.6 (γ-proportional fairness). A committee R of
size k is γ-proportionally fair if for every voter coalition S of
size at least p and every alternate candidate c, at least one
voter v ∈ S satisfies minr∈R d(v, r) ≤ γ · d(v, c).

4We use γ in place of β in Li et al. (2021) to emphasize the
difference in the definitions.

Li et al. (2021) already pointed out that every commit-
tee in the (1, β)-core according to their definition is also β-
proportionally fair. Since (1, β)-proportional representation
implies membership in the (1, β)-core, it is strictly stronger
than β-proportional fairness.

We discuss key differences between Definitions 2.1, 2.3
and 2.6, as well as their implications. We believe that they
justify Definition 2.1 as a more suitable notion of represen-
tativeness of a committee.

1. Regardless of the size of S and k, the definition of ap-
proximate core (and thus also proportionally fair cluster-
ing) only requires the existence of a single candidate c
that is preferred in order to “satisfy” S. As a result, a
large committee R could significantly distort the compo-
sition of V .
For example, consider k = 100, with two clusters V1, V2,
containing 99% and 1% of the voters, respectively. The
two clusters are far from each other, and each has a large
number of possible candidates, all at distance 1 from each
voter in the cluster. Then, R could contain 99 candidates
close to V2 and one candidate close to V1, while sat-
isfying Definition 2.3 and Definition 2.6 with β = 1.
The exact same types of distances can be used to obtain
similarly non-proportional outcomes for Example 1 in Li
et al. (2021). In a sense, neither Definition 2.3 nor Def-
inition 2.6 include a notion of proportionality, and thus,
they fail to achieve it.

2. Definition 2.6 suffers from a second weakness, which is
fixed by Definition 2.3: for small k (in particular, k = 1),
it is extremely lenient. In fact, for k = 1, it allows
the chosen candidate to be any candidate not Pareto-
dominated by another; among others, this includes any
candidate ranked first by at least one voter. This is a very
weak requirement for a chosen candidate being “repre-
sentative”. In contrast, any candidate in the (1, β)-core
(and thus any candidate who is (1, β)-representative)
must be a β-approximate median of the voters, a much
more meaningful sense of being representative.

3. The distinction between the definitions can also be
viewed through the lens of whether the utility from de-
viations is transferable within the deviating coalition, as
pointed out by Li et al. (2021). While proportionally fair
clustering implicitly assumes non-transferable utilities,
Definition 2.3 as well as Definition 2.1 correspond to
transferable utilities, leading to a larger set of “devia-
tion threats”. Notice that the question of whether utility
is transferable also arises in more “classical” definitions
of the core (e.g., Peters (2015)).

3 The Ordinal Information Model
While the assumption of a known metric is reasonable for
finding representative documents or the location of public
facilities, for the election of a committee, the metric space
is a useful modeling tool, but typically not known explic-
itly. Rather, the voters are assumed to rank the candidates
by non-decreasing distance from themselves, and the algo-
rithm has access to the rankings, but not the distances. De-
spite this limited information (after all, many different met-
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rics may be consistent with the rankings), an algorithm or
voting rule should select an approximately optimal solution,
in our case, a proportionally representative set R exhibiting
a good tradeoff between α and γ.

This framework is called the ordinal information model of
the metric distortion5 framework (Anshelevich et al. 2018,
2021a,b; Caragiannis, Shah, and Voudouris 2022), contrast-
ing it with the cardinal model, in which the metric is known
explicitly. The worst-case loss in the objective function due
to the lack of information is called (metric) distortion, and
has been studied for numerous optimization problems. Most
notable is the by now extensive line of work on the dis-
tortion of single-winner elections (Anshelevich, Bhardwaj,
and Postl 2015; Anshelevich et al. 2018; Munagala and
Wang 2019; Gkatzelis, Halpern, and Shah 2020; Kizilkaya
and Kempe 2022; Gkatzelis, Latifian, and Shah 2023); how-
ever, more complex objectives have also been studied (An-
shelevich et al. 2021b,a; Anshelevich and Zhu 2021; Anari,
Charikar, and Ramakrishnan 2023).

Viewed in this context, under the ordinal information
model, our goal of selecting a committee R can be viewed
as a natural extension of the metric distortion objective to
multi-winner elections; a detailed comparison to other re-
cently proposed multi-winner distortion objectives is given
in Section 5.

We now define the concepts formally. The algorithm
learns, for each voter v ∈ V , a ranking of candidates �v .
Voters rank candidates by non-decreasing distances, so c �v
c′ implies that d(v, c) ≤ d(v, c′). We use πv(c) to denote the
position of candidate c in v’s ranking, with π−1v (1) being v’s
most preferred candidate. We write �V = (�v)v∈V for the
vector of all voters’ rankings, and refer to it as the ranked-
choice profile. An election consists of the triple (V,C,�V ).
We say that a pseudo-metric d is consistent with the ranked-
choice profile �V if it satisfies that d(v, c) ≤ d(v, c′) when-
ever c �v c′, for all v, c, c′.

An ordinal committee selection rule f receives as input
the committee size k and the election (V,C,�V ), and out-
puts a committee R ⊆ C of size k.

Our notion of proportional representation for ordinal
models in committee selection rules is closely related to,
and intended to be a natural generalization of, the concept
of metric distortion for single-winner elections. Recall that
the metric distortion of a single-winner voting rule f is the
worst-case ratio (over all elections, and all metrics consis-
tent with the election) of the total cost of the chosen winner
relative to the total cost of the optimum candidate, i.e.,

max
(V,C,�V )

max
d consistent with�V

dsum(V, f(V,C,�V ))

minc∈C dsum(V, c)
.

As a result, notice that in the special case when k = 1 and
α = 1, a committee selection rule f is γ-proportionally rep-
resentative if and only if f is a single-winner voting rule

5A parallel line of work (e.g., (Boutilier et al. 2015; Boutilier
and Rosenschein 2016; Procaccia and Rosenschein 2006)) consid-
ers the same tradeoff of ordinal vs. cardinal information in a setting
in which the rankings are derived from positive utilities rather than
distances/costs.

with metric distortion at most γ. This is because the only
coalition of size p = n is S = V , so the optimal γ value in
Eq. (2) corresponds to the metric distortion.

4 Our Main Result
Our second main contribution — and the key technical
work in this paper — is to show that a very natural al-
gorithm, namely, a special case of the EXPANDING AP-
PROVALS RULE of Aziz and Lee (2020), selects an (α, γ)-
proportionally representative committee R of size k which
achieves constant α and γ; furthermore, it does so even in
the ordinal model.

The algorithm runs in iterations, parametrized by a tol-
erance parameter τ , which starts at 1 and increases in each
round. In iteration τ , the algorithm considers, in some ar-
bitrary order, each (remaining) voter as approving their top
τ choices. As soon as at least p = dn/ke of the remaining
voters approve of a particular candidate c, this candidate is
added to the committee, and those p voters are permanently
removed from further consideration. We will say that c cov-
ers these voters. The fact that the algorithm processes the
voters in an arbitrary order (instead of simultaneously) in
each iteration achieves an (arbitrary) tie breaking implicitly,
so the algorithm does not have to consider ties between mul-
tiple candidates becoming eligible for inclusion. This pro-
cess continues until a committee of size k has been formed.
The algorithm is described formally as Algorithm 1.

Algorithm 1: EXPANDING APPROVALS RULE

Input: Election (V,C,�V ), Committee Size k
Output: Committee R

Let U ← V be the set of uncovered voters.
Let R← ∅ be the selected committee.
Let Nc ← ∅ for all c ∈ C.
for τ = 1, . . . ,m do

for v ∈ V in arbitrary order do
if v ∈ U then

Let c = π−1v (τ).
if c /∈ R then

Let Nc ← Nc ∪ {v}.
if |Nc| = dn/ke then

R← R ∪ {c}.
Nc′ ← Nc′ \Nc for all c′ ∈ C \R.
U ← U \Nc.
We say that Nc has been covered by c.

if |R| < k then add k − |R| arbitrary candidates to R.

The running time of Algorithm 1 is essentially linear. The
analysis of the running time, as well as a discussion of why
precisely the algorithm is a special case of the EXPAND-
ING APPROVALS RULE, is given in the full version (Kalayci,
Kempe, and Kher 2023).

Theorem 4.1. The EXPANDING APPROVALS RULE out-
puts a committee R of size k which is (α, γ(α))-
proportionally representative for all α > 1, with γ(α) =

1 + 7+
√
41

2 · α
α−1 ≈ 1 + 6.71 · α

α−1 .
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Theorem 4.1 gives guarantees only for α > 1, and Propo-
sition 2.5 shows that this is unavoidable for decent approx-
imation guarantees, unless k is very small or large. When
resources are not augmented, i.e., for α = 1, we obtain the
following weaker guarantee, which is proved in the full ver-
sion (Kalayci, Kempe, and Kher 2023).

Theorem 4.2. The output R of Algorithm 1 is (1, O(n/k))-
proportionally representative.

Our analysis directly implies several novel results. First,
an immediate corollary of a key lemma in the proof of Theo-
rem 4.1 is that the EXPANDING APPROVALS RULE achieves
proportional fairness 5.71; this constitutes the first result
achieving constant proportional fairness with metric costs
in the ordinal information model:

Corollary 4.3. The EXPANDING APPROVALS RULE is a
5+
√
41

2 ≈ 5.71-proportionally fair clustering algorithm un-
der the ordinal information model with metric costs.

The constant 5+
√
41

2 is larger than the best proportional
fairness achievable with full knowledge of the metric space,
which is 1 +

√
2 ≈ 2.41 (Chen et al. 2019; Micha and

Shah 2020). This is perhaps not surprising, given that in
the ordinal information model, the algorithm is missing cru-
cial information. Indeed, in the extended version (Kalayci,
Kempe, and Kher 2023), we give an instance in which un-
der the ordinal information model, no deterministic algo-
rithm can produce a γ-proportionally fair committee for any
γ < 2 +

√
5 ≈ 4.23; thus, there is necessarily a gap be-

tween the best proportional fairness achievable in the car-
dinal and ordinal models. Obtaining the best possible pro-
portional fairness guarantees under metric costs and ordinal
information is an interesting direction for future work.

A second corollary can be immediately obtained
from Theorem 4.1 and Theorem 4.2: because (α, β)-
representativeness implies being in the (α, β)-core, the guar-
antees of Theorem 4.1 and Theorem 4.2 apply verbatim
to the latter. Thus, the EXPANDING APPROVALS RULE
achieves approximate core fairness in the ordinal metric cost
model; this, too, is the first positive result on core fairness in
the ordinal metric cost model.

Corollary 4.4. The committee R output by Algo-
rithm 1 is in the (α, β(α))-core for all α > 1, with
β(α) = 1 + 7+

√
41

2 · α
α−1 ≈ 1 + 6.71 · α

α−1 . It is also in the
(1, O(n/k))-core.

Note that these bounds match the information-theoretic
lower bound of Proposition 2.5 and the lower bound of
Ω(min(k, n/k)) for α = 1 (detailed in the full version
(Kalayci, Kempe, and Kher 2023)) up to constant factors.
They mirror (with slightly worse constants) the bounds ob-
tained by Li et al. (2021) in the model with known distances
(Theorem 19).

A third corollary, gives an extremely simple single-winner
voting rule with constant metric distortion.

Corollary 4.5. For a given set of candidates C and vot-
ers V , consider the following voting rule: find a candidate c
who is in the top τ positions of at least dn/2e voters, for the

smallest possible τ . (Break ties arbitrarily.) Find a candi-
date c′ who is in the top τ ′ positions of the remaining bn/2c
voters, for the smallest possible τ ′. (Again, break ties arbi-
trarily.) Return the one of c, c′ preferred by a majority of
voters.

This voting rule has metric distortion at most 44 for the
single-winner election (V,C,�V ).

While the distortion guarantee of 44 given by Corol-
lary 4.5 is worse than the (optimal) metric distortion of 3
achieved by Gkatzelis, Halpern, and Shah (2020); Kizilkaya
and Kempe (2022), this voting rule is arguably even sim-
pler than the rules previously known to achieve constant
metric distortion (COPELAND (Anshelevich et al. 2018),
PLURALITY-MATCHING (Gkatzelis, Halpern, and Shah
2020), PLURALITY-VETO (Kizilkaya and Kempe 2022)).

4.1 Stronger Proportional Fairness
In the analysis of Algorithm 1, a central concept is for any
coalition S the set of all chosen representative candidates
r ∈ R who covered at least one voter in S. We formally de-
fine this notion; recall here thatNr is defined in Algorithm 1:

Definition 4.6 (Representatives for a Coalition). The set
of representatives for the coalition S ⊆ V is defined as
R[S] = {r ∈ R | Nr ∩ S 6= ∅}, i.e., R[S] ⊆ R is the set
of candidates r ∈ R whose neighborhood contains at least
one voter in S.

We show that the committee R returned by Algorithm 1
satisfies a somewhat stronger notion of proportional fairness,
i.e., a modification of Definition 2.6. Lemma 4.7 — proved
in the full version (Kalayci, Kempe, and Kher 2023) —
shows that for any coalition S, the representatives R[S] are
already sufficiently attractive that S will not unanimously
deviate. The guarantee differs from Definition 2.6 only in
the slight strengthening of replacing R with R[S].

Lemma 4.7. The committee R output by Algorithm 1 has
the following stability property, with ρ = 5+

√
41

2 ≈ 5.71:
For every coalition S of size |S| ≥ p = dn/ke, there exists
a voter minr∈R[S] d(v, r) ≤ ρ ·minc∈C\R d(v, c).

Because R[S] ⊆ R, Lemma 4.7 implies that Algorithm 1
outputs a 5+

√
41

2 -proportionally fair clustering in the ordinal
information model, which proves Corollary 4.3.

4.2 Proof of Theorem 4.1 and Corollaries
Proof of Theorem 4.1. Using Lemma 4.7, we are now ready
to complete the proof of Theorem 4.1. We will show that the
committee R returned by Algorithm 1 satisfies a stronger
stability guarantee than the claimed (α, γ)-proportional rep-
resentation. We will show that for every coalition S ⊆ V of
size at least t · α · p, the committee satisfies:

min
R′⊆R
|R′|=t

dsum(S,R′) ≤ γ · min
C′⊆C
|C′|=t

dsum(S,C ′). (4)

That is, for the coalition S, there is a subcommittee R′ of
size t which is almost as good as the best C. Note that the
cost of S for R′ is an upper bound on the sum of costs for
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voters v ∈ S for their individually optimal size-t subcom-
mittees.

Let S be an arbitrary coalition of size |S| ≥ t · α · p. Let
C∗ ∈ argminC′:|C′|=t dsum(S,C ′) be a set of t candidates
with smallest total distance to S. We will define a perfect
matching between C∗ and R such that for every c ∈ C∗, its
match r ∈ R is an “approximately good” alternative. Over-
all, this will demonstrate that R is not much worse than C∗.

Let c1, c2, . . . , ct be an enumeration of the candidates in
C∗, such that the candidates in C∗ ∩ R precede the ones
in C∗ \ R; apart from this requirement, the order can be
arbitrary. We define the matching representatives r1, . . . , rt
iteratively. First, for each ci ∈ C∗ ∩ R, we define ri =
ci. Subsequently, for each iteration i, having already defined
r1, . . . , ri−1, we let Si = S \

⋃i−1
j=1Nrj , i.e., Si is the set of

all voters in S except those covered by the first i−1 selected
candidates rj . Let Ti ∈ argminT⊆Si,|T |=p

∑
v∈T d(v, ci)

be a subset of Si of size |Ti| = p comprising the p voters in
Si closest to ci (ties broken arbitrarily). As |S| ≥ dα · t · pe
and each Nrj has size at most p, |Si| has size at least p for
each i, and thus Ti is well defined. Because ci /∈ R in the
current case, by Lemma 4.7, there exists a voter vi ∈ Ti and
candidate ri ∈ R[Ti] ⊆ R[S] such that

d(vi, ri) ≤ ρ · d(vi, ci). (5)

Now, we confirm that the resulting assignment is indeed a
matching. Observe that by definition of R[Si], we know that
Si ∩ Nrj = ∅ for all j < i; in particular, rj /∈ R[Si] for
all j < i. This implies that r1, . . . , rt are distinct from each
other, and so the assignment is a matching. We also remark
here that Eq. (5) holds for the i with ci ∈ R as well, because
ri = ci implies d(vi, ri) = d(vi, ci) for those candidates.

In the rest of the proof, we will show that ri is an ap-
proximately good alternative to ci for all of S, showing
that dsum(S, ri) < γ(α) · dsum(S, ci). Fix an arbitrary in-
dex i ∈ {1, . . . , t}. Let v̂i be a voter in Ti maximizing the
distance d(v, ci) to ci over all v ∈ Ti, i.e., a voter at (or pos-
sibly tied for) the pth largest distance from ci among voters
in Ti. For any voter v ∈ S, using the triangle inequality and
(5), we can bound the distance

d(v, ri) ≤ d(v, ci) + d(vi, ci) + d(vi, ri)

≤ d(v, ci) + (1 + ρ) · d(vi, ci) (6)
≤ d(v, ci) + (1 + ρ) · d(v̂i, ci)

≤ d(v, ci) + (1 + ρ) ·max {d(v, ci), d(v̂i, ci)} .

Let Pi = {v ∈ S | d(v, ci) < d(v̂i, ci)} be the subset of S
containing all voters v with d(v, ci) < d(v̂i, ci). Because Ti
was chosen to be the p voters closest to ci inside Si, and
v̂i the voter furthest from ci in Ti, we get that Pi ⊆ Ti ∪⋃i−1
j=1Nrj and so |Pi| ≤ p · i. Summing the distances to ri

over all voters v ∈ S, and using (in the second step) that

d(v̂i, ci) ≤ d(v, ci) for all v ∈ S \ Pi, we obtain the bound∑
v∈S

d(v, ri)−
∑
v∈S

d(v, ci)

≤ (1 + ρ)

∑
v∈Pi

d(v̂i, ci) +
∑

v∈S\Pi

d(v, ci)


≤ (1 + ρ)

(
|Pi|

|S| − |Pi|
+ 1

) ∑
v∈S\Pi

d(v, ci)

≤ (1 + ρ)

(
p · i

|S| − p · i
+ 1

) ∑
v∈S\Pi

d(v, ci)

≤ (1 + ρ)

(
1

α− 1
+ 1

) ∑
v∈S\Pi

d(v, ci)

≤ (1 + ρ)
α

α− 1
·
∑
v∈S

d(v, ci).

In the penultimate step, we used that p·i
|S|−p·i ≤

p·i
α·p·i−p·i =

1
α−1 . Finally, by rearranging the inequality and summing up
over all indices i, we obtain
t∑
i=1

dsum(S, ri) ≤
(

1 + (1 + ρ) · α

α− 1

)
·

t∑
i=1

dsum(S, ci).

Substituting ρ = 5+
√
41

2 now completes the proof.

As a special case of Theorem 4.1 and Theorem 4.2, we
obtain Corollary 4.4, simply by focusing on just the case
t = 1 in Theorem 4.1. In fact, by recalling that the proof of
Theorem 4.1 established the somewhat stronger guarantee
Eq. (4), we obtain the following Corollary 4.8, strengthening
Corollary 4.4. This corollary states that no coalition of at
least α · p voters (for α > 1) has a candidate outside R
whom they strongly prefer on average to their best single
candidate in R[S]:
Corollary 4.8. Let R be the committee output by the EX-
PANDING APPROVALS RULE. Let α > 1, and β(α) =

1 + 7+
√
41

2 ·
(

α
α−1

)
≈ 1 + 6.71 ·

(
α
α−1

)
. For any coalition

S of size |S| ≥ α · p,

min
r∈R[S]

dsum(S, r) ≤ β(α) · min
c∈C\R

dsum(S, c).

Finally, we show how Theorem 4.1 implies Corollary 4.5,
i.e., the existence of an extremely simple single-winner vot-
ing rule with constant distortion.

Proof of Corollary 4.5. Consider the committee R output
by Algorithm 1 when run with k = 2. By Theorem 4.1, ap-
plied with α = n/p ≤ 2, we get that minr∈R dsum(V, r) ≤
γ(2) ·minc∈C dsum(V, c). This implies that at least one rep-
resentative in R has distortion at most γ(2) ≈ 14.42 for the
single-winner election. Let r1 be the winner of the majority
election between the two candidates in R, and r2 the other
candidate. Since r1 is preferred over r2 by at least half of the
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voters, Lemma 6 of Anshelevich et al. (2018) implies that
dsum(V, r1) ≤ 3dsum(V, r2). This implies that r1 has distor-
tion at most 3 ·γ(2) ≤ 44 for the single-winner election.

5 Related Work
Representing a large point set is also a — explicit or implicit
— goal of clustering points in a metric space. A review of
this very large literature is beyond the scope of our work. Of
the common objective functions (most notably, k-center, k-
means, and k-median), k-median (Arya et al. 2001) is clos-
est to our objective here, since it minimizes the sum of dis-
tances of points to the respective closest selected k cluster
centers. In the basic definition, like proportionally fair clus-
tering, it suffers from the fact that a large and dense cluster
can be “served” by just one selected representative.

Capacitated versions address this issue by limiting the
number of points “served” by a cluster center (see, e.g.,
Byrka et al. (2015)). Our algorithms similarly assign to each
representative c a subset of size p from V that c “covers”.
To appreciate the difference, suppose that roughly p points
are at a large distance M from all others points which are
within a unit circle. If a representative is at distance (1−ε)M
from these remote points, a k-median solution might in-
clude it since the objective reduction by εM would outweigh
any decisions made within the unit circle. In contrast, our
proportional representation objective might exclude it since
the relative improvement would be marginal. Thus, the pro-
portional representation objective is much less sensitive to
few outliers. It should also be noted that both objectives re-
quire resource augmentation for positive results (Byrka et al.
2015). Nonetheless, it would be interesting to explore the
link between these two objectives and determining if one
implies non-trivial guarantees for the other.

Several papers have proposed extensions of the notion of
(metric) distortion to multi-winner (or committee) elections.
Goel, Hulett, and Krishnaswamy (2018) consider the cost
of a set R to be the sum of all distances between V and
the members ofR. Because this sum decomposes, it is mini-
mized by choosing the k candidates individually closest to V
(in terms of sums of distances); as a result, the setR tends to
be as “homogeneous” as possible. An alternative notion was
proposed by Caragiannis, Shah, and Voudouris (2022). Their
definition is parametrized by q ≤ k: each individual v ∈ V
evaluates the cost of R as the cost of the qth closest repre-
sentative in R; the objective to minimize is then the sum of
these costs. When q = 1, the objective coincides with (un-
capacitated) k-median; in contrast, for q = k, a committee
has low cost for v only if all of its members are close to v.
Thus, in the regime of large q, the definition suffers from the
same drawback as that of Goel, Hulett, and Krishnaswamy
(2018): it rewards committeesR (almost) all of whose mem-
bers are close to the largest cluster within V . Caragiannis,
Shah, and Voudouris (2022) show that while the objective
can be well approximated with ordinal information in the
“homogeneous” case q > k/2, the distortion is unbounded
for q < k/3; though no results are shown under resource
augmentation.

There has been prior work relating notions of fairness,
multi-winner elections, distortion, and the core. For exam-

ple, Ebadian et al. (2022) study the utilitarian distortion of
randomized single-winner voting rules. They use fairness
both as a tool to derive novel low-distortion randomized vot-
ing rules, and — in a different notion of proportional fairness
— as an optimization goal in its own right. They show that
α-approximate proportional fairness in their definition im-
plies membership in the α-core.

In general cooperative games, the notion of core captures
a stability desideratum: that the outcome be stable against
deviations by any subgroup of players seeking better utili-
ties. The exact coalitions and available “outside options” of
utilities give rise to specific core solution concepts.

In social choice, core definitions often emphasize pro-
portionality, suggesting that a θ fraction of the population
should “control” an equal fraction of the outcome (Moulin
2003). In the context of electing a committee, various no-
tions of core stability require that every sufficiently cohe-
sive and large voter group should sufficiently “approve”
of the committee. One branch of the literature explores
such notions in the context of approval ballots, i.e., each
voter either approves or disapproves each individual can-
didate. Depending on the precise definition of “cohesive-
ness” and “approval”, many versions of proportional rep-
resentation emerge (Aziz et al. 2017; Sánchez-Fernández
et al. 2017; Skowron 2021) (see also the survey by Lackner
and Skowron (2023)), which can be seen as stability or fair-
ness measures. With ranked ballots, these definitions can be
adapted by having voters approve their top τ choices, with
an adjustable parameter τ . This notion lies at the heart of ex-
panding approvals. Another research direction, illustrated by
the work of Cheng et al. (2020); Jiang, Munagala, and Wang
(2020), moves beyond expanding approvals, by defining the
core for ranked ballots through a lexicographical ordering
or costs associated with a (hidden) metric space. Chen et al.
(2019); Li et al. (2021) utilize these core definitions to ex-
plore fair clustering, which are key focal points of this paper
and are extensively discussed throughout.

6 Concluding Remarks and Open Questions
Aziz and Lee (2020) showed that the EXPANDING AP-
PROVALS RULE satisfies several desirable axiomatic prop-
erties for multi-winner elections, in addition to being a natu-
ral rule in its own right. We believe that our result thus adds
to the evidence for EXPANDING APPROVALS RULE being a
potentially useful rule to be used in practice.

In general, the constants in our upper and lower bounds
do not match. Closing the gaps for all of the notions of rep-
resentation studied here would be of interest, both in the
model with known metric space and with ordinal informa-
tion. Another possible direction of interest is to understand
under what natural conditions about the metric space a con-
stant factor in representativeness can be achieved without
resource augmentation.
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