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Abstract

In the allocation of indivisible goods, a prominent fairness
notion is envy-freeness up to one good (EF1). We initiate
the study of reachability problems in fair division by inves-
tigating the problem of whether one EF1 allocation can be
reached from another EF1 allocation via a sequence of ex-
changes such that every intermediate allocation is also EF1.
We show that two EF1 allocations may not be reachable from
each other even in the case of two agents, and deciding their
reachability is PSPACE-complete in general. On the other
hand, we prove that reachability is guaranteed for two agents
with identical or binary utilities as well as for any number
of agents with identical binary utilities. We also examine the
complexity of deciding whether there is an EF1 exchange se-
quence that is optimal in the number of exchanges required.

1 Introduction
Fair division, the study of how to allocate resources fairly
among competing agents, is a highly active research area at
the intersection of mathematics, economics, and computer
science. Recently, researchers have drawn connections be-
tween fair division and various other fields such as graph
theory (Bei et al. 2022; Bilò et al. 2022), extremal combina-
torics (Chaudhury et al. 2021; Berendsohn, Boyadzhiyska,
and Kozma 2022), two-sided matching (Freeman, Micha,
and Shah 2021; Igarashi et al. 2023b), and differential pri-
vacy (Manurangsi and Suksompong 2023), to name a few.

In fair division, the goal is typically to find an allocation
of the resource that is “fair” with respect to the agents’ pref-
erences. When allocating indivisible goods—such as books,
clothes, and office supplies—a prominent fairness notion in
the literature is envy-freeness up to one good (EF1). In an
EF1 allocation of the goods, an agent is allowed to envy an-
other agent only if there exists a good in the latter agent’s
bundle whose removal would eliminate this envy. The “up
to one good” relaxation is necessitated by the fact that full
envy-freeness is sometimes infeasible, as can be seen, for in-
stance, when two agents compete for a single valuable good.
It is well-known that an EF1 allocation always exists regard-
less of the agents’ valuations for the goods (Lipton et al.
2004; Budish 2011).

Copyright © 2024, Association for the Advancement of Artificial
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In this work, we take a different perspective by initiat-
ing the study of reachability in fair division. Given two fair
allocations—an initial allocation and a target allocation—
we are interested in whether the target allocation can be
reached from the initial allocation via a sequence of oper-
ations such that every intermediate allocation is also fair.
As an application of our problem, consider a company that
wants to redistribute some of its employees between its
departments. Since performing the entire redistribution at
once may excessively disrupt the operation of the depart-
ments, the company prefers to gradually adjust the distri-
bution while maintaining fairness among the departments
throughout the process. Another example is a museum that
plans to reallocate certain exhibits among its branches—
performing one small change at a time can help ensure a
seamless transition for the visitors. In this paper, we shall
use EF1 as our fairness benchmark and allow any two agents
to exchange a pair of goods in an operation. The reachabil-
ity between EF1 allocations, or lack thereof, is an interest-
ing structural property in itself; similar properties have been
studied in other collective decision-making scenarios such
as voting (Obraztsova et al. 2013; Obraztsova, Elkind, and
Faliszewski 2020).

Closest to our work is perhaps a line of work initiated by
Gourvès, Lesca, and Wilczynski (2017). These authors con-
sidered the “housing market” setting, where the number of
agents is the same as the number of goods and each agent
receives exactly one good. In their model, a pair of agents
is allowed to exchange goods if the two agents are neigh-
bors in a given social network and the exchange benefits
both agents. Their paper, along with a series of follow-up
papers (Huang and Xiao 2020; Li, Plaxton, and Sinha 2021;
Müller and Bentert 2021; Ito et al. 2023), explored the com-
plexity of determining whether an allocation can be reached
from another allocation in this model and its variants. More
broadly, reachability problems are also known as reconfigu-
ration problems (Nishimura 2018); examples of such prob-
lems that have been studied include minimum spanning tree
(Ito et al. 2011), graph coloring (Johnson et al. 2016), and
perfect matching (Bonamy et al. 2019).

1.1 Our Contributions
As is often done in fair division, we assume that every agent
is equipped with an additive utility function. We consider
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utilities general identical binary identical + binary

n = 2
connected? ✗ (Thm. 1) ✓ (Thm. 3) ✓ (Thm. 4) ✓ (Thm. 3/4)
optimal? ✗ (Thm. 2) ✓ (Thm. 3) ✓ (Thm. 4) ✓ (Thm. 3/4)

n ≥ 3
connected? ✗ (Thm. 1) ✗ (Thm. 13) ✗ (Thm. 12) ✓ (Thm. 10)
optimal? ✗ (Thm. 2) ✗ (Thm. 11) ✗ (Thm. 11) ✗ (Thm. 11)

Table 1: Overview of our results. The top row indicates the class of utility functions considered, “connected?” refers to whether
the EF1 exchange graph is always connected, and “optimal?” refers to whether there always exists an optimal EF1 exchange
path between any two EF1 allocations provided that the EF1 exchange graph is connected.

an “exchange graph” with allocations as vertices. The first
question we study is whether it is always possible for agents
to reach a target EF1 allocation from an initial EF1 allo-
cation by exchanging goods sequentially with each other
while maintaining the EF1 property in all the intermediate
allocations; in other words, we ask whether the subgraph of
the exchange graph consisting of all EF1 allocations is con-
nected. The second question is whether we could perform
this exchange process using as few exchanges as would be
required if the intermediate allocations need not be EF1; that
is, whether there exists an EF1 exchange path which is opti-
mal in terms of the number of exchanges required. Note that
each agent’s bundle size remains unchanged throughout the
process since every operation is an exchange of goods. Our
formal model is described in Section 2.

In Section 3, we investigate the basic setting where there
are only two agents. Perhaps surprisingly, we establish neg-
ative results even for this setting: the EF1 exchange graph
may not be connected, and even for those instances in which
it is connected, optimal EF1 exchange paths may not exist
between EF1 allocations. Therefore, we consider restricted
classes of utility functions, where the picture becomes much
more positive. Specifically, we show that an optimal EF1 ex-
change path always exists between any two EF1 allocations
if the utilities are identical or binary; this implies the con-
nectivity of the EF1 exchange graph in these cases as well.

In Section 4, we explore the general setting of three or
more agents. Interestingly, we show that finding the small-
est number of exchanges between two allocations is NP-hard
in this setting even if we disregard the EF1 restriction. In ad-
dition, we establish that deciding whether an EF1 exchange
path exists between two allocations is PSPACE-complete,
and deciding whether an optimal such path exists is NP-hard
even for four agents with identical utilities. We also examine
restricted utility functions in more detail. In particular, we
show that while connectivity of the EF1 exchange graph is
guaranteed for identical binary utilities, the same holds nei-
ther for identical utilities nor for binary utilities separately.
Furthermore, the optimality of EF1 exchange paths cannot
be guaranteed even for identical binary utilities. Overall, our
findings demonstrate that the case of three or more agents is
much less tractable than that of two agents in our setting.

With the exception of hardness results (Theorems 8, 9,
and 14), our results are summarized in Table 1. For the pos-
itive results, we also show that the corresponding exchange
paths can be found in polynomial time. All omitted proofs
can be found in the full version of our paper (Igarashi et al.
2023a).

2 Preliminaries

Let N be a set of n ≥ 2 agents, and M be a set of m ≥ 1
goods. We typically denote the agents by 1, . . . , n and the
goods by g1, . . . , gm. A bundle is a (possibly empty) sub-
set of goods. An allocation A = (A1, . . . , An) is an or-
dered partition of M into n bundles such that bundle Ai

is allocated to agent i ∈ N . An (allocation) size vector
s⃗ = (s1, . . . , sn) is a vector of non-negative integers such
that

∑
i∈N si = m and si = |Ai| for all i ∈ N .

Given N , M , and s⃗, define the exchange graph G =
G(N,M, s⃗) as a simple undirected graph with the following
properties: the set of vertices consists of all allocations A
with size vector s⃗, and the set of edges consists of all pairs
{A,B} such that B = (B1, . . . , Bn) can be obtained from
A = (A1, . . . , An) by having two agents exchange one
pair of goods with each other—that is, there exist distinct
agents i, j ∈ N and goods g ∈ Ai and g′ ∈ Aj such that
Bi = (Ai ∪ {g′}) \ {g}, Bj = (Aj ∪ {g}) \ {g′}, and
Bk = Ak for all k ∈ N\{i, j}. Note that the exchange graph
is a non-empty connected graph. A path from one alloca-
tion to another on the graph is called an exchange path. The
distance between two allocations is the length of a shortest
exchange path between them.

Each agent i ∈ N has a utility function ui : 2
M → R≥0

that maps bundles to non-negative real numbers. We write
ui(g) instead of ui({g}) for a single good g ∈ M , and as-
sume that the utility functions are additive, i.e., ui(M

′) =∑
g∈M ′ ui(g) for all i ∈ N and M ′ ⊆ M . The utility func-

tions are identical if ui = uj for all i, j ∈ N—we shall use
u to denote the common utility function in this case. The
utility functions are binary if ui(g) ∈ {0, 1} for all i ∈ N
and g ∈ M . An allocation A is envy-free up to one good
(EF1) if for all pairs i, j ∈ N such that Aj ̸= ∅, there exists
a good g ∈ Aj such that ui(Ai) ≥ ui(Aj \ {g}).

Given N , M , s⃗, and (ui)i∈N , define the EF1 exchange
graph H = H(N,M, s⃗, (ui)i∈N ) as the subgraph of the ex-
change graph G induced by all EF1 allocations, i.e., H con-
tains all vertices in G that correspond to EF1 allocations and
all edges in G incident to two EF1 allocations. As we shall
see later, EF1 exchange graphs are not always connected,
unlike exchange graphs. An exchange path using only the
edges in H is called an EF1 exchange path. An EF1 ex-
change path is optimal if its length is equal to the distance
between the two corresponding allocations (in G).

An instance consists of a set of agents N , a set of goods
M , a size vector s⃗, and agents’ utility functions (ui)i∈N .
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3 Two Agents
In this section, we examine properties of the EF1 exchange
graph when there are only two agents. We remark that this
is an important special case in fair division and has been the
focus of several prior papers in the area.1

We first consider the question of whether the EF1 ex-
change graph is necessarily connected. One may intuitively
think that with only two agents, an EF1 exchange path is
guaranteed between any two EF1 allocations because the
two agents only need to consider the envy between them-
selves. An agent may then carefully select a good from her
bundle to exchange with the other agent so as to ensure that
the subsequent allocation is also EF1. However, this in fact
cannot always be done, as our first result shows.

Theorem 1. There exists an instance with n = 2 agents
with the same ordinal preferences over the goods such that
the EF1 exchange graph is disconnected.

Proof. Consider the utility of the goods as follows:

g g1 g2 g3 g4 g5 g6 g7 g8
u1(g) 3 3 2 2 2 2 0 0
u2(g) 3 3 1 1 1 1 0 0

Let A and B be allocations such that A1 = B2 =
{g1, g2, g7, g8} and A2 = B1 = {g3, g4, g5, g6}—it can be
verified that both A and B are EF1. If there exists an EF1 ex-
change path between A and B, then there exists an EF1 allo-
cation A′ adjacent to A on the exchange path. Without loss
of generality, A′ can be reached from A by exchanging g3
with either g1 or g7. If g3 is exchanged with g1, then agent 1
envies agent 2 by more than one good. If g3 is exchanged
with g7, then agent 2 envies agent 1 by more than one good.
Therefore, neither of these exchanges leads to an EF1 allo-
cation, so A′ cannot be EF1. Hence, no EF1 exchange path
exists between A and B.

Next, we consider the question of whether an optimal EF1
exchange path always exists between two EF1 allocations.
By Theorem 1, even an EF1 exchange path may not exist,
so an optimal such path does not necessarily exist either.
We therefore focus on instances in which the EF1 exchange
graph is connected. It turns out that even for such instances,
an optimal EF1 exchange path still might not exist.

Theorem 2. There exists an instance with n = 2 agents sat-
isfying the following properties: the EF1 exchange graph is
connected, but for some pair of EF1 allocations, no optimal
EF1 exchange path exists between them.

Proof. Consider s⃗ = (3, 3) and the utility of the goods as
follows:

g g1 g2 g3 g4 g5 g6
u1(g) 5 3 1 0 2 2
u2(g) 0 3 1 5 2 2

1Plaut and Roughgarden (2020, Sec. 1.1.1) discussed the sig-
nificance of the two-agent setting in detail.

Let B be the allocation such that B1 = {g1, g2, g3} and
B2 = {g4, g5, g6}—it can be verified that B is EF1. We
first prove that the EF1 exchange graph is connected by con-
structing an EF1 exchange path between any EF1 allocation
A and the EF1 allocation B. If g1 is not with agent 1 or g4
is not with agent 2 in A, perform any exchange involving
g1 and/or g4 so that g1 is now with agent 1 and g4 is now
with agent 2. After the exchange, for each i ∈ {1, 2}, agent
i’s bundle is worth at least 5 to her, while any two goods
in agent (3 − i)’s bundle are worth at most 5 to agent i, so
the allocation is EF1. Now, we can exchange the goods in
{g2, g3, g5, g6} in an arbitrary order to reach B after at most
two more exchanges.

We next prove that an optimal EF1 exchange path be-
tween allocations C and D does not exist, where C1 =
{g2, g3, g4}, C2 = {g1, g5, g6}, D1 = {g4, g5, g6}, and
D2 = {g1, g2, g3}; it can be verified that both C and D are
EF1, and the distance between C and D is 2 (through ex-
changing g2 ↔ g5 and g3 ↔ g6). Suppose there exists an
optimal EF1 exchange path between C and D, and let C′ be
the EF1 allocation between C and D on the exchange path.
Since C and C′ are adjacent, one good from {g2, g3} must
be exchanged with one good from {g5, g6} in C to reach C′.
However, no matter which goods are exchanged with this re-
striction, there exists i ∈ {1, 2} such that agent i’s bundle is
worth 3 to her and agent (3 − i)’s bundle is worth 5 + 5 to
agent i, contradicting the EF1 property of C′. Therefore, no
optimal EF1 exchange path exists between C and D.

In light of these negative results, we turn our attention to
special classes of utility functions: identical utilities and bi-
nary utilities. We prove that for these two classes of utility
functions, the EF1 exchange graph is always connected, and
moreover, an optimal EF1 exchange path exists between ev-
ery pair of EF1 allocations.

Theorem 3. Let an instance with n = 2 agents and identi-
cal utilities be given. Then, the EF1 exchange graph is con-
nected. Moreover, there exists an optimal EF1 exchange path
between any two EF1 allocations, and this path can be com-
puted in polynomial time.

Theorem 4. Let an instance with n = 2 agents and bi-
nary utilities be given. Then, the EF1 exchange graph is
connected. Moreover, there exists an optimal EF1 exchange
path between any two EF1 allocations, and this path can be
computed in polynomial time.

To establish these results, we shall prove by induction on t
that two EF1 allocations with distance t have an optimal EF1
exchange path between them. For the base case t = 0, an
optimal EF1 exchange path trivially exists. For the inductive
step, let t ≥ 1 be given, and assume the inductive hypothesis
that any two EF1 allocations with distance t−1 have an EF1
exchange path of length t − 1. Now, let A = (A1, A2) and
B = (B1, B2) be any two EF1 allocations with distance t;
this means that |A1 \ B1| = |A2 \ B2| = t. Define X =
A1 \B1 = {x1, . . . , xt} and Y = A2 \B2 = {y1, . . . , yt}.
We show that there exist goods xk ∈ X and yℓ ∈ Y such
that exchanging them in A leads to an EF1 allocation A′ =
(A′

1, A
′
2). If this is possible, then |A′

1 \ B1| = |A′
2 \ B2| =
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t − 1, which implies that the distance between A′ and B
is t − 1. By the inductive hypothesis, there exists an EF1
exchange path between A′ and B of length t−1. This means
that there exists an EF1 exchange path between A and B via
A′ of length t, which is optimal, hence completing the proof.

For the time complexity, for each pair of goods from
X × Y , one can check in polynomial time whether exchang-
ing them leads to an EF1 allocation. Since there are at most
t2 pairs of goods to check at each step, and there are t steps
in the path, the running time claim follows.

We show the proof of Theorem 3, and refer the reader to
the full version of our paper (Igarashi et al. 2023a) for the
proof of Theorem 4.

Proof of Theorem 3. We follow the notation and inductive
outline described before this proof. Assume that the goods
in X and Y are arranged in descending order of preference,
i.e., u(xi) ≥ u(xj) and u(yi) ≥ u(yj) whenever i < j.
Denote ∆k = u(yk) − u(xk) for all k ∈ {1, . . . , t}. Define
A′

1 = (A1 ∪ {y1}) \ {x1} and A′
2 = (A2 ∪ {x1}) \ {y1}

to be the bundles after exchanging x1 and y1. If (A′
1, A

′
2)

is EF1, we are done by induction. Otherwise, we assume
without loss of generality that in the allocation (A′

1, A
′
2),

agent 2 envies agent 1 by more than one good. Let x be a
highest-utility good in A1—we may assume that x ̸= xk

for all k ≥ 2. Since (A1, A2) is an EF1 allocation, we have
u(x) ≥ γ := u(A1)− u(A2).

If both x = x1 and ∆1 < 0 are true, then

u(A′
2) = u(A2)−∆1

> u(A2)

≥ u(A1 \ {x})
= u(A1 \ {x1})
= u(A′

1 \ {y1}),

which shows that agent 2 does not envy agent 1 by more
than one good in (A′

1, A
′
2)—a contradiction. Therefore, we

must have x ̸= x1 or ∆1 ≥ 0. If x ̸= x1, then both x and y1
belong to A′

1. If x = x1 and ∆1 ≥ 0, then y1 belongs to A′
1

and u(y1) ≥ u(x). Hence, in either case, we have

max{u(x), u(y1)} < u(A′
1)− u(A′

2)

= u(A1)− u(A2) + 2∆1,

which implies

γ + 2∆1 > max{u(x), u(y1)}. (1)

We claim that there exists k ∈ {2, . . . , t} such that

2∆k ≤ u(x)− γ. (2)

Suppose on the contrary that 2∆k > u(x) − γ for all k ∈
{2, . . . , t}. Since every good in A1 has value at most u(x)
and every good in B1 \A1 has value at most u(y1), it holds
that every good in B1 has value at most max{u(x), u(y1)}.
As (B1, B2) is an EF1 allocation, we have

max{u(x), u(y1)} ≥ u(B1)− u(B2)

= (u(A1)− u(A2)) +
t∑

k=1

2∆k

= γ + 2∆1 +
t∑

k=2

2∆k

≥ γ + 2∆1 +
t∑

k=2

(u(x)− γ)

≥ γ + 2∆1,

where the last inequality holds because u(x) ≥ γ and t ≥ 1.
This contradicts (1). Therefore, let k ∈ {2, . . . , t} be an in-
dex that satisfies (2). We now claim that we must have

2∆k ≥ max{u(x), u(y1)} − 2u(y1)− γ. (3)

Suppose on the contrary that 2∆k < max{u(x), u(y1)} −
2u(y1)− γ. Then we have

max{u(x), u(y1)} − 2u(y1)− γ

> 2∆k (by assumption)
≥ −2u(xk) (since u(yk) ≥ 0)
≥ −2u(x1), (since u(xk) ≤ u(x1))

which implies

γ + 2∆1 < max{u(x), u(y1)},

contradicting (1). This establishes (3).
Combining inequalities (2) and (3), we have

−u(y1) ≤ max{u(x)− u(y1), 0} − u(y1)

= max{u(x), u(y1)} − 2u(y1)

≤ γ + 2∆k (by (3))
≤ u(x), (by (2))

which implies γ + 2∆k ∈ [−u(y1), u(x)]. We claim that
exchanging xk and yk results in an EF1 allocation, i.e., the
allocation comprising A′′

1 = (A1 ∪ {yk}) \ {xk} and A′′
2 =

(A2 ∪ {xk}) \ {yk} is EF1. This is because

u(A′′
1)− u(A′′

2) = u(A1)− u(A2) + 2∆k

= γ + 2∆k ∈ [−u(y1), u(x)],

where x ∈ A′′
1 and y1 ∈ A′′

2—note that x (̸= xk) and y1
were not exchanged going from A to A′′. This completes
the induction and therefore the proof.

Since the EF1 exchange graph H is a subgraph of the ex-
change graph G, the distance between two allocations (in
G) cannot be greater than the length of the shortest EF1 ex-
change path between the two allocations in H . In Theorems
3 and 4, the polynomial-time algorithms find EF1 exchange
paths in H that are optimal in the exchange graph G; such
exchange paths must also be the shortest possible ones in H .

4 Three or More Agents
In this section, we address the general case where there are
more than two agents. We shall see that this case is less
tractable, both existentially and computationally.

Before we present our results on the EF1 exchange graph,
we provide some insights on finding the distance between
two allocations regardless of EF1 considerations. Observe
that finding this distance for two agents is simple, as the
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distance equals the number of goods from each of the two
bundles that need to be exchanged. However, this task is not
so trivial for more agents—in fact, we shall show that it is
NP-hard. To this end, we draw an interesting connection be-
tween this distance and the maximum number of disjoint cy-
cles in a graph constructed based on the allocations. We start
off by detailing how to construct such a graph.

Let N , M , and s⃗ be given, and let A = (A1, . . . , An) and
B = (B1, . . . , Bn) be two allocations with size vector s⃗.
Define GA,B = (VA,B, EA,B) as a directed multigraph con-
sisting of a set of vertices VA,B = N and a set of (directed)
edges EA,B = {e1, . . . , em}. For each k ∈ {1, . . . ,m}, the
edge ek represents the good gk, and ek = (i, j) if and only
if gk ∈ Ai ∩ Bj , i.e., gk is in agent i’s bundle in A and in
agent j’s bundle in B (possibly i = j). Note that for every
vertex i, its indegree is equal to its outdegree, which is equal
to si, the number of goods in agent i’s bundle. Let CA,B be
the collection of partitions of EA,B into directed circuits.2
Note that CA,B is non-empty—for example, a partition of
EA,B into directed circuits can be constructed in the follow-
ing way: start with any vertex with an outdegree of at least 1,
traverse a path until some vertex v is encountered for the
second time, remove the resulting directed cycle from v to it-
self, and repeat on the remaining graph; the remaining graph
still satisfies the condition that every vertex has its indegree
equal to its outdegree. Let c∗A,B = maxCA,B∈CA,B |CA,B|
be the maximum cardinality of such a partition. Note that a
partition with the maximum cardinality must consist only of
directed cycles; otherwise, if it contains a circuit that passes
through a vertex more than once, we can break the circuit
into two smaller circuits, contradicting the fact that this par-
tition has the maximum cardinality. We claim that the dis-
tance between allocations A and B is m− c∗A,B.

Proposition 5. Let N , M , and s⃗ be given, and let A and
B be two allocations with size vector s⃗. Then, the distance
between A and B is m− c∗A,B.

Having found a correspondence for the distance between
two allocations, a natural question is whether there exists
an efficient algorithm to compute this distance. It turns out
that computing this distance is an NP-hard problem, so no
polynomial-time algorithm exists unless P = NP. We show
this via a series of reductions.

We start by considering the decision problem DIRECTED
TRIANGLE PARTITION: given a directed graph with no di-
rected cycles of length 1 or 2, determine whether there is
a partition of edges into triangles (i.e., directed cycles of
length 3). This decision problem is NP-hard via a reduc-
tion from 3SAT similar to that used by Holyer (1981) in
his proof of the corresponding result for undirected graphs.
Lemma 6. DIRECTED TRIANGLE PARTITION is NP-hard.

We now use Lemma 6 to show that computing c∗A,B is
NP-hard.
Lemma 7. Given a directed graph such that for each vertex,
its indegree and outdegree are equal, computing the max-

2Recall that a directed circuit is a non-empty walk such that the
first vertex and the last vertex coincide; we consider a self-loop to
be a directed circuit as well.

imum cardinality of a partition of the edges into directed
cycles is an NP-hard problem.

Proof. The result follows from reducing DIRECTED TRI-
ANGLE PARTITION to the problem of deciding whether
there exists a partition of the edges of a directed graph into
|E|/3 directed cycles. Let G = (V,E) be an instance of
DIRECTED TRIANGLE PARTITION. If there is some ver-
tex with unequal indegree and outdegree, then G cannot be
edge-partitioned into triangles. Otherwise, since G does not
have cycles of length 1 or 2 (by definition of DIRECTED
TRIANGLE PARTITION), the edges of G can be partitioned
into triangles if and only if the maximum cardinality of a
partition of the edges into directed cycles is |E|/3. Since DI-
RECTED TRIANGLE PARTITION is NP-hard by Lemma 6, so
is the problem of finding the maximum cardinality of a par-
tition of the edges into directed cycles.

Proposition 5 and Lemma 7 imply the following theorem.

Theorem 8. Finding the distance between two allocations
is an NP-hard problem.

Proof. Start with an instance G = (V,E) of the problem de-
scribed in Lemma 7, and denote V = {v1, . . . , vn}. We shall
construct, in polynomial time, an instance of the problem
of finding the distance between two allocations. Let N =
{1, . . . , n} be the set of agents, M = {ge}e∈E be the set of
goods, and si = |{e ∈ E | ∃j ∈ N, e = (vi, vj)}| be the
size of agent i’s bundle for each i ∈ N . The initial allocation
A = (A1, . . . , An) and target allocation B = (B1, . . . , Bn)
are such that Ai = {ge ∈ M | ∃j ∈ N, e = (vi, vj) ∈ E}
and Bi = {ge ∈ M | ∃j ∈ N, e = (vj , vi) ∈ E} for each
i ∈ N . Note that this induces the graph GA,B isomorphic to
G. The distance between A and B is |E| − c∗A,B, by Propo-
sition 5. Therefore, if we can find this distance, then we can
find c∗A,B, solving the problem instance from Lemma 7.

4.1 General Utilities
We now discuss properties of the EF1 exchange graph.
The non-connectivity and non-optimality results for three
or more agents can be derived from Theorems 1 and 2 for
two agents by adding agents with no good in both the initial
and target allocations and having zero utility for every good.
Moreover, we show next that deciding whether an EF1 ex-
change path exists is a PSPACE-complete problem.

Theorem 9. Deciding the existence of an EF1 exchange
path between two EF1 allocations is PSPACE-complete.

Proof. First, we show membership in PSPACE—recall that
PSPACE is the set of all decision problems that can be
solved by a deterministic polynomial-space Turing machine.
We can solve the problem non-deterministically by simply
guessing an EF1 exchange path between the two EF1 allo-
cations. Since the total number of allocations is at most nm,
if there exists an EF1 exchange path between the two allo-
cations, then there exists one with length at most nm; such
a path can be represented in polynomial space (i.e., using a
polynomial number of bits). This shows that the problem is
in NPSPACE, the set of all decision problems that can be
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solved by a non-deterministic polynomial-space Turing ma-
chine. By Savitch’s Theorem, NPSPACE ⊆ PSPACE (Sav-
itch 1970), which implies that this problem is in PSPACE.

To prove that our problem is PSPACE-hard, we shall re-
duce the PERFECT MATCHING RECONFIGURATION prob-
lem for a balanced (undirected) bipartite graph to our prob-
lem. Recall that the PERFECT MATCHING RECONFIGU-
RATION problem is the task of deciding if two perfect
matchings of a balanced bipartite graph can be reached
from each other via a sequence of flips, i.e., given per-
fect matchings W̃0 and W̃ of a balanced bipartite graph
G̃ = (Ṽ , Ẽ), whether there exists a sequence of perfect
matchings W̃0, W̃1, . . . , W̃t such that

• W̃t = W̃ , and
• for each z ∈ {1, . . . , t}, there exist edges ẽ1z, ẽ

2
z, ẽ

3
z, ẽ

4
z

of G̃ such that W̃z−1 \ W̃z = {ẽ1z, ẽ3z}, W̃z \ W̃z−1 =
{ẽ2z, ẽ4z}, and ẽ1z ẽ

2
z ẽ

3
z ẽ

4
z forms a cycle.

The operation from W̃z−1 to W̃z is called a flip, and we
say that W̃z−1 and W̃z are adjacent to each other. PERFECT
MATCHING RECONFIGURATION is known to be PSPACE-
hard (Bonamy et al. 2019). Let |Ṽ | = 2v, and let the two
independent sets of G̃ be P̃ = {p̃1, . . . , p̃v} and Q̃ =

{q̃1, . . . , q̃v}. For each i ∈ {1, . . . , v}, let q̃ki ∈ Q̃ be the
vertex adjacent to p̃i in W̃0, and let q̃ℓi ∈ Q̃ be the vertex ad-
jacent to p̃i in W̃ . We shall show that this problem instance
can be reduced to an instance of deciding the existence of an
EF1 exchange path between two EF1 allocations.

Define an instance of the EF1 exchange path problem
as follows: let N = {0, 1, . . . , v} be the set of agents,
M = {p1, . . . , pv, q1, . . . , qv, r1, r2, r3, r4} be the set of
goods, and the utility function of each agent be

• u0(g) = 0 for all g ∈ M , and
• for i ∈ {1, . . . , v},

ui(g) =

 3 if g ∈ {pi} ∪ {qk | {p̃i, q̃k} ∈ Ẽ};
2 if g ∈ {r1, r2, r3, r4};
0 otherwise.

In the initial allocation A0, agent 0 has the bundle
{r1, r2, r3, r4} and agent i has the bundle {pi, qki

} for each
i ∈ {1, . . . , v}. In the target allocation A, agent 0 again
has the bundle {r1, r2, r3, r4} and agent i has the bundle
{pi, qℓi} for each i ∈ {1, . . . , v}. Observe that both alloca-
tions are EF1—agent 0 assigns zero utility to every bundle,
while each agent i ∈ {1, . . . , v} assigns a utility of 6 to her
own bundle, a utility of at most 6 to the bundle of every agent
in {1, . . . , v}\{i}, and a utility of 6+2 to agent 0’s bundle.
Clearly, this instance can be constructed in polynomial time.

Suppose first that there exists a sequence of adjacent per-
fect matchings from W̃0 to W̃ . Then each flip from W̃z−1

to W̃z corresponds to an exchange in the EF1 exchange
path problem: if W̃z−1 \ W̃z = {{p̃i, q̃k}, {p̃j , q̃ℓ}} and
W̃z \ W̃z−1 = {{p̃i, q̃ℓ}, {p̃j , q̃k}}, then exchange qk in
agent i’s bundle with qℓ in agent j’s bundle. The new al-
location is also EF1—as before, agent 0 assigns zero utility

to every bundle, while each agent i′ ∈ {1, . . . , v} assigns
a utility of 6 to her own bundle, a utility of at most 6 to
the bundle of every agent in {1, . . . , v} \ {i′}, and a utility
of 6 + 2 to agent 0’s bundle. By performing the exchanges
according to the flips in sequence, we reach the target allo-
cation. Therefore, an EF1 exchange path exists.

Conversely, assume that an EF1 exchange path exists be-
tween the initial allocation A0 and the target allocation A.
Consider the sequence of EF1 allocations A0,A1, . . . ,At =
A. We show by induction that for every intermediate alloca-
tion Az , every agent i ∈ {1, . . . , v} assigns a utility of 6 to
her own bundle (consisting of pi and qk for some k), and
agent 0 retains {r1, r2, r3, r4}. The base case z = 0 is triv-
ial. For the inductive case, suppose that the statement is true
for z−1. If some agent i ∈ {1, . . . , v} attempts to exchange
one of her goods with a good from agent 0, then agent i’s
new bundle has utility 5 but agent 0’s new bundle has utility
6+3 for agent i, which violates EF1. Therefore, agent i must
exchange goods with agent j for some j ∈ {1, . . . , v}. Note
that agent 0’s bundle is worth 6+2 to agent i and j, so agent
i’s and j’s own bundles must be worth at least 6 to i and j
respectively. If agent i gives pi to agent j, then agent j’s new
bundle consists of pi (worth zero to her) and some qℓ, which
is worth at most 3 to her—this violates EF1. By the same
reasoning, agent j cannot give pj to agent i. Therefore, they
must exchange qk in agent i’s bundle with qℓ in agent j’s
bundle. As agent i and j must have bundles worth at least 6
to each of them, qℓ must be worth 3 to agent i and qk must
be worth 3 to agent j. This completes the induction.

As a result, the perfect matchings W̃z−1 (corresponding
to Az−1) and W̃z (corresponding to Az) must be adjacent to
each other for all z, where W̃z−1\W̃z = {{p̃i, q̃k}, {p̃j , q̃ℓ}}
and W̃z \ W̃z−1 = {{p̃i, q̃ℓ}, {p̃j , q̃k}}. It follows that a
sequence of adjacent perfect matchings W̃0, W̃1, . . . , W̃t =

W̃ indeed exists. This completes the proof.

Regarding the existence of optimal EF1 exchange paths,
we shall show later in Theorem 14 that the corresponding
decision problem is NP-hard even for four agents with iden-
tical utilities.

4.2 Identical Binary Utilities
We now consider the most restrictive class of utility func-
tions in our paper: those that are identical and binary. We
show that the EF1 exchange graph is connected for any num-
ber of agents with such utility functions.
Theorem 10. Let an instance with n ≥ 2 agents and identi-
cal binary utility functions be given. Then, the EF1 exchange
graph is connected. Moreover, an EF1 exchange path be-
tween any two allocations can be found in polynomial time.

Proof. Let A and B be two EF1 allocations. Since every
good is worth either 1 or 0 to every agent, every agent’s bun-
dle in A and B must have a utility of either ⌊u(M)/n⌋ or
⌊u(M)/n⌋ + 1 (otherwise, the gap between the utilities of
some two agents’ bundles is at least 2, and the correspond-
ing allocation is not EF1). Let N ′ be the set of agents whose
bundles in A and B have different utilities. Note that half
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of the agents in N ′ have bundles worth ⌊u(M)/n⌋ in A
and ⌊u(M)/n⌋ + 1 in B; the other half have bundles worth
⌊u(M)/n⌋ + 1 in A and ⌊u(M)/n⌋ in B. If N ′ ̸= ∅, let
agent i ∈ N ′ be an agent with a bundle worth ⌊u(M)/n⌋
in A, and let gi be a good with utility 0 in Ai—this good
exists because agent i has at least ⌊u(M)/n⌋ + 1 goods in
her bundle (due to Bi’s utility of ⌊u(M)/n⌋ + 1) but only
has utility ⌊u(M)/n⌋ in Ai. Let agent j ∈ N ′ be an agent
with a bundle worth ⌊u(M)/n⌋ + 1 in A, and let gj be a
good with utility 1 in Aj—this good exists because Aj has
utility at least 1. Exchange gi with gj ; it can be verified that
the resulting allocation is EF1. As this exchange reduces the
size of the set N ′ by two, we can repeatedly make such ex-
changes between two agents in N ′ until N ′ = ∅. Note that
such exchanges can be performed in polynomial time.

At this point, we have shown that there exists an EF1 allo-
cation A′ such that an EF1 exchange path exists between A
and A′, and for every agent i, her bundles in A′ and B have
the same utility. Define the item graph GA′,B as in the be-
ginning of Section 4, and consider its subgraph with only the
edges representing the goods with utility 1. For each agent,
the indegree and the outdegree of the corresponding vertex
in this subgraph are equal, so we can perform exchanges to
‘resolve’ these edges. Specifically, suppose there is an edge
ex = (i, j) corresponding to a good gx, where i ̸= j. By the
degree condition, there must exist another edge ey = (j, k)
corresponding to a good gy , where j ̸= k but possibly k = i.
We let agents i and j exchange gx and gy , so gx is now
with its correct owner, agent j. Hence, at least one more
good goes to the correct agent after the exchange. This ex-
change process can be performed in polynomial time, and
no agent’s utility changes during the process, which means
that the intermediate allocations are all EF1. Similarly, if we
consider the subgraph with only the edges representing the
goods with utility 0, we can perform exchanges to resolve
these edges as well. Therefore, there exists an EF1 exchange
path from A′ to B, and thus an EF1 exchange path from A
to B, and this path can be found in polynomial time.

In spite of this positive result, the polynomial-time algo-
rithm described in Theorem 10 does not necessarily find an
optimal EF1 exchange path between the two allocations. In
fact, even for the special case where the EF1 exchange graph
H and the exchange graph G coincide (e.g., when every
agent assigns zero utility to every good, so every allocation
is EF1), it is NP-hard to compute an optimal EF1 exchange
path by Theorem 8, regardless of whether optimality refers
to the length of the shortest path in G or in H . Hence, a
polynomial-time algorithm for this task does not exist un-
less P = NP. Moreover, we show next that, somewhat sur-
prisingly, an optimal EF1 exchange path (with respect to G)
is not guaranteed to exist even for identical binary utilities.

Theorem 11. For each n ≥ 3, there exists an instance with
n agents with identical binary utility functions satisfying the
following properties: the EF1 exchange graph is connected,
but for some pair of EF1 allocations, no optimal EF1 ex-
change path exists between them.

Proof sketch (for three agents). For n = 3 agents, consider

s⃗ = (2, 2, 2) and the utility of the goods as follows:

g g1 g2 g3 g4 g5 g6
u(g) 1 1 1 0 0 0

Note that the EF1 exchange graph is connected by Theo-
rem 10. However, an optimal EF1 exchange path between A
and B does not exist, where A1 = {g2, g6}, A2 = {g3, g4},
A3 = {g1, g5}, and Bi = {gi, gi+3} for i ∈ {1, 2, 3}.

4.3 Binary Utilities
We saw in Theorem 10 that the EF1 exchange graph is al-
ways connected for any number of agents with identical bi-
nary utilities. Now, we consider the case where the agents
have binary utilities which may differ between agents. In-
terestingly, it turns out that the EF1 exchange graph is not
necessarily connected in this case, even when there are three
agents. This also provides a contrast to the case of two agents
(Theorem 4).

Theorem 12. For each n ≥ 3, there exists an instance with
n agents with binary utility functions such that the EF1 ex-
change graph is disconnected.

4.4 Identical Utilities
Let us now consider the case where the utilities are identical
across agents, though they need not be binary. As with the
case of binary utilities, there are instances in which the EF1
exchange graph is not connected even for three agents.

Theorem 13. For each n ≥ 3, there exists an instance with
n agents with identical utility functions such that the EF1
exchange graph is disconnected.

We end this section with a result that determining whether
an optimal EF1 exchange path exists between two alloca-
tions is NP-hard even for four agents with identical valua-
tions. This can be shown via a reduction from the NP-hard
problem PARTITION.

Theorem 14. Deciding the existence of an optimal EF1 ex-
change path between two EF1 allocations is NP-hard, even
for n = 4 agents with identical utility functions.

5 Conclusion and Future Work
In this paper, we have initiated the study of reachability
problems in fair division by investigating the connectivity of
the EF1 exchange graph and the optimality of EF1 exchange
paths. While determining the existence of an EF1 exchange
path between two given allocations is PSPACE-complete in
general, an intriguing question is whether this can be done
in polynomial time for two agents. For the negative results
obtained in our paper, one could ask whether an (optimal or
otherwise) exchange path between EF1 allocations exists if
we allow the intermediate allocations to be envy-free up to k
goods (EFk) for some small k > 1. Extending our results to
fairness notions other than EF1 is also a meaningful direc-
tion. Finally, instead of exchanging goods between agents,
one may also consider the setting where an agent transfers
one good to another agent in each operation—in this case,
the size of the allocation does not need to be fixed.
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