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Abstract

We present a study on a repeated delegated choice problem,
which is the first to consider an online learning variant of
Kleinberg and Kleinberg, EC’18. In this model, a principal in-
teracts repeatedly with an agent who possesses an exogenous
set of solutions to search for efficient ones. Each solution can
yield varying utility for both the principal and the agent, and
the agent may propose a solution to maximize its own utility
in a selfish manner. To mitigate this behavior, the principal
announces an eligible set which screens out a certain set of so-
lutions. The principal, however, does not have any information
on the distribution of solutions nor the number of solutions
in advance. Therefore, the principal dynamically announces
various eligible sets to efficiently learn the distribution. The
principal’s objective is to minimize cumulative regret com-
pared to the optimal eligible set in hindsight. We explore two
dimensions of the problem setup, whether the agent behaves
myopically or strategizes across the rounds, and whether the
solutions yield deterministic or stochastic utility. We obtain
sublinear regret upper bounds in various regimes, and derive
corresponding lower bounds which implies the tightness of
the results. Overall, we bridge a well-known problem in eco-
nomics to the evolving area of online learning, and present a
comprehensive study in this problem.

1 Introduction
Delegation is perhaps one of the most frequent economic in-
teractions one may see around in real life (Holmstrom 1980;
Bendor, Glazer, and Hammond 2001; Amador and Bagwell
2013). Abstractly speaking, consider a principal with less
information who tries to find an optimal solution from an
agent with expertise, but there’s an information asymmetry
such that she1 cannot directly access the solutions that the
agent possesses (Alonso and Matouschek 2008; Kleinberg
and Kleinberg 2018; Kleiner 2022; Hajiaghayi, Rezaei, and
Shin 2023). Instead, she requires the agent to propose a set of
solutions and then commits to the final one among them. The
principal and the agent, however, may have misaligned utility
for the solution selected, and thus the agent may propose a
solution in a selfish manner. To cope with it, the principal an-
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1Feminine pronouns (masculine) hereafter denote the principal
(agent).

nounces a set of eligible solutions before the agent proposes,
and only accepts the eligible solution.

To provide a concrete example, consider (online) labor
market or crowdsourcing platform such as Upwork. We have
a task requester (principal) who regularly visits the platform
(agent) and tries to solve a series of tasks. The platform has
a pool of workers (solutions). At each time the requester
visits, the platform recommends some set of workers, and
the requester selects a single worker to commit to the task.
Obviously, the task requester wants to hire a qualified worker.
The platform, on the other hand, aims to maximize its long-
term revenue by recommending workers who solve tasks
quickly, even if their quality is not high, allowing them to
be assigned to other tasks promptly. This misalignment of
utility may lead to the platform strategically recommending
unqualified workers. To mitigate this, the requester sets re-
strictions, such as requiring certificates in specific areas like
a foreign language or web development, when requesting
worker recommendations. We refer to Appendix A in the full
paper for more examples on motivations.

If the task requester is fully aware of the set of workers
that the platform has, then she can directly impose a strong
restriction to make the platform recommend the specific work-
ers she wants. In practice, however, such information is not
feasible priorly, instead, the requester needs to learn the dis-
tribution of existing workers in the repeated interaction. The
fundamental question here is, how the requester should dy-
namically determine which sort of restriction to impart at
each round, in order to maximize cumulative utility over the
set of tasks. Furthermore, one may ask what happens if the
platform also tries to strategize across the rounds to deceive
the requester, and what if the quality of each worker is not
fixed in advance, but rather is given from a latent distribution.

This work introduces the repeated delegated choice prob-
lem, which focuses on how the principal can design an effi-
cient delegation mechanism. To the best of our knowledge,
this is the first study to explore an online learning extension of
the delegated choice problem presented by (Armstrong and
Vickers 2010; Kleinberg and Kleinberg 2018; Hajiaghayi,
Rezaei, and Shin 2023). In our model, the principal lacks
initial information about the solutions’ distribution. Instead,
through repeated announcements of eligible sets that may
screen out some solutions, the principal aims to learn the
solutions’ distributions in a sample-efficient manner. The

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9757



Utility
Behavior Myopic Strategic

Deterministic Theorem 3.1 Theorem 3.4,3.8
Stochastic Theorem 4.1 Theorem 4.3

Table 1: Summary of our results under different settings.

principal aims to minimize cumulative regret compared to
the optimal eligible set in hindsight.

We distill the problem into two dimensions of whether
the utility of each solution is deterministic or stochastic, and
whether the agent strategizes across the rounds or not, and
provide a comprehensive regret analysis for each setting. In
the myopic agent setting, the agent plays a best-response to
the eligible set at each round, i.e., a strategy which maximizes
myopic utility without regard to the future utility and resulting
behavior of the mechanism.2 Hence, the principal’s objective
boils down to efficiently learning the distribution of utilities
by selecting proper eligible sets at each round, while only
observing the partial feedback from the choice of eligible set,
i.e., which solution the agent submits (or possibly declines
to submit any). This challenge intensifies with a strategic
agent, as the agent may intentionally hide solutions or deviate
from their best response for greater utility in later rounds.
Consequently, the feedback is not guaranteed to be stochastic
across rounds, making the analysis more complex.
Our contributions. We here provide a summary of our con-
tributions and techniques. All the proofs can be found in the
appendix in the full paper. The results are summarized in Ta-
ble 1. First, we observe a revelation-principle-style-of-result
such that it suffices to focus on a class of so-called single-
proposal mechanism, formally defined in Definition 2.1. In-
terestingly, we show that the myopic deterministic setting can
be reduced to the repeated posted price mechanism (RPPM)
with myopic buyer. 3 Denoting the principal’s utility for each
solution by Xi, one can effectively construct an instance of
RPPM by converting Xi to the buyer’s value v = maxi Xi

in RPPM. In both problems, the optimal benchmark is to ob-
tain maxi Xi, and the reduction follows. Combined further
with an iterative algorithm, we obtain a regret upper bound
of O(min(K, log log T )), where K denotes the number of
solutions and T is the time horizon.

With stochastic valuation, however, this does not work
since the benchmark in RPPM is to put an ex-ante best fixed
price, which does not coincide maxi Xi. Indeed, we observe
that the optimal benchmarks cannot be reduced from one to
another in general. Instead, we mainly reduce our problem

2This model of myopic agent accommodates a perspective of
"multiple agents" setting in which at each round an agent having
the same type of solutions arrive and interacts with the principal. In
this viewpoint, the agents are bound to be myopic due to the single
round interaction per agent.

3Overall, we observe an intimate connection between the RPPM
and our problem under certain settings. In general, however, our
problem spawns additional challenges of having multiple latent
random variables and the principal is even unaware of the num-
ber of potential solutions. We provide more detailed discussion in
Appendix B in the full paper.

to a stochastic multi-armed bandit problem via proper dis-
cretization over the space of eligible sets equipped with a
variant of analysis by (Kleinberg and Leighton 2003), and
obtain a regret of O(

√
T log T ) under the same assumption

imposed in (Kleinberg and Leighton 2003).
For the strategic agent with deterministic utility, we first

observe that it is necessary to impose a certain assumption
on the agent’s utility sequence to obtain positive results. Pre-
cisely, the agent with non-discounting utility can strategize
so that no algorithm can obtain sublinear regret, where the
formal proof is presented in Appendix K. In this context,
to capture both of the practicality and theoretical tractabil-
ity, we consider γ-discounting strategic agent whose utility
is discounted by a multiplicative factor of γ at each round.
We also note that this is common in the literature (Amin,
Rostamizadeh, and Syed 2013; Haghtalab et al. 2022).

Given that, for the γ-discounting agent with deterministic
utility, we first consider a case in which the agent’s util-
ity is uniformly bounded below by ymin and the principal
is aware of it. In this setting, by exploiting the delay tech-
nique of (Haghtalab et al. 2022), we obtain a regret bound of
O(KTγ log

Tγ

ymin
) where Tγ = 1/(1 − γ). The dependence

on K can be replaced by log T by shrinking the eligible set
more in an aggressive manner, thereby obtaining a regret of
O(Tγ log

Tγ

ymin
+ log T ). Note that these bounds yield sub-

linear regret only if ymin = e−o(T ). We complement these
results by showing that any algorithm suffers regret of Ω(T )
if ymin ≤ e−T .

On the other hand, if the agent’s minimum utility is not
known or unbounded, there’s no guarantee that the agent
behaves myopically for any delay that is imposed in the al-
gorithm. Instead, under minor assumptions that the solutions
are densely spread with respect to parameter d and Lipschitz-
ness between the principal’s and agent’s utilities, we obtain
an efficient algorithm that achieves a regret upper bound of
O(Tγ log

Tγ

α +log 1
d +dT ), where α is a function of the Lip-

schitz parameters. The linear dependence of O(dT ) regret
may look a lot at first glance, we observe this is inevitable
for any algorithm, thereby justifying our assumption.

In the stochastic setting with γ-discounting strategic
agent, we reuse the machinery by (Haghtalab et al. 2022;
Lancewicki et al. 2021), and obtain a regret of O(

√
T log T ).

More specifically, we can view the proposed solution as a
perturbed output of a stochastic bandit, where the perturba-
tion comes from the agent’s strategic behavior. The technical
subtlety lies on how we should upper/lower bound such per-
turbed output to properly apply (Lancewicki et al. 2021), i.e.,
how we should construct a random perturbation interval.

Related Works

Delegation. Dating back to the seminal work of (Holmstrom
1980), a number of literature from the economics community
study the theory of delegation, mostly within the extent of
characterizing the regimes under which some simple mech-
anisms reach the optimal solution (Alonso and Matouschek
2008; Armstrong and Vickers 2010; Kleiner 2022). Recently,
(Kleinberg and Kleinberg 2018) study a problem of dele-
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gated choice4 with a lens of computer science, and show that
there exists a mechanism with 2-approximation compared
to the case in which the principal can fully access all the
solutions in advance, based on a novel connection to prophet
inequality problem (Samuel-Cahn 1984). Their result, how-
ever, depends on the assumption that the principal knows
the distribution from which the utility of each solution is
drawn, i.e., they study the efficiency of Bayesian mechanism.
Interestingly, if the principal has no such information at all,
i.e., prior-independent mechanism, the result becomes largely
pessimistic, i.e., there exists a problem instance in which
the principal’s approximation becomes arbitrarily bad. (Haji-
aghayi, Rezaei, and Shin 2023) reveal that prior-independent
mechanisms can be made efficient with multiple agents, but
this does not hold with a single agent.
Repeated delegation. (Lipnowski and Ramos 2020) study
a problem of infinitely repeated delegation, however, their
model of delegated choice is largely different from ours.
Mainly, their model considers aligned utility but when the
principal bears the cost of adopting a project. Their objective
is to persuade the agent to adopt the project when it is truly
good, whereas the agent tries to always adopt the project. Sev-
eral lines of work (Li, Matouschek, and Powell 2017; Guo
and Hörner 2021) study a repeated game of project choice,
but we do not discuss it in details due to significant differ-
ences from our model. A line of work (Lewis 2012; Xiao,
Hu, and Wang 2022) study a delegated search problem, es-
pecially a dynamic version by (Rahmani and Ramachandran
2016), but the players bear the cost of search for solutions
in their model, whereas the solutions are exogenous to the
mechanism in our model.
Stackelberg games. Our problem can be viewed as an online
learning version of repeated Stackelberg game (Von Stackel-
berg 2010; Marecki, Tesauro, and Segal 2012; Bai et al. 2021;
Lauffer et al. 2022; Zhao et al. 2023). A common objective in
this area of work is to minimize a Stackelberg regret, i.e., dif-
ference to the optimal policy that knows the leader’s optimal
action in hindsight, and the above works aim to minimize the
cumulative Stackelberg regret of a leader, assuming that a
follower best responds at each round. Especially, our model
of strategic agent belongs to the growing area of learning
in games with strategic agent (Birmpas et al. 2020; Haghta-
lab et al. 2022; Zhao et al. 2023). More precisely, (Birmpas
et al. 2020) study how the follower can efficiently deceive
the leader by misreporting his valuation. (Haghtalab et al.
2022) proposes a generic delaying technique to deal with a
strategic agent, and proposes several applications to strategic
classification, repeated posted price mechanism (henceforth
RPPM), and Stackelberg security game. Indeed, our model re-
sembles RPPM of (Kleinberg and Leighton 2003; Amin, Ros-
tamizadeh, and Syed 2013; Babaioff et al. 2017). However,
RPPM restricts the buyer and the seller’s utility to be linearly
negatively correlated, but our model accommodates any kind

4They consider two types of problem settings, one of which is
delegated search with sampling costs, and the other is delegated
choice, referring back to (Armstrong and Vickers 2010). Since
we also assume that the solutions of the agent are exogenous to
mechanisms, we frame our model as a delegated choice problem.

of correlation. In addition, our agent has multiple solutions
to choose from compared to only accept/reject of RPPM, and
thus is technically more challenging to predict/analyze the
agent’s strategic behavior.

2 Problem Setup
In a repeated delegated choice problem, there is a principal
and an agent. The agent is equipped with a set of solutions
A = {a0, a1, . . . , aK} where K denotes the cardinality of
the set of possible solutions5, and a0 denotes the null solution
⊥ which means that the agent submits nothing. At each round
t ∈ [T ], solution a incurs a nonnegative random utility for the
principal and the agents. Denote by X

(t)
a the utility random

variable (r.v.) of the principal selecting the solution a and
Y

(t)
a the random utility of the agent given solution a, both

of which has support in Ω := [0, 1]. The random vector
(X

(t)
a , Y

(t)
a ) is independent and identically distributed (i.i.d.)

for t ∈ [T ]. Importantly, the agent can access the ex-post
utility of all the solutions a ∈ A at each round, but the
principal cannot. The agent is equipped with a discounting
factor γ ∈ (0, 1), i.e., he discounts the utility at round t by
a factor of γt−1. That is, the agent’s true utility for solution
a at round t is γt−1Y

(t)
a . This assumption on agent regret

is common in studies concerning strategic agents (Amin,
Rostamizadeh, and Syed 2013; Haghtalab et al. 2022). It is
shown in (Amin, Rostamizadeh, and Syed 2013) that in the
repeated posted-price mechanism problem, a sublinear regret
can not be achieved for a non-discounting strategic agent.
This is also the case in our problem, as a non-discounting
agent might have the incentive to hide a solution that is worse
than another solution in terms of agent utility but better for
the principal. We further explore this in Appendix K. Define
Tγ = 1/(1 − γ). Given a mechanism M , at each round
t ∈ [T ], the agent chooses a (possibly random) subset of
solutions S(t) ⊂ A, and submits them to the principal. We
write 2X to denote the power set of a set X , and ∆(X)
for a simplex over X . Thus, the agent’s action belongs to
S(t) ∈ ∆(2A).
History, mechanism, and agent’s policy. At each round
t ∈ [T ], the mechanism determines which solutions to com-
mit given the agent’s action S(t). This choice is based on
the history available up to round t, formally defined by
Ht := ∪t−1

l=1(S
(l), a(l)), where a(l) denotes the solution se-

lected at round l. We defineH := ∪t≥1(2
A, A) to be the set

of all possible histories of the game, i.e., each Ht is a subset
ofH. Formally, the mechanism M : H× 2A 7→ A specifies
which solutions to select at each round t given the history
Ht ∈ H and the agent’s submission. Importantly, the mech-
anism is only able to choose an action among the actually
submitted solutions by the agent. Also, the principal commits
to a mechanism before the game starts.

LetM be the set of all possible mechanisms. Correspond-
ingly, the agent’s policy P : H×M 7→ ∆(2A) is a function
that takes the mechanism announced by the principal and the

5We do not restrict the number of solutions to be finite, or con-
stant with respect to T.
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history sequence Ht and decides an (possibly randomized)
action. Let P be the set of all possible agent policies. We
write st to denote the solution eventually selected at round
t by the mechanism. Note that st can be null, i.e., st =⊥, if
the principal declines to accept any proposed solution. In this
case, both the agent’s and the principal’s utilities are zero. We
write X

(t)
M,P and Y

(t)
M,P to denote the principal’s and agent’s

utility at round t under M and P . Define ΦM,P = E[X(t)
M,P ]

and ΨM,P = E[Y (t)
M,P ] to denote the expected utility of the

principal and the agent, respectively.
Mechanism description. Overall, the interaction between
the principal and the agent proceeds as follows:

i The principal commits to a mechanism.
ii At each round, agent observes the realized solutions and

their utility.
iii Agent (possibly strategically) proposes solutions.
iv Principal observes the proposed solutions and correspond-

ing utility, and determines the final outcome with respect
to the committed mechanism.

v Steps ii-iv are repeated.

Single-proposal mechanism. We mainly deal with the fol-
lowing specific type of mechanism, inspired by (Kleinberg
and Kleinberg 2018).

Definition 2.1 (Single-proposal mechanism). In a single pro-
posal mechanism M , at each round t, the principal announces
an eligible set E(t) ⊂ Ω2, and the agent submits only a single
solution a. If (X(t)

a , Y
(t)
a ) ∈ E(t), then the principal accepts

the solution, otherwise, she selects nothing.

We further say that a mechanism is threshold-based, if
its eligible set only puts a (possibly strict) lower bound on
the principal’s utility. We define Eτ = {a : Xa ≥ τ} and
E>

τ = {a : Xa > τ} to represent threshold-based eligible
sets for a threshold τ . Given a single proposal mechanism,
we write x

(t)
a and y

(t)
a to denote the eventual utility of the

principal and the agent at round t when the agent proposes
solution a, i.e., which reflects the principal’s decision.

Notably, we provide a revelation principle style of result
which states that any mechanism can be reduced to a single-
proposal mechanism.

Theorem 2.2. Given any mechanism M and any agent’s pol-
icy P , there exists a single-proposal mechanism M ′ and
corresponding deterministic agent’s policy P ′ such that
ΦM,P ≤ ΦM ′,P ′ and ΨM,P ≤ ΨM ′,P ′ .

Thanks to the reduction above, we can essentially focus on
the single-proposal mechanism, and the agent only needs to
determine which solution to submit at each round. Thus, un-
less specified explicitly, we now focus on the single-proposal
mechanism. Note that the reduction from any deterministic
mechanism with deterministic policy follows from a variant
of the proof of the standard revelation principle (Nisan et al.
2007). For randomized policy, we can reduce it to a deter-
ministic policy by sequentially derandomizing each round’s
random events in a backward manner.

Approximately best response and Stackelberg regret. Our
construction of a mechanism against a strategic agent requires
a notion of approximate best response of the agent, defined
as follows.

Definition 2.3 (ε-best response). Given a mechanism M and
history Ht, let AE be a union of the set of eligible solutions
given eligible set E and the null outcome ⊥. Then, the ε-best
response at round t for eligible set E is defined by

BR(t)
ε (E) = {a ∈ AE : y(t)a ≥ y

(t)
a′ − ε, ∀a′ ∈ A}.

If ε = 0, we simply say best response and denote by BR(t).

Whenever there are multiple solutions as best response, we
assume that a myopic agent plays in favor of the principal,
i.e., submits the solution that maximizes the principal’s utility.

Fundamentally, the dynamics of the single-proposal mech-
anism belongs to a repeated Stackelberg game in which the
principal moves first by announcing an eligible set, and then
the agent follows by proposing solutions, at each round. In
repeated Stackelberg games (possibly with strategic agent),
typical objective is to minimize a cumulative regret compared
to the case when the mechanism knows the optimal eligible
set in hindsight, and the agent myopically responds to the
principal’s move. In our setting, this benchmark boils down to
the case under which the mechanism knows the distribution
of X(t)

a and Y
(t)
a in hindsight, while the agent best responds

to the principal’s eligible set at each round. In this case, the
optimal principal’s utility can be written as,

OPT = max
E⊂Ω2

E
[
x
(t)

BR(t)(E)

]
. (1)

Thus, Stackelberg is defined as follows.

Definition 2.4 (Stackelberg regret). Given a mechanism M
and agent’s policy P , suppose that the agent submits solution
at at each round t. Then, Stackelberg regret is defined by

REGM,P (T ) = T · OPT −
T∑

t=1

x(t)
at
.

Furthermore, we define a worst-case Stackelberg by
maximizing over the agent’s policy, WREGM (T ) =
maxP∈P REGM,P (T ). Let Pε be a family of policy under
which the agent always plays ε-best response. Then, we de-
fine WREGM (T, ε) = maxP∈Pε REGM,P (T ). If the agent
is myopic, we abuse REGM (T ) = WREGM (T, 0) to denote
its worst-case Stackelberg regret.

3 Deterministic Setting
We start with a simple setting in which the agent is myopic
and the utility is deterministic. In this case, the principal
needs to learn the optimal eligible set, without regard to the
agent’s strategy. In this case, for notational simplicity, we
drop the superscript (t) since the utility remains the same
across the rounds. Our main result with myopic agent is
presented as follows.

Theorem 3.1. There exists a mechanism with REG(T ) =
O(min(K, log log T )) against myopic agent.
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The proof is based on two algorithms, one of which re-
lies on a novel connection between our problem and the re-
peated posted-price mechanism problem (henceforth RPPM)
by (Kleinberg and Leighton 2003), and the other is a simple
algorithm that iteratively finds a (slightly) better solution. In
the former, we mainly construct a reduction from our prob-
lem to RPPM, and thus recovers the regret bound log log T
of (Kleinberg and Leighton 2003).6 In the latter algorithm
with regret bound O(K), the algorithm iteratively updates
the eligible set so that it excludes at least one suboptimal so-
lution at each round, until there’s no eligible solution. Formal
definition of RPPM, pseudocode of the algorithms, and the
proof can be found in the appendix.

This result implies an intimate connection between our
problem and RPPM, however, we observe that this does not
hold beyond this simplistic setting. In fact, the utilities are
always linearly negatively correlated in RPPM, on the other
hand, in our setting they can be arbitrarily correlated. More-
over, the agent has multiple solutions to choose compared to
only two actions of accept or reject in RPPM.

Strategic Agent
Next, we consider a more challenging scenario in which the
agent tries to strategize over the rounds. Since we cannot
assume that the agent will truthfully best respond to the
mechanism at each iteration, instead, he possibly tries to
deceive the mechanism by untruthfully submitting a solution.
Thus, we need to design a mechanism that is robust to the
strategic behavior. This may indeed be plausible in practice,
for instance in our online labor market example, the platform
may try to deceive the task requester to not strain highly
qualified workers. Intuitively, this will be especially true
when the platform does not have a large number of workers.

Mainly, we characterize the regret upper bound with re-
spect to two types of assumptions. The first version of the
results relies on a relatively simple assumption such that the
agent’s utility is uniformly bounded below by some constant.
The latter depends on the Lipschitz continuity of the utility
across the solutions and the density of solutions in the utility
space. For each setting, we provide regret upper bounds and
matching lower bounds. This justifies the necessity of the
assumptions imposed, thereby characterizing the regimes in
which the principal can attain large utility.

Before presenting the results, we introduce a notion of
delayed mechanism, which will be useful in dealing with
strategic agent. Formally, we say that mechanism M is D-
delayed, if at each round t, it uses Hmax(1,t−D) to decide its
eligible set Et. Delayed mechanism effectively restricts the
strategic agent’s behavior, as follows.

Lemma 3.2 ((Haghtalab et al. 2022)). Given γ ∈ (0, 1), if
we set D = ⌈Tγ log(Tγ/ε)⌉, then D-delayed mechanism M
satisfies WREGM (T ) ≤ WREGM (T, ε).

Intuitively, if D gets larger enough, the agent with dis-
counted utility is less incentivized to deviate from the best
response at each round since the discounted utility after D

6Note that any state-of-the-art result can be carried over to our
problem’s regret bound, due to our reduction.

rounds may not be enough to make up for the loss of ε utility
in the current turn.
Uniformly bounded agent utility. Formally, we first as-
sume that Ya > ymin for any a ∈ A and the principal is also
aware of this lower bound. Our regret bound will accordingly
be parameterized with respect to ymin. This assumption is
plausible since in our online labor market example, the task
requester and the worker are typically contracted to pay an
intermediary fee to the platform and thus constitute a reason-
able amount of minimum payoff to the agent. The existence
of such a minimum utility effectively allows us to compute
the necessary delay to make the agent approximately myopic,
thanks to Theorem 3.2.

Leveraging the minimum utility of the agent, we consider
a variant of the algorithm used in the myopic deterministic
setting, by introducing a delay in reacting to the agent’s
feedback. Then, we can obtain the following regret bound.
Theorem 3.3. There exists an algorithm with WREG(T ) =

O(KTγ log
Tγ

ymin
) against γ-discounting strategic agent.

Essentially, the delay introduced in the algorithm induces
the agent to behave restrictively strategic, and we can effec-
tively bound the regret to be constant, assuming the other pa-
rameters are constants. Note, however, that the regret bound
linearly depends on the number of agent’s solutions K. Obvi-
ously, if K tends to be large in some cases, our regret guaran-
tee here is doomed to be pessimistic. This is indeed plausible
in practice, since the agent may have growing number of
solutions with respect to T , especially for online platforms.

This limitation can be handled by shrinking the eligible
sets more in an aggressive manner, instead of sequentially
seeking the next-best solutions. Then, the linear dependency
on K can further be wiped out as follows.
Theorem 3.4. There exists an algorithm with WREG(T ) =

O(Tγ log
Tγ

ymin
+ log T ) against γ-discounting strategic

agent.
Note that the regret no longer depends on the number

of solutions K, but instead on log T . Our algorithm keeps
shrinking the eligible set until it concludes that the truly
optimal solution lies within at most 1/T to the currently
best solution. Afterward, the regret is at most 1/T · T , thus
does not affect the overall regret upper bound. Intuitively, to
remove the dependence on the number of solutions, such a
logarithmic burden on T is essential to guarantee that our
eventual solution is correct up to O(1/T ) distance.

We further note that both the regret bounds of Theorem 3.3
and 3.4 have a logarithmic dependency on 1/ymin. Assuming
that Tγ = 1/(1 − γ) = O(1), this regret bound yields a
sublinear regret upper bound if ymin = e−o(T ), but becomes
detrimental the other way around. Interestingly, however, we
show that this dependency is necessary to obtain sublinear
regret for any algorithm, by formally proving that no algo-
rithm can achieve sublinear regret if ymin ≤ e−T against the
strategic agent.
Theorem 3.5. If ymin ≤ e−T , then any algorithm has
WREG(T ) = Ω(T ) against γ-discounting strategic agent.

Thus, the principal suffers a large amount of regret by
delegating to the agent whose utility tends to be very small.
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Lipschitz utility with dense solutions. Next, we consider
the case where the principal is not aware of any lower bound
on ymin, or such a lower bound does not exist. To cope with
this lack of information on ymin, we assume that there is no
significant disparity in the utility between two close solutions
for both the principal and the agent, and the solutions are
densely spread in the utility space. Under these assumptions,
we provide an algorithm to find a near optimal solution.

These assumptions are formally presented as follows.

Assumption 3.6 (d-dense). Let dX(a, b) = |Xa − Xb|. A
problem instance is d-dense for some d > 0 if for any two
solutions a, b ∈ A, either of the following is satisfied: (i)
dX(a, b) ≤ d or (ii) dX(a, b) > d and there exists another
solution c such that dX(a, c) ≤ d and dX(b, c) ≤ dX(a, b).

Assumption 3.7 (L1, L2-Lipschitz continuity). There exists
absolute constants L1, L2 > 0 such that for any a, b ∈ A,
we have L1 · dX(a, b) ≤ dY (a, b) ≤ L2 · dX(a, b), where
dX(a, b) = |Xa −Xb| and dY (a, b) = |Ya − Yb|.

Our assumption of densely spread solutions is innocuous
since the solutions will be packed more in a compact manner
as the number of solutions grow. Otherwise, if the number of
solutions is relatively small, then our results on the bounded
agent’s utility would kick-in, and thus one may recover the
sublinear regret. The Lipschitz continuity assumption is often
valid, as it is observed that when the agent’s utility for two
solutions is similar, the principal’s utility follows suit, and
vice versa. For instance, if all the solutions lie in y = 1 −
x, then the Lipschitz condition holds with (L1, L2) being
(1, 1 + ε) or (1− ε, 1) for any choice of ε ≥ 0.

Further, we assume that Lipschitz parameters L1 and L2

tend to be close to each other, precisely, L2 ≥ L1 > 3
4L2.

Indeed, if there exists a significant difference between L1 and
L2, the Lipschitz assumption fails to effectively impose any
restrictions.

Leveraging these assumptions, we propose a new algo-
rithm. Since we lack precise information on the required
delay to ensure the submission of a solution, we cannot com-
pel the agent to be approximately myopic. We propose a
modified version of the algorithm used above which effec-
tively leverages the assumptions above to explore superior
solutions.

Theorem 3.8. If α := L1 − 3
4L2 > 0, then Algorithm 1

has WREG(T ) = O(Tγ log
Tγ

α + log 1
d + dT ) against γ-

discounting strategic agent.

In Algorithm 1, we maintain an interval, denoted as [l, r],
which encompasses the optimal solution. It is guaranteed that
at every round, a solution a exists such that Xa = l. Accord-
ing to the Lipschitz continuity assumption, we can place an
upper bound on r, signifying that the optimal solution a∗ can-
not be significantly distant from a. This is because when the
difference between Xa∗ and Xa becomes large, it is expected
that Ya∗ − Ya will also be substantial. This is not possible
since Ya∗ is non-negative, and cannot be significantly greater
than Ya, otherwise, it would have been proposed by the agent
in earlier rounds.

With the bounded value of r, our objective is to determine
if there exists a solution within the right half of the interval.

Algorithm 1: DELAYEDPROGERESSIVESEARCH

1 while any solution has not been received do
2 Announce E0.
3 end
4 Let a0 be the proposed solution.
5 α← L1 − 3

4L2, l← Xa0 , y ← Ya0 ,
r ← min{1, l + y

L1
}, ε← 4αd, D ← Tγ log

Tγ

ε ;
6 Announce E0 for D rounds.
7 while r − l > 4d do
8 τ ← l+r

2 ;
9 Announce E>

τ .
10 if solution a is proposed by the agent then

l← Xa, y ← Ya else r ← τ ;
11 Announce El for D rounds.
12 r ← min{r, l + y

L1
};

13 end
14 Announce El for remaining rounds.

By considering the line x = l+r
2 , the d-dense assumption

implies that if a solution exists in the right half, there must
be a solution with the principal’s utility ranging from l+r

2 to
d + l+r

2 . Utilizing the Lipschitz continuity along with the
condition on its parameters, we can find a lower bound on
the agent’s utility within that interval. Consequently, we can
introduce an appropriate delay to compel the agent to pro-
pose a solution from the right half if it exists. As a result,
the algorithm can determine the presence or absence of a
solution in the right half and subsequently shrink the inter-
val accordingly. By continuing this procedure, the interval
gradually converges toward the optimal solution.

Furthermore, our regret upper bound essentially decom-
poses Tγ from T , and thus the effect of discount factor is
decoupled from the linear dependency of dT . The linear de-
pendency on dT may look pessimistic at first glance, but we
reveal that this dependency is indeed optimal, as formally
presented as follows.

Theorem 3.9. There exists a d-dense problem instance such
that any algorithm suffers WREG(T ) = Ω(dT ) against γ-
discounting strategic agent.

Its proof easily follows from the proof of Theorem 3.5.
Thus, this demonstrates the fundamental inevitability of the
term dT . It’s worth noting that whenever d is subconstant,
e.g., d = T−c for c > 0, then our regret upper bound in
Theorem 3.8 implies a sublinear regret.

In our online labor market example, since the number of
workers in a platform usually grows with respect to the time
horizon, their intrinsic qualities might lie more compactly
in the utility space as time flows. For instance, if there are
T ε workers having uniformly distributed utility in a compact
utility space for some ε ∈ (0, 1), their utility will be O(T−ε)-
densely spread, which would yield dT = T 1−ε = o(T )
regret bound. In words, the requester needs to delegate to a
platform with a large number of solutions, i.e., delegating to
big business matter. Conversely, the platform should maintain
more workers to attract requesters, i.e., economy of scale
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works, however, a trade-off arises since the platform’s gains
from strategizing would be limited then.

4 Stochastic Setting
For the stochastic setting, previous algorithms no longer work
as the ex-post optimal solution varies across the rounds. Thus,
the objective of the principal here will not be to find the
largest threshold τ to exclude any ex-post suboptimal solu-
tions, but to balance the probability that the agent possesses a
solution that belongs to the eligible set and the corresponding
utility of the agent’s best response therein. Recall that this
phenomenon is already well-captured in our benchmark (1)
and the corresponding notion of Stackelberg regret. Given
the differences, the principal faces an additional challenge of
handling the random noise in the reward, and needs to find
the best threshold to balance the trade-off presented above.

To cope with it, we reduce our problem to a stochastic
bandit problem which is standard in the literature (Kleinberg
and Leighton 2003; Amin, Rostamizadeh, and Syed 2013;
Haghtalab et al. 2022). In the stochastic multi-armed bandit
problem, a principal has a set of Q arms, indexed by i ∈ [Q],
and needs to decide which arm to pull at each round given
the time horizon T . Each arm i is equipped with a reward
distribution Di with support [0, 1]. Given µi = Er∼Di

[r], the
principal’s objective is to minimize expected regret defined
by REG(T ) = T ·maxi∈[Q] Er∼Di

[r]−
∑T

t=1 E [ rt ], where
rt denotes the random reward of the arm selected at round t
by the principal.

We first discretize the space of principal’s utility into the
set of i/Q for i ∈ [Q] for some carefully chosen parameter
Q. Each element i/Q corresponds to a single arm, which
represents the threshold τ that the principal can commit to
at each round. By pulling the arm i, the principal is essen-
tially announcing an eligible set of Eτi = 1 {a | Xa ≥ i/Q}.
Namely, the principal aims to find the best eligible set among
the set of Eτi for i ∈ [Q]. If the discretization is dense
enough with respect to the problem parameters, the regret
bound here would imply a reasonable regret bound for our
original problem. We define f(τ) = E

[
x
(t)

BR(t)(Eτ )

]
as the

expected principal utility for using threshold τ . Note that if
the agent best responds, the expected utility from pulling arm
i becomes f(i/Q).

We assume that f(τ) achieves its maximum for a unique
τ∗ ∈ (0, 1) with f ′′(τ∗) < 0, which is common in the liter-
ature (Kleinberg and Leighton 2003; Amin, Rostamizadeh,
and Syed 2013; Haghtalab et al. 2022). Now, we can simply
use the well-known UCB upon the discretization, and obtain
the following results against the myopic agent.

Theorem 4.1. If the agent is myopic, running UCB1 with dis-
cretization by Q = ( T

log T )
1/4 has REG(T ) = O(

√
T log T ).

Its analysis is a simple variant of (Kleinberg and Leighton
2003), but we provide the entire proof to make paper self-
contained.

Next, to deal with the strategic behavior of the agent, we
again exploit the concept of delay to restrict the agent to
be approximately best responding with a suitable choice of
parameters. In addition, however, we cannot simply expect

that the outcome of pulling a single arm, i.e., a specific eligi-
ble set, follows some stochastic distributions since the agent
may strategically deviate from the best response at hand. To
cope with this additional challenge, we use the foundation of
perturbed bandit instance by (Haghtalab et al. 2022).

Since the stochastic setting is a generalization of the de-
terministic setting, it is obvious that we need a reasonable
set of assumptions to obtain positive results. Similar to the
deterministic setting, we first assume that there exists a value
ymin > 0 such that for any realization of the agent’s so-
lutions, his utility for each solution is strictly greater than
ymin. Secondly, we assume that the problem instance satis-
fies the following assumption, which is a stochastic version
of Lipschitz continuity in the deterministic setting.
Definition 4.2 (Stochastic Lipschitz continuity). Under the
stochastic setting, we say that the problem instance is stochas-
tically Lipschitz-continuous with parameter L1 > 0 if the
ex-post utilities of the solutions are correlated in a sense that
for any a, b ∈ A− {a0}, we have L1 · dX(a, b) ≤ dY (a, b).

Finally, our main result can be presented as follows.
Theorem 4.3. Under the two assumptions presented above,
there exists an algorithm that has WREG(T ) of

O

(√
T log T + Tγ log

(
Tγ max

(
T

L1
,

1

ymin

))
log T

)
,

with γ-discouting strategic agent.
Our proof essentially relies on a construction of proper

random perturbation interval, followed by the regret analysis
of delayed version of successive elimination algorithm by
(Haghtalab et al. 2022) and (Lancewicki et al. 2021). The
technical subtlety lies on introducing a proper random pertur-
bation interval to convert it to the perturbed bandit instance.
The latter term including Tγ , L1 and ymin incurs due to the
strategic behavior of the agent. Still, this only contributes
log T amount of regret once all these parameters are con-
stants, which is dominated by the former term of

√
T log T .

5 Conclusion
We study a novel repeated delegated choice problem. This
is the first to study the online learning variant of delegated
choice problem by (Armstrong and Vickers 2010; Kleinberg
and Kleinberg 2018; Hajiaghayi, Rezaei, and Shin 2023). We
thoroughly investigate two problem dimensions regarding
whether the agent strategizes over the rounds or not, and
whether the utility is stochastic or deterministic. We obtain
several regret upper bounds for each problem setting, along
with corresponding lower bounds that complement the hard-
ness of the problems and some assumptions therein. Our
analysis mainly characterizes the conditions of problem in-
stances on which the principal can efficiently learn to delegate
compared to the case when she knows the optimal delegation
mechanism in hindsight, thereby providing fruitful insights
in the principal’s decision-making in delegation process.
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