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Abstract

This work studies the behaviors of two large-population
teams competing in a discrete environment. The team-level
interactions are modeled as a zero-sum game while the
agent dynamics within each team is formulated as a collab-
orative mean-field team problem. Drawing inspiration from
the mean-field literature, we first approximate the large-
population team game with its infinite-population limit. Sub-
sequently, we construct a fictitious centralized system and
transform the infinite-population game to an equivalent zero-
sum game between two coordinators. Via a novel reachability
analysis, we study the optimality of coordination strategies,
which induce decentralized strategies under the original in-
formation structure. The ϵ-optimality of the resulting strate-
gies is established in the original finite-population game, and
the theoretical guarantees are verified by numerical examples.

Introduction
Multi-agent decision-making arises in many applications,
ranging from warehouse robots (Li et al. 2021) to organi-
zational economics (Gibbons, Roberts et al. 2013). While
the majority of the literature formulates the problems within
either the cooperative or competitive setting, results on
mixed collaborative-competitive team behaviors are rela-
tively sparse. In this work, we consider a competitive team
game, where two teams, each comprising a large number of
intelligent agents, compete at the team level, while agents
collaborate within each team. Such hierarchical interactions
hold significant relevance in domains such as military op-
erations (Tyler et al. 2020) and other multi-agent systems
operating in adversarial environments (Shishika et al. 2022).

There are two major challenges when trying to solve such
competitive team problems:

1. Large-population team problems are computationally
challenging since the solution complexity increases ex-
ponentially with the number of agents, and, in general,
the team optimal control problems belong to the NEXP
complexity class (Bernstein et al. 2002).

2. Competitive team problems are conceptually challenging
due to the elusive nature of the opponent team. In partic-
ular, one may want to impose assumptions on the oppo-
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nent team to obtain tractable solutions, but these assump-
tions may not be valid. It is thus unclear whether one can
deploy techniques that are readily available in the large-
population game literature.

The scalability challenge in large-population multi-agent
systems has been addressed for a specific class of games
known as the mean-field games (Huang, Malhamé, and
Caines 2006; Lasry and Lions 2007). The salient feature of
a mean-field game is that agents are weakly-coupled in their
dynamics and rewards through their state distribution (the
so-called mean-field). The interactions among agents can
then be approximated as the interaction between a typical
agent and the “mass” of infinitely many other agents. This
approximation technique has been extended to single-team
settings known as the mean-field team problem (Arabneydi
and Mahajan 2014). A dynamic programming decomposi-
tion is developed for this problem, where all agents within
the team deploy the same strategy prescribed by a fictitious
coordinator. However, in competitive team setting, although
one may restrict the strategies used by her/his team to be
identical, extending the same assumption to the opponent
team may lead to a substantial underestimation of the oppo-
nent’s capabilities and thus requires further justification.

Main Contributions
We address the two aforementioned challenges for the class
of discrete zero-sum mean-field team games (ZS-MFTGs),
which is an extension to the mean-field (single) team prob-
lems. Importantly, ZS-MFTG models competitive team be-
haviors and draws focus to the justifiable approximation of
the opponent team strategies.

We develop a dynamic program that constructs ϵ-optimal
strategies to the proposed large-population competitive team
problem. Notably, our approach finds an optimal solution
at the infinite-population limit and considers only identical
team strategies. This avoids both the so-called “curse of di-
mensionality” issue in multi-agent systems and the book-
keeping of individual strategies. Our main results provide a
sub-optimality bound on the exploitability for our proposed
solution in the original finite-population game, even when
the opponent team is allowed to use non-identical strategies.
Specifically, we show that the sub-optimality decreases at
the rate of O(N−0.5), where N is the size of the smaller
team.
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Our results stem from a novel reachability-based analy-
sis of the mean-field approximation. In particular, we show
that any finite-population team behavior can be effectively
approximated by an infinite-population team that uses iden-
tical team strategies. This result allows us to approximate
the original problem with two competing infinite-population
teams and transform the resulting problem into a zero-
sum game between two fictitious coordinators. Such trans-
formation leads to a simple dynamic program based on
the common-information approach (Nayyar, Mahajan, and
Teneketzis 2013).

Related Literature
Mean-Field Games The mean-field game (MFG) model
was introduced in (Huang, Caines, and Malhamé 2007;
Lasry and Lions 2007) to address scalability issues in large-
population games. The salient feature of MFG is that self-
ish agents are weakly-coupled in their dynamics and re-
wards through the mean-field (state distribution). If the pop-
ulation is sufficiently large, then an approximately optimal
solution can be obtained by solving the infinite-population
limit which is known as the mean-field equilibrium (MFE).
See (Laurière et al. 2022) for an overview of the results in the
MFG literature. The main differences between our setup and
the MFG are the following: (a) we seek team optimal strate-
gies while MFG seeks a Nash equilibrium. In particular, we
provide performance guarantees when the entire opponent
team deviates, while MFG only considers single-agent devi-
ations; (b) The MFE assumes that all agents apply the same
strategy and solves the mean-field flow offline. Hence, the
MFE strategy is open-loop to the MF. However, under the
ZS-MFTG setting, different opponent team strategies lead to
different mean-field trajectories. Consequently, we require
feedback on the MFs to respond to the strategies deployed
by the opponent team.
Mean-Field Teams The single-team problem was explored
in (Arabneydi and Mahajan 2014), where agents share a
common team reward, resulting in a collaborative problem.
The work of (Arabneydi and Mahajan 2015) assumes that
all agents within the team apply the same strategy and the
optimality for the finite-population game is only assured in
the LQG setting (Mahajan and Nayyar 2015). Our work en-
compasses a more intricate two-team zero-sum scenario and
justifies the identical team strategy assumptions.

The concurrent work of (Sanjari, Saldi, and Yüksel 2023)
studies a similar team-against-team problem but in a con-
tinuous state and action setting. The authors analyze the ex-
istence of equilibria by modeling randomized strategies as
Borel probability measures. Our work differs in the follow-
ing aspects: (a) The work of Sanjari, Saldi, and Yüksel relies
on the Kakutani fixed point theorem to establish the exis-
tence of a Nash equilibrium. In contrast, the best-response
correspondence is nonconvex given the discrete nature of
our formulation (see Numerical Example 1). Therefore, our
approach focuses on the single-sided optimality based on
the lower and upper game values; (b) our approach trans-
forms the team-against-team problem into a zero-sum game
between two coordinators, which allows the deployment of
dynamic programming; (c) our results, which incorporate

reachability-analysis and additional Lipschitz assumptions,
provide the convergence rate of the finite-population team
performance to its infinite-population limit.

Notations
We use [n] to denote {1, 2, . . . , n}. The indicator function is
denoted as 1·

(
·
)
, such that 1a

(
b
)
= 1 if a= b and 0 other-

wise. We use uppercase letters to denote random variables
(e.g., X and M) and lowercase letters to denote their real-
izations (e.g., x and µ). For a finite set E, we denote the
space of all probability measures over E as P(E).

Problem Formulation
Finite-Population Team Games
Consider a discrete-time system with two large teams of
agents that operates over a finite horizon T . The Blue team
consists of N1 homogeneous agents, and the Red team con-
sists of N2 homogeneous agents. The total system size is
denoted as N = N1+N2, and ρ = N1/N reflects the size
ratio between the two teams. Let XN1

i,t ∈ X and UN1
i,t ∈ U

denote the random variables representing the state and ac-
tion taken by Blue agent i ∈ [N1] at time t. Here, X and U
are the finite individual state and action spaces for each Blue
agent, independent of i and t. Similarly, we use Y N2

j,t ∈ Y
and V N2

j,t ∈ V to denote the individual state and action of
Red agent j ∈ [N2]. The joint state and action of the Blue
team and the Red team are denoted as (XN1

t ,UN1
t ) and

(YN2
t ,VN2

t ), respectively.

Definition 1. The empirical distribution (ED) for the Blue
and Red teams are defined as

MN1
t (x) =

1

N1

N1∑

i=1

1x(X
N1
i,t ), x ∈ X , (1a)

NN2
t (y) =

1

N2

N2∑

j=1

1y(Y
N2
j,t ), y ∈ Y. (1b)

Notice that MN1
t (x) gives the fraction of Blue agents at

state x. Hence, the random vector MN1
t = [MN1(x)]x∈X

is a probability measure, i.e., MN1
t ∈ P(X ). Similarly, we

have NN2
t ∈ P(Y). We use the following two operators to

denote the operation in (1) that relates joint states to their
corresponding EDs:

MN1
t = Empµ(X

N1
t ), NN2

t = Empν(Y
N2
t ).

Note that the Emp operators remove agent index informa-
tion and thus one cannot tell the state of a specific Blue
agent i given only the Blue ED.

We use total variation to measure the distance between
distributions. Formally, for a finite set E, the total variation
between two probability measures µ, µ′ ∈ P(E) is given by

dTV

(
µ, µ′) = 1

2

∑

e∈E
|µ(e)− µ′(e)| = 1

2
∥µ− µ′∥1 .
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Dynamics We consider weakly-coupled dynamics, where
the dynamics of each individual agent is coupled with other
agents through the EDs. For Blue agent i, its stochastic tran-
sition is governed by the transition kernel ft and satisfies

P(XN1
i,t+1 = xN1

i,t+1|UN1
i,t = uN1

i,t ,X
N1
t = xN1

t ,YN2
t = yN2

t )

= ft(x
N1
i,t+1|xN1

i,t , u
N1
i,t , µ

N1
t , νN2

t ),

where µN1
t = Empµ(x

N1
t ) and νN2

t = Empν(y
N2
t ). Simi-

larly, the dynamics of Red agent j is governed by the transi-
tion kernel gt(yN2

j,t+1|yN2
j,t , v

N2
j,t , µ

N1
t , νN2

t ).

Assumption 1 (Lipschitz Dynamics). For all x ∈ X ,
µ, µ′ ∈ P(X ), ν, ν′ ∈ P(Y) and t ∈ {0, . . ., T −1}, there
exist a constant Lf ≥ 0 such that
∑

x′∈X
|ft(x′|x, u, µ, ν)− ft(x

′|x, u, µ′, ν′)|
≤ Lf

(
dTV

(
µ, µ′)+ dTV

(
ν, ν′

))
.

We assume that gt is Lg-Lipschitz as well.

Reward Structure Under the team-game framework,
agents in the same team receive the same reward. Similar
to the dynamics, we consider a weakly-coupled team reward

rt : P(X )× P(Y) → [−Rmax, Rmax].

Assumption 2 (Lipschitz Rewards). For all µ, µ′ ∈ P(X ),
ν, ν′∈P(Y) and t∈{0, . . ., T}, there exists Lr ≥ 0 such that

|rt(µ, ν)− rt(µ
′, ν′)| ≤ Lr

(
dTV

(
µ, µ′)+ dTV

(
ν, ν′

))
.

Under the zero-sum structure, we let the Blue team maxi-
mize the reward while the Red team minimizes it.

Information Structure We assume a mean-field shar-
ing information structure (Arabneydi and Mahajan 2015).
Specifically, at each time step t, Blue agent i observes its
own state XN1

i,t and the EDs MN1
t and NN2

t . Similarly, Red
agent j observes Y N2

j,t , MN1
t and NN2

t . We consider the fol-
lowing mixed Markov policies:

ϕi,t : U × X × P(X )× P(Y) → [0, 1],

ψj,t : V × Y × P(X )× P(Y) → [0, 1],
(2)

where ϕi,t(u|XN1
i,t ,MN1

t ,NN2
t ) is the probability that Blue

agent i selects action u given its state XN1
i,t and the team

EDs MN1
t and NN2

t . Note that agent’s individual state is
the private information, while the team EDs are the common
information shared among all agents.

An individual strategy is defined as a time sequence ϕi =
{ϕi,t}Tt=0. A Blue team strategy ϕN1 = {ϕi}N1

i=1 is the col-
lection of individual strategies used by each Blue agent. We
use Φt and Φ to denote, respectively, the set of individual
policies and strategies available to each Blue agent. The set
of Blue team strategies is then defined as the Cartesian prod-
uct ΦN1 = ×N1

i=1Φ. The notations extend naturally to the
Red team.

In summary, an instance of a finite-population zero-sum
mean-field team game is defined as the tuple ZS-MFTG =
⟨X ,Y,U ,V, ft, gt, rt, N1, N2, T ⟩.

Optimization Problem The performance of the team
strategy pair (ϕN1 , ψN2) is given by the expected cumula-
tive reward

JN,ϕ
N1 ,ψN2 (

xN1
0 ,yN2

0

)

=EϕN1 ,ψN2

[
T∑

t=0

rt(MN1
t ,NN2

t )
∣∣∣XN1

0 =xN1
0 ,YN2

0 =yN2
0

]
,

where MN1
t = Empµ(X

N1
t ) and NN2

t = Empν(Y
N2
t ),

and the expectation is with respect to the distribution of all
system variables induced by ϕN1 and ψN2 .

When the Blue team considers its worst-case perfor-
mance, we have the following max-min optimization:

JN∗(xN1
0 ,y

N2
0 )=max

ϕN1∈ΦN1

min
ψN2∈ΨN2

JN,ϕ
N1 ,ψN2

(xN1
0 ,y

N2
0 ),(3)

where JN∗ is the lower game value for the finite-population
game. Note that the game value may not always exist, i.e.,
max-min value may differ from the min-max value (Elliott
and Kalton 1972). Consequently, we consider the following
optimality condition for the Blue team strategy.
Definition 2. A Blue team strategy ϕN1∗ is ϵ-optimal if

JN∗ ≥ min
ψN2∈ΨN2

JN,ϕ
N1∗,ψN2 ≥ JN∗ − ϵ.

The strategy ϕN1∗ is optimal if ϵ = 0.
Similarly, the minimizing Red team considers a min-max

optimization problem, which leads to the upper game value

J̄N∗ = min
ψN2∈ΨN2

max
ϕN1∈ΦN1

JN,ϕ
N1 ,ψN2

.

The ϵ-optimality of Red team strategies is defined similarly.

A ZS-MFTG Example
Consider a simple team game on a two-node graph in Fig-
ure 1. The state spaces are given by X = {x1, x2} and
Y = {y1, y2}, and the action spaces are U = {u1, u2} and
V = {v1, v2}. The Blue action u1 corresponds to staying on
the current node and u2 represents moving to the other node.
The same connotations apply to Red actions v1 and v2.

The maximizing Blue team’s objective is to maximize its
presence at node 2 (state x2), and hence rt(µ, ν) = µ(x2).
The Blue transition kernel at x1 under u2 is defined as

ft(x
1|x1, u2, µ, ν) = 0.5

(
1−

(
ρµ(x1)− (1− ρ)ν(y1)

))
,

ft(x
2|x1, u2, µ, ν) = 0.5

(
1 +

(
ρµ(x1)− (1− ρ)ν(y1)

))
.

<latexit sha1_base64="ydhPtDgkQ6ql6mCWuxCrq89jB6A="></latexit>

x1/y1

<latexit sha1_base64="gunQFF4kPY5kmORUpuV2n9C0szo="></latexit>

u1/v1
<latexit sha1_base64="gunQFF4kPY5kmORUpuV2n9C0szo="></latexit>

u1/v1
<latexit sha1_base64="J4TkoE1lW7bXQULbRlBWDQJFyc8="></latexit>

u2/v2

<latexit sha1_base64="J4TkoE1lW7bXQULbRlBWDQJFyc8="></latexit>

u2/v2

<latexit sha1_base64="dBUSEKHsiK3BMaOegBtnYyj2DzI="></latexit>

x2/y2

Figure 1: An example of ZS-MFTG over a two-node graph,
where N1 = 2, N2 = 2 and ρ = 0.5.
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Under this transition kernel, the probability of a Blue agent
transitioning from node 1 to node 2 depends on the Blue
team’s numerical advantage over the Red team at node 1.

The initial joint states depicted in Figure 1 are given by
x2
0 = [x1, x1] and y2

0 = [y1, y2]. The corresponding EDs are
µ2
0 = [1, 0], ν20 = [0.5, 0.5], and the running reward is r0 =
µ2
0(x

2) = 0. Suppose the Blue team applies a team strat-
egy such that ϕi0(u

2|x1, µ2
0, ν

2
0) = 1 for both i ∈ [2] (under

which both Blue agents apply u2). The probability of an in-
dividual Blue agent transitioning to node 2 is 0.625. Thus,
the next Blue ED is a random vector with three possible re-
alizations: (i) M2

1 = [1, 0] with probability 0.14 (both Blue
agents remain on node 1); (ii) M2

1=[0.5, 0.5] with probabil-
ity 0.47 (one moves and one remains); and (iii) M2

1 = [0, 1]
with probability 0.39 (both move). Suppose the game ter-
minates at T = 1, then the value under ϕ2 is given by
J4,ϕ2,ψ2

(x2
0,y

2
0) = 0+(0.14·0+0.47·0.5+0.39·1) = 0.63.

Infinite-Population Team Game
The preceding max-min optimization in (3) is intractable for
large-population systems since the dimension of the joint
policy spaces ΦN1 and ΨN2 grows exponentially with the
number of the agents. To address this scalability issue, we
consider the infinite-population limit of the ZS-MFTGs, and
further assume that agents in the same infinite-population
team deploy the same strategy. As a result, we can model
the behavior of an entire team as the distribution of a typical
agent, i.e., the mean-field (Lasry and Lions 2007).

We first introduce the class of identical team strategies.
Definition 3 (Identical Blue Team Strategy). The Blue team
strategy ϕN1 = {ϕ1, . . . , ϕN1} is an identical team strategy,
if ϕi1,t = ϕi2,t for all i1, i2 ∈ [N1] and t ∈ {0, 1, . . . , T−1}.

We slightly abuse the notation and use ϕ to denote the
identical Blue team strategy, under which all Blue agents ap-
ply the same individual strategy ϕ. Consequently, Φ is used
to denote both the set of Blue individual strategies and the
set of identical Blue team strategies. The definitions and no-
tations extend to the identical Red team strategies.

We define the mean-field (MF) as the state distribution of
a typical agent in an infinite-population team game.
Definition 4. Given identical team strategies ϕ ∈ Φ and
ψ ∈ Ψ, the MFs are defined as the sequence of vectors
that adhere to the following deterministic dynamics with
(µρ0, ν

ρ
0 ) as initial conditions:

µρ
t+1(x

′)=
∑
x∈X

[∑
u∈U

ft(x
′|x, u, µρ

t , ν
ρ
t )ϕt(u|x, µρ

t , ν
ρ
t )
]
µρ
t (x),

νρt+1(y
′) =

∑
y∈Y

[∑
v∈V

gt(y
′|y, v, µρ

t , ν
ρ
t )ψt(v|y, µρ

t , ν
ρ
t )
]
νρt (y).

Later, in Theorem 1 we will show that the determinis-
tic MF above is an approximation of the (stochastic) finite-
population ED, and the approximation error goes to zero
when N1, N2 → ∞. Thus, we can regard the mean-field
as the empirical distribution of an infinite-population team.

For simplicity, we express the MF dynamics in a compact
matrix form as

µρt+1 = µρtFt(µ
ρ
t , ν

ρ
t , ϕt),

νρt+1 = νρtGt(µ
ρ
t , ν

ρ
t , ψt),

(4)

where Ft ∈ R|X |×|X| is the transition matrix for a typical
Blue agent under ϕt, which can be computed based on the
transition kernel ft. The matrix Gt is defined similarly.

Consider the infinite-population limit of the example in
Figure 1 with µ0.5

0 = [1, 0], ν0.50 = [0.5, 0.5] and ρ =
0.5. If the Blue team applies the identical team strategy
ϕ0(u

2|x1, µ0.5
0 , ν0.50 ) = 1, then the next Blue MF is deter-

ministically given by µ0.5
1 = [0.375, 0.625].

For the infinite-population game, the performance of the
identical team strategies (ϕ, ψ) ∈ Φ×Ψ is given by

Jρ,ϕ,ψ(µρ0, ν
ρ
0 ) =

T∑

t=0

rt(µ
ρ
t , ν

ρ
t ), (5)

where the propagation of µρt and νρt is subject to (4).
The worst-case performance of the maximizing Blue team

is then given by the lower game value

Jρ∗(µρ0, ν
ρ
0 ) = max

ϕ∈Φ
min
ψ∈Ψ

Jρ,ϕ,ψ(µρ0, ν
ρ
0 ). (6)

Remark 1. Different from the infinite-population game
value (6), the finite-population value (3) takes joint states as
arguments rather than EDs. The difference comes from the
non-identical strategies considered in the finite-population
game, which require each agent’s state and index informa-
tion to sample actions and predict the game’s evolution.

Zero-Sum Game Between Coordinators
The mean-field sharing structure in (2) allows us to reformu-
late the infinite-population competitive team problem (6) as
an equivalent two-player game from the perspective of two
fictitious1 coordinators. The coordinators know the common
information (MFs) and selects a local policy that maps each
agent’s local information (individual state) to its actions.
Through this common-information approach (Nayyar, Ma-
hajan, and Teneketzis 2013), we provide a dynamic program
that constructs optimal strategies for all agents under the
original mean-field sharing information structure.

Equivalent Centralized Problem
We use πt : U × X → [0, 1] to denote a local Blue policy,
which is open-loop with respect to the MFs. Specifically,
πt(u|x) is the probability that a Blue agent selects action u
at state x regardless of the current MFs. The set of open-loop
Blue local policies is denoted as Πt. Similarly, σt : V×Y →
[0, 1] and Σt denote a Red local policy and its admissible set.
Under the local policy πt, the Blue MF propagates as

µρt+1(x
′)=

∑

x∈X

[∑

u∈U
ft(x

′|x, u, µρt , νρt )πt(u|x)
]
µρt (x), (7)

and the Red team MF dynamics under Red local policies is
defined similarly.

At each time t, a Blue coordinator observes the MFs of
both teams (common information) and prescribes a local

1The coordinators are fictitious since they are introduced as an
auxiliary concept and are not required for the actual implementa-
tion of the obtained strategies.
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policy πt ∈ Πt to all Blue agents within its team. The lo-
cal policy is selected based on:

πt = αt
(
µρt , ν

ρ
t

)
,

where αt : P(X )× P(Y) → Πt is a deterministic Blue co-
ordination policy. Similarly, the Red coordinator observes
the MFs and selects a local policy σt ∈ Σt according
to σt = βt

(
µρt , ν

ρ
t

)
. We refer to the time sequence α =(

α1, . . . , αT−1

)
as the Blue team coordination strategy and

β =
(
β1, . . . , βT−1

)
as the Red team coordination strategy.

The sets of admissible coordination strategies are denoted as
A and B.
Remark 2. There is a one-to-one correspondence between
Blue (Red) coordination strategies and identical Blue (Red)
team strategies such that

ϕt(u|x, µ, ν) =
[
αt(µ, ν)

]
︸ ︷︷ ︸

πt

(u|x).

The original competitive team problem in (6) can now
be viewed as an equivalent zero-sum game played between
the two coordinators, where the game state is the joint MF
(µρt , ν

ρ
t ) and the actions are the local policies πt and σt se-

lected by the coordinators. The cumulative reward is com-
puted based on the mean-field trajectory induced by the co-
ordination strategy pair (α, β). The objective of the Blue co-
ordinator is to maximize the cumulative rewards, while the
Red coordinator minimizes.

In summary, the zero-sum coordinator game is defined as
the tuple ZS-CG = ⟨P(X ),P(Y ),Πt,Σt, Ft, Gt, rt, ρ, T ⟩,
where the state and action spaces are all continuous.

We use the following dynamic programming recursion
scheme to find the lower value of the coordinator game:
Jρ∗cor,T (µ

ρ
T , ν

ρ
T ) = rT (µ

ρ
T , ν

ρ
T ) (8)

Jρ∗cor,t(µ
ρ
t , ν

ρ
t ) = rt(µ

ρ
t , ν

ρ
t ) for t = 0, . . . , T−1 (9)

+ max
πt∈Πt

min
σt∈Σt

Jρ∗cor,t+1

(
µρtFt(µ

ρ
t,ν

ρ
t , πt), ν

ρ
tGt(µ

ρ
t , ν

ρ
t , σt)

)
.

With the optimal value function, the optimal Blue team co-
ordination strategy can be constructed via
α∗
t (µ

ρ
t , ν

ρ
t ) ∈ (10)

argmax
πt∈Πt

min
σt∈Σt

Jρ∗cor,t+1

(
µρtFt(µ

ρ
t , ν

ρ
t , πt),ν

ρ
tGt(µ

ρ
t , ν

ρ
t , σt)

)
.

Note that the optimal Blue team coordination strategy in-
duces an identical Blue team strategy that satisfies the mean-
field sharing information structure and can be implemented
in the finite-population game (Remark 2).

Reachable Sets
At the infinite-population limit, the MF dynamics is deter-
ministic, and thus selecting the local policies πt and σt at
time t is equivalent to selecting the desirable MFs at the next
time step. Consequently, we examine the set of MFs that can
be reached from the current MFs.
Definition 5. The Blue and Red team reachable sets, starting
from µρt and νρt , are defined as

Rµ,t(µ
ρ
t , ν

ρ
t )≜{µρt+1|∃πt∈Πt s.t.µ

ρ
t+1=µ

ρ
tFt(µ

ρ
t , ν

ρ
t , πt)}.

Rν,t(µ
ρ
t , ν

ρ
t )≜{νρt+1|∃σt ∈ Σt s.t.ν

ρ
t+1 = νρtGt(µ

ρ
t , ν

ρ
t , σt)}.

In the sequel, we regard the reachable sets as correspon-
dences, i.e., set-valued functions (Freeman and Kokotovic
2008).

Remark 3. Note that the reachable sets are constructed
based on identical team strategies, since under the coordi-
nator game formulation, all agents in the same team follow
the same local policies prescribed by their coordinator.

Now, we can change the optimization domains in (9) from
the local policy spaces to the reachable sets as follows

Jρ∗cor,t(µ
ρ
t , ν

ρ
t ) = rt(µ

ρ
t , ν

ρ
t ) (11)

+ max
µρ
t+1∈Rµ,t(µ

ρ
t ,ν

ρ
t )

min
νρ
t+1∈Rν,t(µ

ρ
t ,ν

ρ
t )
Jρ∗cor,t+1(µ

ρ
t+1, ν

ρ
t+1).

In the sequel, we primarily work with the reachability-based
optimization in (11). There are two advantages to this ap-
proach: First, the reachable sets generally have a lower di-
mension than the coordinator action spaces, which is de-
sirable for numerical algorithms; Second, the reachability-
based optimization allows us to compare the “reachability”
induced by non-identical and identical team strategies (The-
orem 1) and then study the performance loss due to the iden-
tical strategy assumption.

Main Results
Recall that the optimal Blue team coordination strategy α∗

is constructed for the infinite-population game assuming that
both teams employ identical team strategies. This section
establishes the performance guarantees for α∗ in the finite-
population games where both teams are allowed to deploy
non-identical strategies.

Approximation Error
As α∗ is solved at the infinite-population limit, it is essential
to understand how well the infinite-population game approx-
imates the original finite-population problem. The following
theorem states that the reachable set constructed using iden-
tical strategies is rich enough to approximate any empiri-
cal distributions induced by non-identical team strategies in
finite-population games.

Theorem 1. Let XN1
t , YN2

t , MN1
t , and NN2

t be the joint
states and the corresponding EDs of a finite-population
game. Denote the next Blue team ED induced by a (poten-
tially non-identical) Blue team policy ϕN1

t ∈ΦN1
t as MN1

t+1.
Then, there exists µt+1∈Rµ,t(MN1

t ,NN2
t ) such that

E
ϕ
N1
t

[
dTV

(
MN1

t+1, µt+1

)∣∣XN1
t ,YN2

t

]
≤ |X |

2

√
1

N1
. (12)

Proof. The key idea is to construct an identical local policy
πapprx,t that has its action distribution matching the aver-
age of the policies used by the Blue agents. One can then
leverage πapprx,t to mimic the population behavior and use
a modified law of large numbers to show that the MF µt+1

induced by πapprx,t satisfies the error bound in (12). This
idea is visualized in Figure 2. See the full version (Guan,
Afshari, and Tsiotras 2023) for a detailed proof.
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Figure 2: An illustration of the key idea behind Theorem 1.

Corollary 1. Let XN1
t , YN2

t , MN1
t , and NN2

t be the joint
states and the corresponding EDs of a finite-population
game. Denote the next Blue ED induced by an identical Blue
team policy ϕt ∈ Φt as MN1

t+1. Then, the following holds:

Eϕt

[
dTV

(
MN1

t+1, µt+1

)∣∣ XN1
t ,YN2

t

]
≤ |X |

2

√
1

N1
,

where µt+1 = MN1
t Ft(MN1

t ,NN2
t , ϕt).

Corollary 1 implies that the MF induced by an identical team
policy is a good approximation to the ED induced by the
same identical team policy in a finite-population system.

Lipschitz Continuity of the Value Functions
Next, we examine the continuity of the coordinator game
values, which is essential for the performance guarantees.
We start with the continuity of the reachability correspon-
dences under the Hausdorff distance distH.2

Lemma 1. For all µt, µ′
t ∈ P(X ) and νt, ν′t ∈ P(Y), the

reachability correspondence Rµ,t satisfies

distH(Rµ,t(µt, νt),Rµ,t(µ
′
t, ν

′
t)) (13)

≤ LRµ

(
dTV

(
µt, µ

′
t

)
+ dTV

(
νt, ν

′
t

))
,

where the Lipschitz constant is given by LRµ
= 1 + 1

2Lf .
The Red reachability correspondence satisfies a similar in-
equality with a Lipschitz constant LRν

= 1 + 1
2Lg .

Leveraging the continuity of the reachability correspon-
dences, the following theorem establishes the Lipschitz con-
tinuity of the optimal coordinator game value.
Theorem 2. For all µρt , µ

ρ′
t ∈ P(X ) and νρt , ν

ρ′
t ∈ P(Y),

the lower coordinator game value satisfies∣∣Jρ∗cor,t(µρt , νρt )− Jρ∗cor,t(µ
ρ′
t , ν

ρ′
t )

∣∣ (14)

≤ LJ,t
(
dTV

(
µρt , µ

ρ′
t

)
+ dTV

(
µρt , ν

ρ′
t

))
,

where the Lipschitz constant is given by LJ,t = Lr
(
1 +

LR(1− LT−t
R )/(1− LR)

)
and LR = LRµ + LRν .

Proof. Observe that the lower value in (11) takes the form:
f(x, y) = c(x, y)+maxp∈Γ(x,y) minq∈Θ(x,y) g(p, q), which
is an extension of the maximization marginal function (Free-
man and Kokotovic 2008) to the max-min case. We present
a continuity result for this type of marginal function in the
extended version of this paper (Guan, Afshari, and Tsio-
tras 2023), based on which we can prove the above theorem
through an inductive argument.

2The Hausdorff distance between sets A,B ⊆ X is defined as
distH(A,B)=max

{
supa∈Ainfb∈B∥a− b∥ , supb∈B infa∈A∥a− b∥

}
.

Performance Guarantees
The following main theorem compares the worst-case per-
formance of the identical Blue team strategy induced by
α∗ (Remark 2) to the original max-min optimization in (3),
where non-identical strategies are allowed.
Theorem 3. The optimal Blue coordination strategy α∗

in (10) induces an ϵ-optimal Blue team strategy. Formally,
for all xN1 ∈ XN1 and yN2 ∈ YN2 ,

JN∗(xN1 ,yN2) ≥ min
ψN2∈ΨN2

JN,α
∗,ψN2

(xN1 ,yN2) (15)

≥ JN∗(xN1 ,yN2)−O
( 1√

N

)
,

where N = min{N1, N2}.

Proof. The first inequality is straightforward. We break the
second inequality into two steps: (i) minψN2 J

N,α∗,ψN2 ≥
Jρ∗cor − O(1/

√
N); and (ii) Jρ∗cor ≥ JN∗ − O(1/

√
N). The

proofs for both steps are constructed based on induction, and
we only present the proof for step (i) in the appendix of this
paper. A detailed proof of Theorem 3 is presented in the ex-
tended version (Guan, Afshari, and Tsiotras 2023).

Remark 4. Recall that α∗ is solved at the infinite-
population limit under the restriction that both teams apply
identical team strategies. Theorem 3 states that the identi-
cal Blue team strategy induced by α∗ is still ϵ-optimal, even
if (i) it is deployed in a finite-population game and (ii) the
opponent team employs non-identical strategies to exploit.
Remark 5. Continuity Assumptions 1 and 2 are necessary
to translate the infinite-population performance back to the
finite-population game. See the appendix of (Guan, Afshari,
and Tsiotras 2023) for a discontinuous example where the
infinite-population game value is different from that of the
finite-population problem.

Numerical Examples
In this section, we provide two numerical examples. For
both examples, the state spaces are X = {x1, x2} and
Y = {y1, y2}, and the action spaces are U = {u1, u2}
and V = {v1, v2}. The two-state state spaces allow the joint
MFs to be characterized solely by µt(x1) and νt(y1).

Numerical Example 1
This example serves to illustrate the reachability-based op-
timization in equation (11) and to demonstrate that the co-
ordinator game value may not exist, contrary to the continu-
ous setting as discussed in (Sanjari, Saldi, and Yüksel 2023).
For a comprehensive description of the dynamics and reward
setup, see (Guan, Afshari, and Tsiotras 2023).

The coordinator game values in Figure 3 are computed
through discretization, where the two-dimensional sim-
plexes P(X ) and P(Y) are meshed into 1,000 bins3. While
the game value Jρ∗cor,1 exists at time t = 1, it is not convex-
concave. Hence, the upper (max-min) and lower (min-max)

3An error bound on the difference between the discretized value
and the true optimal value can be readily derived using the Lips-
chitz constants of the coordinator game values.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9736



min-max

max-min

(a)
<latexit sha1_base64="XWNb9lj+W+G2oTlJ/kA9yRRKobo="></latexit>

t = 0 (b)
<latexit sha1_base64="PbSAZptgQ2+CNHeXThDWx8kKqyY="></latexit>

t = 1 (c)
<latexit sha1_base64="PbSAZptgQ2+CNHeXThDWx8kKqyY="></latexit>

t = 1

<latexit sha1_base64="phhA2LL2kLWQ4rDWdMcRmj2Ehhw="></latexit>

min
⌫2R⌫,0

J⇢⇤
cor,1(µ, ⌫)

(d)

<latexit sha1_base64="Vr1u0zJ6ll4ESgZ0EvxQQqR4AE8="></latexit>

max
µ2Rµ,0

J⇢⇤
cor,1(µ, ⌫)

<latexit sha1_base64="PBmkh+mazriNxwCthZZY26MJKU4=">AAAFl3icnZTdTtswFMcNoxtjX2VcTbuxFk1iEqqSjsEQF0ObNqFJMGC0FDWhchyntXCczHaAKsqz7HZ7pL3N7PQrpOxmliId+3d88j/n2PYTRqWy7T8Li/eWavcfLD9cefT4ydNn9dXnbRmnApMWjlksOj6ShFFOWooqRjqJICjyGTnzLz8ZfnZFhKQxP1XDhHgR6nMaUoyUXurV19wIqQFGLDvJe5nL0w0779Utu7HVbDrbO9Bu2MUwxltnx3kHnfGKBcbjqLe6xNwgxmlEuMIMSdl17ER5GRKKYkbyFTeVJEH4EvVJV5scRUR6WaE+h6/1SgDDWOiPK1islndkKJJyGPna02iVVWYW72LdVIXvvYzyJFWE49GPwpRBFUNTChhQQbBiQ20gLKjWCvEACYSVLtiKy8k1jqMI8SBzO3k2LVQnz2/D8xI8r8JWCbaqsF2C7So8KMGDKjwswcMq9MObMfbD7GaeDmd0OE87MzqXqh+ez+hcrpQH5mDppnab3sgtkJmjD5bl5K5P++uZ1SyMN5WdKEnERLOIstG04iNT32Sd8oAIc9zn8xZE0iAlpdJ8y92P+rduqLuqheggP4QahypQVcjJwXeiZvKnFyNKN3QOF0b/up5cuGIQF2ltQH1pZtO5eId3x+P/GS9QV3nX8aaVCgpxI/tUHyFYlBlaDryrzFi3ZupuJtU2+HIUnZFQuUw/HMpyXEH7AwVdYaaVDeQmwaX0fD/7bLqtm2widCebvWorlZaxOxEiG6qRu7sVHxZfE3GFWNHPWdO/5uZ9mjxC8N9Gu9lwthqbx5vW3ub4pVoGL8ErsA4csA32wD44Ai2AwRD8BL/A79qL2ofal9r+yHVxYbxnDdwateO/qg79Kw==</latexit>R⌫,0

<latexit sha1_base64="zQAZCC6bXGKKih+BFJTqVL0VNH4="></latexit>

R⌫,0(y
1)

<latexit sha1_base64="O/qq28Gl3lJ95rfW5fqCCm+okZc="></latexit>

Rµ,0(x
1)

<latexit sha1_base64="wm3o3MKSypCSuQP7l41k+qNq+5Q=">AAAFl3icnZTfT9swEMcNoxtjv2A8TXuxFk1iEqoaVjEmHoY2bUKTYMBoKapDZTtOa+E4me0AVZS/Za/bn7T/Zk7a0pB2L7NU6ezP3eV7d65JLLg2jcafhcV7S7X7D5Yfrjx6/OTps9W1520dJYqyFo1EpDoEaya4ZC3DjWCdWDEcEsHOyOWnnJ9dMaV5JE/NMGZeiPuSB5xiY496q+soxGZAsUhPsl6KwmSzkfVWnUa9USxYMt7vbDd33kJ3fOKA8TrqrS0J5Ec0CZk0VGCtu24jNl6KleFUsGwFJZrFmF7iPutaU+KQaS8t1GfwtT3xYRAp+5MGFqfliBSHWg9DYj1zrbrK8sN5rJuYYMdLuYwTwyQdfShIBDQRzFsBfa4YNWJoDUwVt1ohHWCFqbENW0GSXdMoDLH0U9TJ0ttGdbLsLjwvwfMqbJVgqwrbJdiuwoMSPKjCwxI8rEIS3IwxCdKbWTqc0uEs7UzpTKkkOJ/SmVq59POLZYfa3fJGbr5OXXuxHDdDhPc3UmerMN5UInEcq4lmFaajbcVHJySvOpE+U/l1n61bMc39hJVa8y1DH+1nUWCnaoXYJD+UGacqUFXIycF3Zqbyy38MW8NFrn/Dbi6QGkRFWZsQydJ2Jt/h/HzyP/P55irrut5tp/xC3Mg+tVcIFm2GjgvntZna0dy655vqGIgeZRcsMEjYh8M4LlK8PzAQqXxbCWA3MS2VR0j6OZ+2HXKeoTsJ9qqjNFbG7kSIrpt6hnYrPiK6ZuoKi2Ke06F/zfL3afIIwX8b7a26u11vHjedveb4pVoGL8ErsAFc8A7sgX1wBFqAgiH4CX6B37UXtQ+1L7X9keviwjhmHdxZteO/ew39Ig==</latexit>Rµ,0<latexit sha1_base64="zQAZCC6bXGKKih+BFJTqVL0VNH4="></latexit>

R⌫,0(y
1)

<latexit sha1_base64="O/qq28Gl3lJ95rfW5fqCCm+okZc="></latexit>

Rµ,0(x
1)

Figure 3: Subplots (a)-(c) present the game values computed via discretization. The x- and y-axes correspond to µρt (x
1) and

νρt (y
1), respectively. Subplot (d) illustrates the reachable sets starting from µ0 = [0.96, 0.04] and ν0 = [0.04, 0.96].

game values at the previous step t = 0 differs, as ob-
served in subplot (a). Specifically, at µρ0 = [0.96, 0.04] and
νρ0 = [0.04, 0.96], we have the lower value Jρ∗cor,0 = 0.5298

and the upper value J̄ρ∗cor,0 = 0.5384, which are visualized
as the green and yellow points. This discrepancy in the game
values implies the absence of a Nash equilibrium in this co-
ordinator game.

Based on (11), the optimization domains of Jρ∗cor,0
are Rµ,0(µ

ρ
0, ν

ρ
0 ) for the maximization and Rν,0(µ

ρ
0, ν

ρ
0 )

for the minimization, both of which are plotted in (d).
Subplot (c) presents a zoom-in for the optimization
maxRµ,0 minRν,0 J

ρ∗
cor,1 and its min-max counterpart. The

marginal functions are also plotted, from which the max-min
and min-max values at t = 0 can be directly obtained.

Remark 6. In the extended version (Guan, Afshari, and
Tsiotras 2023), we show that a Nash equilibrium exists when
agents’ dynamics are completely decoupled from each other.

Numerical Example 2
It is generally challenging to verify the suboptimality bound
in Theorem 3, since computing the true optimal performance
of a finite-population team game is intractable. However, for
the following designed example, we have the optimal team
strategies for large finite-population teams.

Consider a ZS-MFTG with T=2. The game setup is sim-
ilar to the one in Figure 1 but with different dynamics and
rewards. The (minimizing) Red team’s objective is to maxi-
mize its presence at state y1 at t = 2, which translates to

r0(µ, ν) = r1(µ, ν) = 0, r2(µ, ν) = −ν(y1).
The Blue transition is time-invariant, deterministic, and

independent of the MFs. Formally, for all µ, ν and t∈{0, 1},

ft(x
1|x1, u1, µ, ν) = 1, ft(x

2|x1, u2, µ, ν) = 1,

ft(x
2|x2, u1, µ, ν) = 1, ft(x

1|x2, u2, µ, ν) = 1.
(16)

Under the above transition kernel, a Blue agent can freely
move between the two nodes (action u1 to “stay” on the cur-
rent node and u2 to “switch” node).

At t = 0, all Red agents are frozen at both states, i.e.,
no action can change a Red agent’s state. At t = 1, Red

agents at y1 are still frozen, but Red agents at y2 can use v2
to transition to y1 and the transition probability is given by
gρ1(y

1|y2, v2, µ1, ν1) (17)

= min
{
5
(
(µ1(x

1)− 1√
2
)2+(µ1(x

2)− (1− 1√
2
))2

)
, 1
}
.

Note that, under the above dynamics, if the Blue team
achieves the target distribution µ1 = [1/

√
2, 1−1/

√
2] at

time t = 1, no Red agent can transition from y2 to y1.

Infinite-population case. For the Red team, only the de-
cisions of Red agents at y2 at time t = 1 have an impact
on the game outcome. As a result, the above setup leads to
a dominant optimal Red team strategy: all Red team agents
at y2 use v2 at t = 1 and attempt to transit to state y1. On
the other hand, the Blue team should try to achieve the dis-
tribution µ1 = [1/

√
2, 1−1/

√
2] to minimize the probability

of Red team agents transitioning from y2 to y1 at t=1. The
Blue dynamics in (16) ensures that the Blue team reachable
set covers the entire simplex P(X ) regardless of the initial
distributions. Hence, the target distribution can always be
achieved at t=1 with an infinite population.

Under the optimal strategies discussed above, the Blue
team completely blocks the Red team agents’ migration
from y2 to y1, and thus only the Red agents spawn on y1
will count towards the terminal rewards. Consequently, the
infinite-population game value is given by Jρ∗ = −ν0(y1).
Finite-population case. The Red team’s optimal strategy
remains the same as the infinite-population case. Note that
this Red team strategy is optimal against all Blue team strate-
gies. The Blue team, on the other hand, cannot achieve the
irrational target distribution with a finite number of agents.
While the Blue team can still match the target distribution in
expectation using a (stochastic) identical team strategy, the
following analysis shows that a non-identical deterministic
Blue team strategy achieves a better performance.

Consider a Blue team with three agents and all Blue
agents are on node 1, i.e., µ3

0 = [1, 0]. The optimal Blue
coordination strategy prescribes that all Blue agents pick u1

(“stay”) with probability 1/
√
2 and u2 (“move to x2”) with

probability (1−1/
√
2) to reach the target distribution in ex-

pectation. Such action selection leads to the following four
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possible outcomes of the next Blue team ED µ3
1: P([1, 0]) =

0.354, P([2/3, 1/3]) = 0.439, P([1/3, 2/3]) = 0.182, and
P([0, 1]) = 0.025. In expectation, these empirical distri-
butions lead to a transition probability of 0.518 for a Red
team agent moving from y2 to y1. Consequently, we have
the worst-case performance of the optimal Blue coordinator
strategy as minψN2 J

3,α∗,ψN2
= −ν0(y1)− 0.518ν0(y

2).
Next, consider the non-identical deterministic Blue team

strategy, under which Blue agents 1 and 2 apply action u1
and Blue agent 3 applies u2. This Blue team strategy de-
terministically leads to M3

1 = [2/3, 1/3] at t = 1, and
the resultant Red team transition probability from y2 to y1
is 0.016. Clearly, the non-identical Blue team strategy sig-
nificantly outperforms the identical mixed team strategy in
this three-agent case. Furthermore, this Blue team strategy
is optimal over the entire non-identical Blue team strat-
egy set, resulting in a finite-population optimal game value
J3∗ = −ν0(y1)− 0.016ν0(y

2).
We repeat the above computation for multiple Blue team

size N1 and plot the suboptimality gap as the blue line in
Figure 4, which verifies the O(1/

√
N) decrease rate pre-

dicted by Theorem 3.
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Figure 4: Performance loss of the optimal Blue coordination
strategy with µ0 = [1, 0] and ν0 = [0.4, 0.6].

Conclusion
In this work, we introduced a discrete zero-sum mean-field
team game to model the behaviors of competing large-
population teams. We developed a dynamic programming
approach that approximately solves this large-population
game at its infinite-population limit where only identical
team strategies are considered. Our analysis demonstrated
that the identical strategies constructed are ϵ-optimal within
the general class of non-identical team strategies when de-
ployed in the original finite-population game. The derived
performance guarantees are verified through numerical ex-
amples. Future work will investigate the LQG setup of this
problem and explore machine-learning techniques to ad-
dress more complex zero-sum mean-field team problems.
Additionally, we aim to generalize our results to the infinite-
horizon discounted case and problems with heterogeneous
sub-populations.

Appendix
Proof of Theorem 3. We only provide an inductive proof for
step (i). Fix an arbitrary Red team strategy ψN2 ∈ ΨN2 .
Base case: At time T , we have for all xN1

T and yN2

T that

JN,α
∗,ψN2

T (xN1

T ,yN2

T )=Jρ∗cor,T (µ
N1

T , νN1

T )=rT (µ
N1

T , νN2

T ),

where µN1

T = Empµ(x
N1

T ) and νN2

T = Empν(y
N2

T ).
Inductive hypothesis: Assume that for all xN1

t+1 and yN2
t+1,

JN,α
∗,ψN2

t+1 (xN1
t+1,y

N2
t+1)≥ Jρ∗cor,t+1(µ

N1
t+1, ν

N2
t+1)−O

( 1√
N

)
.

Induction: At timestep t, consider arbitrary joint states
(xN1
t ,yN2

t ) and the corresponding EDs (µN1
t , νN2

t ). Define

µ∗
t+1 = µN1

t Ft(µ
N1
t , νN2

t , α∗
t ).

Note that, from the optimality of α∗
t in (10), we have

µ∗
t+1∈ argmax
µt+1∈Rµ,t(µ

N1
t ,ν

N2
t )

min
νt+1∈Rν,t(µ

N1
t ,ν

N2
t )

Jρ∗cor,t+1(µt+1, νt+1).

(18)
Furthermore, from Theorem 1, there exists a νapprx,t+1 ∈
Rν,t(µ

N1
t , νN2

t ) for the fixed Red policy ψN2
t such that

E
ψ

N2
t

[
dTV

(
NN2
t+1, νapprx,t+1

)]
≤ |Y|

2

√
1

N2
. (19)

Then, for all xN1
t ∈XN1 and yN2

t ∈ YN2 , we have
JN,α

∗,ψN2

t (xN1
t ,yN2

t )

= rt(µ
N1
t , νN2

t ) + Eα∗,ψN2

[
JN,α

∗,ψN2

t+1 (XN1
t+1,Y

N2
t+1)

]

(i)
≥rt(µN1

t , νN2
t )+Eα∗,ψN2

[
Jρ∗cor,t+1(MN1

t+1,NN2
t+1)

]
−O

( 1√
N

)

=rt(µ
N1
t , νN2

t )−O
( 1√

N

)
+Eα∗,ψN2

[
Jρ∗cor,t+1(MN1

t+1,NN2
t+1)

− Jρ∗cor,t+1(µ
∗
t+1, νapprx,t+1) + Jρ∗cor,t+1(µ

∗
t+1, νapprx,t+1)

]

(ii)
≥ rt(µ

N1
t , νN2

t ) + Jρ∗cor,t+1(µ
∗
t+1, νapprx,t+1)−O

( 1√
N

)

−LJ,t+1

(
Eα∗ [dTV(M

N1
t+1, µ

∗
t+1)]︸ ︷︷ ︸

O(1/
√
N1) due to Corollary 1

+EψN2 [dTV(N
N2
t+1, νapprx,t+1)]︸ ︷︷ ︸

O(1/
√
N2) due to (19)

)

(iii)
≥ rt(µ

N1
t , νN2

t ) + Jρ∗cor,t+1(µ
∗
t+1, νapprx,t+1)−O

( 1√
N

)

(iv)
≥ rt(µ

N1
t ,ν

N2
t ) + min
νt+1∈Rν,t(µ

N1
t ,ν

N2
t )

Jρ∗cor,t+1(µ
∗
t+1, νt+1)−O

( 1√
N

)

(v)
= Jρ∗cor,t(µ

N1
t , νN2

t )−O
( 1√

N

)
.

Inequality (i) is due to the inductive hypothesis; inequal-
ity (ii) leverages the Lipschitz continuity of the coordinator
value function (Theorem 2); inequality (iii) bounds the error
terms using Theorem 1 and Corollary 1; inequality (iv) is
due to the fact that νapprx,t+1 is in the reachable set; equal-
ity (v) comes from the optimality of µ∗

t+1 in (18).
Finally, since ψN2 ∈ ΨN2 is arbitrary, we have

min
ψN2∈ψN2

JN,α
∗,ψN2

0 (xN1,yN2)≥Jρ∗cor(µN1, νN2)−O
( 1√

N

)
,

thus completing the proof.
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