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Abstract
In approval-based committee (ABC) elections, the goal is to
select a fixed-size subset of the candidates, a so-called commit-
tee, based on the voters’ approval ballots over the candidates.
One of the most popular classes of ABC voting rules are ABC
scoring rules, for which voters give points to each commit-
tee and the committees with maximal total points are chosen.
While the set of ABC scoring rules has recently been character-
ized in a model where the output is a ranking of all committees,
no full characterization of these rules exists in the standard
model where a set of winning committees is returned. We
address this issue by characterizing two important subclasses
of ABC scoring rules in the standard ABC election model,
thereby both extending the result for ABC ranking rules to the
standard setting and refining it to subclasses. In more detail,
by relying on a consistency axiom for variable electorates, we
characterize (i) the prominent class of Thiele rules and (ii)
a new class of ABC voting rules called ballot size weighted
approval voting. Based on these theorems, we also infer char-
acterizations of three well-known ABC voting rules, namely
multi-winner approval voting, proportional approval voting,
and satisfaction approval voting.

1 Introduction
An important problem for multi-agent systems is collective
decision making: given the voters’ preferences over a set
of alternatives, a common decision has to be made. This
problem has traditionally been studied by economists for set-
tings where a single candidate is elected (Arrow, Sen, and
Suzumura 2002), but there is also a multitude of applica-
tions where a fixed number of the candidates needs to be
elected. The archetypal example for this is the election of a
city council, but there are also technical applications such
as recommender systems (Skowron, Faliszewski, and Lang
2016; Gawron and Faliszewski 2022). In social choice theory,
this type of elections is typically called approval-based com-
mittee (ABC) elections and has recently attracted significant
attention (e.g., Aziz et al. 2017; Faliszewski et al. 2017; Lack-
ner and Skowron 2023). In more detail, the research on these
elections focuses on ABC voting rules, which are functions
that choose a set of winning committees (i.e., fixed-size sub-
sets of the candidates) based on the voters’ approval ballots
(i.e., the sets of candidates that the voters approve).
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One of the most important classes of ABC voting rules are
ABC scoring rules (see, e.g., Lackner and Skowron 2021b).
These rules generalize the idea of single-winner scoring rules
to ABC elections: each voter assigns points to each com-
mittee according to some scoring function and the winning
committees are those with the maximal total score. There are
many well-known examples of ABC scoring rules, such as
multi-winner approval voting (AV), satisfaction approval vot-
ing (SAV), Chamberlin-Courant approval voting (CCAV), and
proportional approval voting (PAV). Moreover, ABC scoring
rules are a superset of the prominent class of Thiele rules.

In a recent breakthrough result, Lackner and Skowron
(2021b) have formalized the relation between ABC scoring
rules and single-winner scoring rules by characterizing ABC
scoring rules with almost the same axioms as Young (1975)
uses for his influential characterization of single-winner scor-
ing rules. In more detail, Lackner and Skowron (2021b) show
that ABC scoring rules are the only ABC ranking rules that
satisfy the axioms of anonymity, neutrality, continuity, weak
efficiency, and consistency. However, this result discusses
ABC ranking rules, which return transitive rankings of com-
mittees, whereas the literature on ABC elections typically
focuses on sets of winning committees as output. Hence, this
theorem does not allow for characterizations of ABC scoring
rules in the standard ABC voting setting.

While Lackner and Skowron (2021a) also present a result
for the standard ABC election setting, the proof of this result
is incomplete.1 Moreover, even when the proof could be fixed,
this result is not a full characterization of ABC scoring rules
as it needs a technical axiom called 2-non-imposition. This
axiom is, e.g., violated by AV and SAV. Hence, characteri-
zations of important ABC voting rules—and more generally
tools to easily infer such results—are still missing. Lackner
and Skowron (2021a, p. 16) also acknowledge this shortcom-
ing by writing that “a full characterization of ABC scoring
rules within the class of ABC choice rules remains as impor-
tant future work”.

1Roughly, the proof of Lackner and Skowron (2021a) works by
constructing an ABC ranking rule g based on an ABC voting rule f
that satisfies the given axioms. Then, Lackner and Skowron (2021a)
show that g is an ABC scoring rule, which implies that f is an ABC
scoring rule in the choice setting. However, the authors never show
that g returns transitive rankings, which is required by definition of
ABC ranking rules. Closing this gap seems surprisingly difficult.
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Our contribution. We address this problem by presenting
full axiomatic characterizations of two important subclasses
of ABC scoring rules, namely Thiele rules and ballot size
weighted approval voting (BSAV) rules, in the standard ABC
election setting. Hence, our results refine the result of Lack-
ner and Skowron (2021b) to subclasses and extend it to the
standard ABC voting setting. Thiele rules are ABC scoring
rules that do not depend on the ballot size and have attracted
significant attention (e.g., Aziz et al. 2017; Skowron, Fal-
iszewski, and Lang 2016; Brill, Laslier, and Skowron 2018).
On the other hand, BSAV rules generalize multi-winner ap-
proval voting by weighting voters depending on the size of
their ballots. So far, the class of BSAV rules has only been
studied for single-winner elections (Alcalde-Unzu and Vor-
satz 2009) but not for ABC elections. For example, PAV and
CCAV are Thiele rules, SAV is a BSAV rule, and AV is in
both classes. Moreover, every ABC scoring rule that has been
studied in the literature is in one of our two classes.

For our results, we mainly rely on the axioms of Lackner
and Skowron (2021b): anonymity, neutrality, continuity, weak
efficiency, and consistency. The first four of these axioms
are mild standard conditions that are satisfied by every rea-
sonable ABC voting rule. By contrast, consistency is central
for our proofs. This axiom requires that if some committees
are chosen for two disjoint elections, then precisely these
committees should win in a joint election, and it features in
several prominent results in social choice theory (e.g., Young
1975; Young and Levenglick 1978; Fishburn 1978).

To characterize Thiele rules, we need one more axiom
called independence of losers. This condition requires that a
winning committee W stays winning if some voters change
their ballot by disapproving “losing” candidates outside of
W as, intuitively, the quality of W should only depend on
its members. Similar conditions are well-known for single-
winner elections (e.g., Brandl and Peters 2022) and this ax-
iom has recently been adapted to ABC voting by Dong and
Lederer (2023a). We then show that an ABC voting rule is a
Thiele rule if and only if it satisfies anonymity, neutrality, con-
sistency, continuity, and independence of losers (Theorem 1).

For our characterization of BSAV rules, we introduce a new
axiom called choice set convexity. This condition requires
that if two committees are chosen, then all committees “in
between” those committees are chosen, too: if W and W ′ are
chosen, then all committees W ′′ with W∩W ′ ⊆ W ′′ ⊆ W∪
W ′ are also chosen. We believe that this axiom is reasonable
for excellence-based elections (where only the individual
quality of the candidates matters) as a tie between committees
indicates that they are equally good and the candidates in
W \W ′ and W ′ \W are thus exchangeable. We then prove
that an ABC voting rule is a BSAV rule if and only if it satisfies
anonymity, neutrality, consistency, continuity, weak efficiency,
and choice set convexity (Theorem 2).

While our theorems are intuitively related to the results of
Lackner and Skowron (2021a,b), they are logically indepen-
dent. In particular, in contrast to their results, our theorems
allow for simple characterizations of all Thiele rules and
BSAV rules in the standard ABC voting model. We also
demonstrate this point in Section 3.3 by axiomatizing AV,
SAV, and PAV. In more detail, we obtain full characteriza-

ABC scoring rules

Thiele rules
Anonymity, Neutrality,

Consistency, Continuity,
Independence of Losers

BSAV rules
Anonymity, Neutrality, Consistency,
Continuity, Choice Set Convexity,

Weak Efficiency

SAVAVPAV

Excellence
criterion

Party-propor-
tionality

Party-proportionality,
aversion to single-
party committees

Figure 1: Overview of our results. An arrow from X to Y
means that Y is a subset or an element of X . The axioms
written on an arrow from X to Y characterize the rule Y
within the class X . The axioms written below Thiele rules
and BSAV rules characterize these classes of ABC voting
rules.

tions of these rules by analyzing axioms for party-list profiles
(where candidates are partitioned into parties and each voter
approves all candidates of a single party) that formalize when
all candidates of a party are chosen. To the best of our knowl-
edge, the result for SAV is the first full characterization of
this rule. An overview of our results is given in Figure 1.

Related work. The lack of axiomatic characterizations is
one of the major open problems in the field of ABC voting
(see, e.g., Lackner and Skowron 2023, Q1), and there are thus
only few closely related papers. Maybe the most important
one is due to Lackner and Skowron (2021b) who characterize
ABC scoring rules in the context of ABC ranking rules; how-
ever, this result does not allow for characterizations of ABC
scoring rules in the standard setting. The follow-up paper by
Lackner and Skowron (2021a) tries to fix this issue, but its
proof is incomplete and the main result requires a technical
auxiliary condition that rules out important rules such as AV
and SAV. Moreover, Dong and Lederer (2023a) characterize
committee monotone ABC voting rules, which can be seen as
greedy approximations of ABC scoring rules. Finally, com-
mittee scoring rules have also been analyzed for the case that
voters report ranked ballots, but the results for this setting
are also restricted to characterizations of committee rank-
ing rules (Skowron, Faliszewski, and Slinko 2019) or partial
characterizations within the class of committee scoring rules
(Elkind et al. 2017; Faliszewski et al. 2019).

Furthermore, a large amount of papers studies axiomatic
properties of ABC scoring rules (e.g., Lackner and Skowron
2018; Aziz et al. 2017; Sánchez-Fernández and Fisteus 2019;
Brill, Laslier, and Skowron 2018; Lackner and Skowron
2020). For instance, Aziz et al. (2017) investigate Thiele
rules with respect to how fair they represent groups of vot-
ers with similar preferences, and Sánchez-Fernández and
Fisteus (2019) study monotonicity conditions for several
ABC scoring rules. Another important aspect of these rules
is their computational complexity. In particular, it is known
that all Thiele rules but AV are NP-hard to compute on the
full domain (Aziz et al. 2015; Skowron, Faliszewski, and
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Lang 2016). There is thus significant work on how to com-
pute these rules by, e.g., restricting the domain of preference
profiles (Elkind and Lackner 2015; Peters 2018), studying
approximation algorithms (Dudycz et al. 2020; Barman et al.
2022), or designing FPT algorithms (Bredereck et al. 2020).
For a more detailed overview on ABC scoring rules, we refer
to the survey by Lackner and Skowron (2023).

Finally, in the broader realm of social choice, there are
numerous conceptually related results as consistency features
in many prominent theorems: for instance, Young (1975) has
characterized scoring rules for single-winner elections based
on this axiom (see also Smith 1973; Myerson 1995; Pivato
2013), numerous characterizations of single-winner approval
voting rely on consistency (Fishburn 1978; Brandl and Peters
2022), Young and Levenglick (1978) have characterized Ke-
meny’s rule with the help of this axiom, and Brandl, Brandt,
and Seedig (2016) characterize a randomized voting rule
called maximal lotteries based on this condition.

2 Preliminaries
Let N = {1, 2, . . . } denote an infinite set of voters and
let C = {c1, . . . , cm} denote a set of m ≥ 2 candi-
dates. Intuitively, we interpret N as the set of all pos-
sible voters and a concrete electorate N is a finite and
non-empty subset of N. We thus define F(N) = {N ⊆
N : N is non-empty and finite} as the set of all possible elec-
torates. Given an electorate N ∈ F(N), we assume that each
voter i ∈ N reports her preferences over the candidates as
approval ballot Ai, i.e., as a non-empty subset of C. A is
the set of all possible approval ballots. An (approval) profile
A is a mapping from N to A, i.e., it assigns an approval
ballot to every voter in the given electorate. Next, we define
A∗ =

⋃
N∈F(N) AN as the set of all approval profiles. For ev-

ery profile A ∈ A∗, NA denotes the set of voters that submit
a ballot in A. Finally, two approval profiles A,A′ are called
disjoint if NA ∩ NA′ = ∅ and for disjoint profiles A,A′,
we define the profile A′′ = A + A′ by NA′′ = NA ∪ NA′ ,
A′′

i = Ai for i ∈ NA, and A′′
i = A′

i for i ∈ NA′ .
Given an approval profile, our aim is to elect a committee,

i.e., a subset of the candidates of predefined size. We denote
the target committee size by k ∈ {1, . . . ,m − 1} and the
set of all size-k committees by Wk = {W ⊆ C : |W | =
k}. For determining the winning committees for a given
preference profile, we use approval-based committee (ABC)
voting rules which are mappings from A∗ to 2Wk \{∅}. Note
that we define ABC voting rules for a fixed committee size
and may return multiple committees. The first condition is
for notational convenience and the second one is necessary
to satisfy basic fairness conditions.

2.1 ABC Voting Rules
We focus in this paper on two classes of ABC voting rules,
namely Thiele rules and BSAV rules, which are both refine-
ments of the class of ABC scoring rules.

ABC scoring rules. ABC scoring rules rely on a scoring
function according to which voters assign points to commit-
tees and choose the committees with maximal total score.
Formally, a scoring function s(x, y) is a mapping from

{0, . . . , k} × {1, . . . ,m} to R such that s(x, y) ≥ s(x′, y)
for all x, x′ ∈ {max(0, k + y − m), . . . ,min(k, y)} with
x ≥ x′. We define the score of a committee W in a pro-
file A as ŝ(A,W ) =

∑
i∈NA

s(|Ai ∩ W |, |Ai|). Then, an
ABC voting rule f is an ABC scoring rule if there is a
scoring function s such that f(A) = {W ∈ Wk : ∀W ′ ∈
Wk : ŝ(A,W ) ≥ ŝ(A,W ′)} for all profiles A ∈ A∗. The
set {max(0, k+y−m), . . . ,min(k, y)} contains all “active”
intersection sizes: a committee of size k and a ballot of size
y intersect at least in max(0, k + y −m) candidates and at
most in min(k, y) candidates.

Thiele rules. Arguably the most prominent subclass of
ABC scoring rules are Thiele rules. These rules, which have
first been suggested by their namesake Thiele (1895), are
ABC scoring rules that ignore the ballot size. Hence, Thiele
rules are defined by a non-decreasing Thiele scoring func-
tion s : {0, . . . , k} → R with s(0) = 0, and choose
the committees that maximize the total score. Formally,
an ABC voting rule f is a Thiele rule if there is a Thiele
scoring function s such that f(A) = {W ∈ Wk : ∀W ′ ∈
Wk : ŝ(A,W ) ≥ ŝ(A,W ′)} for all profiles A ∈ A∗, where
ŝ(A,W ) =

∑
i∈NA

s(|Ai∩W |). There are numerous impor-
tant Thiele rules such as multi-winner approval voting (AV;
defined by sAV(x) = x), proportional approval voting (PAV;
defined by sPAV(x) =

∑x
z=1

1
z for x > 0), and Chamberlin-

Courant approval voting (CCAV; defined by sCCAV(x) = 1
for x > 0).

BSAV rules. Ballot size weighted approval voting rules
form a new subclass of ABC scoring rules which general-
ize AV by weighting voters based on their ballot size. For-
mally, a ballot size weighted approval voting (BSAV) rule
f is defined by a weight vector α ∈ Rm

≥0 and chooses for
every profile A the committees W that maximize ŝ(A,W ) =∑

i∈NA
α|Ai||Ai ∩ W |. The score of a committee W for a

BSAV rule can be represented as the sum of the scores of
individual candidates c ∈ W since

∑
i∈NA

α|Ai||Ai ∩W | =∑
c∈W

∑
i∈NA : c∈Ai

α|Ai|. Clearly, AV is the BSAV rule de-
fined by αx = 1 for all x ∈ {1, . . . ,m}. Another well-known
BSAV rule is satisfaction approval voting (SAV) defined by
αx = 1

x for x ∈ {1, . . . ,m}. This rule has been popular-
ized by Brams and Kilgour (2014) for ABC elections, but it
has been studied before by, e.g., Alcalde-Unzu and Vorsatz
(2009) and Kilgour and Marshall (2012).

We note that Thiele rules and BSAV rules are diametrically
opposing subclasses of ABC scoring rules: Thiele rules do
not depend on the ballot size at all, whereas BSAV rules
only depend on this aspect. Consequently, if k < m − 1,
the sets of BSAV rules and Thiele rules only intersect in AV
and the trivial rule TRIV (which always chooses all size k
committees). So, AV is the only non-trivial ABC voting rule
that is in both classes; non-triviality means here that there
is a profile A such that f(A) ̸= TRIV(A). Moreover, both
classes are proper subsets of the set of ABC scoring rules
if 1 < k < m − 1. By contrast, the set of BSAV rules is
equivalent to the set of ABC scoring rules if k ∈ {1,m− 1}.
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2.2 Basic Axioms
Next, we introduce the axioms used for our characterizations.

Anonymity. Anonymity is one of the most basic fairness
properties and requires that all voters should be treated
equally. Formally, we say an ABC voting rule f is anonymous
if f(A) = f(π(A)) for all profiles A ∈ A∗ and permutations
π : N → N. Here, we denote by A′ = π(A) the profile with
NA′ = {π(i) : i ∈ NA} and A′

π(i) = Ai for all i ∈ NA.

Neutrality. Similar to anonymity, neutrality is a fairness
property for the candidates. This axiom requires of an ABC
voting rule f that f(τ(A)) = {τ(W ) : W ∈ f(A)} for
all profiles A ∈ A∗ and permutations τ : C → C. This
time, A′ = τ(A) denotes the profile with NA′ = NA and
A′

i = τ(Ai) for all i ∈ NA.

Weak Efficiency. Weak efficiency requires that unani-
mously unapproved candidates can never be “better” than
approved ones. Formally, we say an ABC voting rule f is
weakly efficient if W ∈ f(A) for a committee W ∈ Wk with
c ∈ W \ (

⋃
i∈NA

Ai) implies that (W ∪ {c′}) \ {c} ∈ f(A)

for all candidates c′ ∈ C \W .

Continuity. The intuition behind continuity is that a large
group of voters should be able to enforce that some of its
desired outcomes are chosen. Hence, an ABC voting rule f
is continuous if for all profiles A,A′ ∈ A∗, there is λ ∈ N
such that f(λA+A′) ⊆ f(A). Here, λA denotes the profile
consisting of λ copies of A; the names of the voters in NλA

will not matter as we will focus on anonymous rules.

Consistency. The central axiom for our results is consis-
tency. This condition states that if some committees are cho-
sen for two disjoint profiles, then precisely those committees
are chosen in the joint profile. Formally, an ABC voting rule
f is consistent if f(A+A′) = f(A) ∩ f(A′) for all disjoint
profiles A,A′ ∈ A∗ with f(A)∩f(A′) ̸= ∅. Consistency and
the previous four axioms have been introduced by Lackner
and Skowron (2021a) for ABC elections. Moreover, except
consistency, all these axioms are very mild and satisfied by
almost all commonly considered ABC voting rules.

Independence of Losers. Independence of losers has been
adapted to ABC elections by Dong and Lederer (2023a) and
requires of an ABC voting rule f that a winning committee
W should still be a winning committee if voters disapprove
candidates outside of W . Or, put differently, whether a com-
mittee W wins should not depend on the voters’ approvals of
“losing” candidates not in W . We hence say an ABC voting
rule f is independent of losers if W ∈ f(A) implies that
W ∈ f(A′) for all profiles A,A′ ∈ A∗ and committees
W ∈ Wk such that NA = NA′ and W ∩Ai = W ∩A′

i and
A′

i ⊆ Ai for all voters i ∈ NA. The motivation for this axiom
is that the quality of W should only depend on the candidates
in W . So, if some voters disapprove candidates x ̸∈ W , the
quality of this committee is not affected and, when W is cho-
sen initially, it should remain chosen. All commonly studied
ABC voting rules that are independent of the ballot size (e.g.,
Thiele rules, Phragmén’s rule, and sequential Thiele rules)
satisfy this axiom, whereas all BSAV rules except AV fail it.

Choice Set Convexity. Finally, we introduce a new con-
dition called choice set convexity: an ABC voting rule f is
choice set convex if W,W ′ ∈ f(A) implies that W ′′ ∈ f(A)
for all committees W,W ′,W ′′ ∈ Wk and profiles A ∈ A∗

such that W ∩W ′ ⊆ W ′′ ⊆ W ∪W ′. More informally, this
axiom states that if a rule chooses two committees W and W ′,
then all committees “between” W and W ′ are also chosen.
We believe that choice set convexity is reasonable in elections
in which only the individual quality of the elected candidates
matters. For example, if we want to hire 3 applicants for
independent jobs based on the interviewers’ preferences, it
seems unreasonable that the sets {c1, c2, c3} and {c1, c4, c5}
are good enough to be hired but {c1, c2, c4} is not. More
generally, we can interpret the membership of a candidate
in a chosen committee as certificate for its quality and all
candidates c ∈ (W \W ′)∪ (W ′ \W ) are then equally good.
Many commonly considered voting rules fail this axiom, but
one can always compute the “convex hull” of a choice set.

3 Results
We are now ready to state our results. In particular, we dis-
cuss the characterizations of Thiele rules and BSAV rules
in Sections 3.1 and 3.2, respectively. Moreover, we present
characterizations of AV, PAV, and SAV in Section 3.3. Due
to space constraints, we defer most proofs to the full version
(Dong and Lederer 2023b) and give proof sketches instead.

3.1 Characterization of Thiele Rules
We now turn to our first characterization: Thiele rules are the
only ABC voting rules that are anonymous, neutral, consis-
tent, continuous, and independent of losers. We thus turn the
result of Lackner and Skowron (2021b) into a characteriza-
tion of Thiele rules in the standard ABC voting model by
replacing weak efficiency with independence of losers.

Theorem 1. An ABC voting rule is a Thiele rule if and only
if it satisfies anonymity, neutrality, consistency, continuity,
and independence of losers.

Proof Sketch. First, suppose that f is a Thiele rule and let
s(x) denote its Thiele scoring function. Clearly, f is anony-
mous, neutral, consistent, and continuous as all ABC scoring
rules satisfy these axioms. So, we will only show that f is
independent of losers. For this, consider two profiles A,A′ ∈
A∗ and a committee W ∈ f(A) such that NA = NA′ and
A′

i ⊆ Ai and W ∩ A′
i = W ∩ Ai for all i ∈ NA. It holds

that ŝ(A′,W ) = ŝ(A,W ) since W ∩ A′
i = W ∩ Ai for all

i ∈ NA. Moreover, ŝ(A,W ) ≥ ŝ(A,W ′) for all W ′ ∈ Wk

because W ∈ f(A). Finally, ŝ(A,W ′) ≥ ŝ(A′,W ′) for
all W ′ ∈ Wk as s(x) is non-decreasing and A′

i ⊆ Ai for
all i ∈ NA. By chaining the inequalities, we conclude that
ŝ(A′,W ) ≥ ŝ(A′,W ′) for all committees W ′ ∈ Wk, so
W ∈ f(A′) and f satisfies independence of losers.

For the other direction, we suppose that f is an ABC voting
rule that satisfies all axioms of the theorem and aim to show
that f is a Thiele rule. For this, we will use the separating
hyperplane theorem for convex sets similar to the works of,
e.g., Young (1975) and Skowron, Faliszewski, and Slinko
(2019). For this, we note first that, if f is trivial, it is the
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Thiele rule defined by s(x) = 0 for all x. So, we suppose that
f is non-trivial and show that for every committee W ∈ Wk,
there is a profile A ∈ A∗ such that f(A) = {W}. To apply
the separating hyperplane theorem for convex sets, we next
extend f to a function ĝ of the type Q|A| → 2Wk \ {∅}
while keeping all its properties intact. We then define the sets
Rf

i = {v ∈ Q|A| : W i ∈ ĝ(v)} for all W i ∈ Wk and let
R̄f

i denote the closure of Rf
i with respect to R|A|. It follows

from the properties of ĝ that the sets R̄f
i are convex and

have disjoint interiors. The separating hyperplane theorem for
convex sets thus shows that there are non-zero vectors ûi,j ∈
R|A| such that vûi,j ≥ 0 if v ∈ R̄i and vûi,j ≤ 0 if v ∈ R̄j .
Moreover, we will show that R̄f

i = {v ∈ R|A| : ∀W j ∈
Wk \ {W i} : vûi,j ≥ 0}, so we study the vectors ûi,j next.

For this, we first infer from neutrality and independence
of losers that there is a function s1(x, y) such that ûi,j

ℓ =
s1(|W i ∩ Aℓ|, |W j ∩ Aℓ|) for all ballots Aℓ and commit-
tees W i,W j with |W i \ W j | = 1. If k ∈ {1,m − 1},
this insight is already enough for the proof. By contrast, if
k ∈ {2, . . . ,m− 2}, we need to analyze the vectors ûi,j for
committees W i,W j with |W i \W j | = t > 1. To this end,
we construct a sequence of committees W j0 , . . . ,W jt by
replacing the candidates in W i \W j one after another with
those in W j \ W i. By studying the linear (in)dependence
of the vectors ûi,j and ûjx−1,jx for x ∈ {1, . . . , t}, we
then show that ûi,j = δ

∑t
x=1 û

jx−1,jx for some δ > 0.
Based on this insight, we can now define the score func-
tion s of f : s(0) = 0 and s(x) = s(x − 1) + s1(x, x − 1)
for x ≥ 1. By our previous observations, it follows that
ûi,j
ℓ = δ(s(|W i ∩ Aℓ|) − s(|W j ∩ Aℓ|)), so R̄f

i = {v ∈
R|A| : ∀W j ∈ Wk : ŝ(v,W

i) ≥ ŝ(v,W j)}. From this, we
infer that ĝ(v) ⊆ {W i ∈ Wk : v ∈ R̄f

i } = {W i ∈
Wk : ∀W j ∈ Wk \ {W i} : ŝ(v,W i) ≥ ŝ(v,W j)} for all
v ∈ Q|A|. Thus, f(A) ⊆ {W i ∈ Wk : ∀W j ∈ Wk \
{W i} : ŝ(A,W i) ≥ ŝ(A,W j)} and, as the last step, con-
tinuity shows that f is the Thiele rule induced by s.

Remark 1. All axioms are required for Theorem 1. If we
omit independence of losers, SAV satisfies all remaining
axioms. If we omit continuity, we can refine Thiele rules
by applying a second Thiele rule as tie-breaker in case of
multiple chosen committees. If we only omit consistency,
sequential Thiele rules satisfy all given axioms. These rules
compute the winning committees iteratively by always adding
the candidate to a winning committee which increases the
score the most. If we omit neutrality or anonymity, biased
Thiele rules that double the points of every committee that
contains a specific candidate or the points assigned by specific
voters to the committees satisfy all other axioms.

3.2 Characterization of BSAV Rules
Next, we discuss the characterization of BSAV rules: these
are the only ABC voting rules that satisfy anonymity, neutral-
ity, consistency, continuity, choice set convexity, and weak
efficiency. The central axiom for this characterization (aside
of consistency) is choice set convexity as it enforces that
candidates can be exchanged between chosen committees.

Theorem 2. An ABC voting rule is a BSAV rule if and only
if it satisfies anonymity, neutrality, consistency, continuity,
choice set convexity, and weak efficiency.

Proof Sketch. First, we assume that f is a BSAV rule and
let α = (α1, . . . , αm) denote its weight vector. It is sim-
ple to verify that f is neutral, anonymous, continuous, and
consistent. Moreover, f is weakly efficient as the weights
αi are all non-negative. Finally, we show that f is choice
set convex. For this, we consider a profile A and two dis-
tinct committees W,W ′ ∈ f(A). Next, we choose two can-
didates a ∈ W \ W ′ and b ∈ W ′ \ W and let W ′′ =
(W \ {a}) ∪ {b}. The central observation is now that BSAV
scores are additive, i.e., ŝ(A,W ) =

∑
x∈W ŝ(A, x) for

ŝ(A, x) =
∑

i∈NA : x∈Ai
α|Ai|. Since W ∈ f(A), 0 ≤

ŝ(A,W ) − ŝ(A,W ′′) = ŝ(A, a) − ŝ(A, b). By applying
this argument also to W ′ and W ′′′ = (W ′ \ {b}) ∪ {a},
we obtain 0 ≤ ŝ(A, b) − ŝ(A, a), so ŝ(A, a) = ŝ(A, b) and
ŝ(A,W ) = ŝ(A,W ′′). This proves that W ′′ ∈ f(A) and by
repeating the argument, we infer that W̄ ∈ f(A) for all W̄
with W ∩W ′ ⊆ W̄ ⊆ W ∪W ′.

For the converse direction, we give again only a rough
proof sketch and note that the outline of this proof is very
similar to the one of Theorem 1 as mainly the technical
details differ. In more detail, we first extend f to a function
ĝ on Q|A| and then use the same hyperplane argument as
for Theorem 1. Hence, we will again analyze the sets Rf

i =

{v ∈ Q|A| : W i ∈ ĝ(v)} and the vectors ûi,j with vûi,j ≥ 0

if v ∈ R̄f
i and vûi,j ≤ 0 if v ∈ R̄f

j . In particular, based
on choice set convexity, we show for every ballot size r ∈
{1, . . . ,m} that there is a constant αr ≥ 0 such that ûi,j

ℓ =
αr for all ballots Aℓ ∈ A with |Aℓ| = r and committees
W i,W j ∈ Wk with |Wi ∩ Aℓ| = |Wj ∩ Aℓ| + 1. Based
on this insight, it is simple to complete the proof if k ∈
{1,m − 1}. On the other hand, if k ∈ {2, . . . ,m − 2}, we
again consider committees W i,W j such that |W i \W j | =
t > 1. Just as for Theorem 1, we consider a sequence of
committees W j0 , . . . ,W jt such that W j0 = W i, W jt =
W j , and |W jx−1 \W jx | = 1 for x ∈ {1, . . . , t}, and show
that ûi,j = δ

∑t
x=1 û

jx−1,jx for some δ > 0. This implies
that ûi,j

ℓ = αr(|W i ∩ Aℓ| − |W j ∩ Aℓ|) for all committees
W i,W j ∈ Wk and ballots Aℓ ∈ A with |Aℓ| = r. Finally,
we can now prove that f is the BSAV rule defined by the
score function s(|W ∩Aℓ|, |Aℓ|) = α|Aℓ||W ∩Aℓ|.

Remark 2. All axioms are required for Theorem 2. For
anonymity, neutrality, and continuity, we can define examples
similar to the ones given for Thiele rules. When omitting
consistency, the “convex hull” of Phragmén’s rule satisfies all
remaining axioms and is no BSAV rule. The rule that elects
the k candidates with minimal approval scores satisfies all
given axioms but weak efficiency. Finally, every Thiele rule
other than AV only fails choice set convexity.

Remark 3. AV is the only non-trivial ABC voting rule that
is both a BSAV rule and a Thiele rule if k ≤ m − 2. Theo-
rems 1 and 2 thus characterize AV as the only non-trivial ABC
voting rule that is anonymous, neutral, continuous, consistent,
independent of losers, and choice set convex if k ≤ m− 2.
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Remark 4. We define ABC voting rules for a fixed com-
mittee size k, but in the literature k is often part of the in-
put. For such rules, Theorems 1 and 2 imply that for every
k ∈ {1, . . . ,m − 1}, f(A, k) is a Thiele rule or a BSAV
rule, respectively, if it satisfies the required axioms. However,
our conditions do not enforce consistency with respect to
the committee size, so we can, e.g., use AV for k = 2 and
PAV for k = 3. It is not difficult to exclude such rules. For
instance, the well-known axiom of committee monotonicity
(Elkind et al. 2017) entails for every BSAV rule that it must
use the same weight vector for every committee size k. Simi-
lar, committee separability, an axiom introduced by Dong and
Lederer (2023a), can be used to enforce that non-imposing
Thiele rules use the same Thiele scoring function for every
committee size. Thus, our results can be easily extended to
the setting where the committee size is part of the input.

3.3 Characterizations of AV, PAV, and SAV
Finally, we demonstrate in this section how Theorems 1 and 2
can be used to characterize specific ABC voting rules. To this
end, we first note that there are numerous characterizations
of ABC voting rules within the class of Thiele rules in the
literature, and Theorem 1 can typically be used to extend
these results to full characterizations. For instance, Lackner
and Skowron (2018) characterize AV among the class of
Thiele rules based on a strategyproofness notion and it is
easy to extend this result to a full characterization of AV
based on Theorem 1. Similar claims are true for, e.g., the
characterization of AV based on committee monotonicity
(Janson 2016), the characterization of PAV based on D’Hondt
proportionality (e.g., Brill, Laslier, and Skowron 2018), or
characterizations of CCAV (e.g., Delemazure et al. 2023).
In this paper, we will, however, give characterizations of
three ABC scoring rules (namely AV, PAV, and SAV) that
are largely independent of the literature. The reason for this
is that our technique seems rather universal and may thus
also be used to characterize further Thiele rules or BSAV
rules. Finally, we will state our results only within the class
of Thiele rules and BSAV rules, respectively; Theorems 1
and 2 then generalize these results to full characterizations.

In more detail, for all three results in this subsection, we
study axioms defined for special profiles. To this end, we say
a profile A ∈ A∗ is a party-list profile if there is a partition
PA = {P1, . . . , Pℓ} of the candidates such that every voter
approves all candidates in one set Pj , i.e., for every voter
i ∈ NA, there is a set Pj ∈ PA such that Ai = Pj . Less
formally, in a party-list profile, the candidates are grouped
into disjoint parties and every voter supports a single party by
approving all of its members. We denote by nj the number
of voters who support party Pj in a party-list profile A. For
these profiles, we will investigate the question when a voting
rule elects all members of a party. The reason for this design
choice is twofold: firstly, this will lead to rather mild axioms
which makes our characterizations only stronger. Secondly,
on party-list profiles, BSAV rules typically elect one party
after another by first electing all members of the first party,
then electing all members of the second party, and so on.
Hence, axioms describing when all candidates of a party are
elected are well-suited for characterizing these rules.

Clearly, any justification for when all members of a party
should be chosen needs to consider the purpose of the elec-
tion. For instance, if the goal of an election is to find the best
k candidates only based on their individual quality (a set-
ting known as excellence-based elections), the main criterion
for deciding whether to choose a candidate is the number
of voters supporting it. Hence, if a party Pi is approved by
more voters than another party Pj , then every candidate in
Pi seems better than every candidate in Pj . Thus, if all can-
didates of party Pj are chosen, all candidates of party Pi

should also be chosen. We formalize this idea as follows: An
ABC voting rule f satisfies the excellence criterion if for
all party-list profiles A, committees W ∈ f(A), and parties
Pi, Pj ∈ PA with ni < nj , it holds that Pi ⊆ W implies
that Pj ⊆ W . As we show next, this condition characterizes
AV among Thiele rules.

Proposition 1. AV is the only Thiele rule that satisfies the
excellence criterion.

Proof. Clearly, AV satisfies the excellence criterion and we
thus focus on the converse direction. For this, let f denote
a Thiele rule that satisfies the excellence criterion and let s
denote its Thiele scoring function. Our first goal is to show
that s(1) > 0 and we consider for this the party-list profile A
in which 2 voters approve P1 = {c1} and 1 voter approves
P2 = {c2, . . . , ck+1}. Now, if s(1) = 0, then P2 ∈ f(A) as
s is non-decreasing. This, however, violates the excellence
criterion as there is a winning committee that contains all
members of P2 but none of P1, even though n1 > n2. Hence,
s(1) > 0 and we subsequently suppose that s(1) = 1 as
Thiele rules are invariant under scaling the scoring function.

Next, we assume for contradiction that there is an index
ℓ ∈ {2, . . . , k} such that s(ℓ) ̸= ℓ and s(x) = x for all x < ℓ.
Moreover, we define ∆ = |s(ℓ)− ℓ| ̸= 0 and let t ∈ N such
that t ≥ 2 and t∆ > k. We now use a case distinction with
respect to s(ℓ) and first suppose that s(ℓ) = ℓ + ∆. In this
case, consider the party-list profile A where t voters approve
P1 = {c1, . . . , cℓ} and each other candidate c ∈ C \ P1 is
uniquely approved by t + 1 voters. It is easy to verify that
every committee W with P1 ⊆ W has a score of ŝ(A,W ) =
ts(ℓ)+ (k− ℓ)(t+1) = t∆+ tℓ+(k− ℓ)(t+1) > k+ tk.
By contrast, every committee W ′ with ℓ′ = |P1 ∩W ′| < ℓ
has a score of ŝ(A,W ′) = ts(ℓ′) + (k − ℓ′)(t+ 1) = tℓ′ +
(k − ℓ′)(t+ 1) ≤ tk + k. Thus, f(A) = {W ∈ Wk : P1 ⊆
W}. However, this contradicts the excellence criterion since
P1 ⊆ W for every W ∈ f(A) and there is a party Pj = {c}
with c ̸∈ W and nj > n1.

For the second case, we suppose that s(ℓ) = ℓ − ∆ and
consider the profile A in which t voters approve the party
P1 = {c1, . . . , cℓ} and each candidate c ∈ C \P1 is uniquely
approved by t − 1 voters. We compute again the scores of
committees W ∈ Wk: if P1 ⊆ W , then ŝ(A,W ) = ts(ℓ) +
(k − ℓ)(t − 1) = tℓ − t∆ + (k − ℓ)(t − 1) < tk − k, and
if |W ′ ∩ P1| = ℓ − 1, then ŝ(A,W ′) = ts(ℓ − 1) + (k −
ℓ + 1)(t − 1) = t(ℓ − 1) + (k − ℓ + 1)(t − 1) ≥ kt − k.
Hence, P1 ̸⊆ W for all W ∈ f(A). However, this violates
the excellence criterion since for every W ∈ f(A), there is a
party Pj = {c} with Pj ⊆ W and nj < n1. We thus have a
contradiction in both cases, so s(ℓ) = ℓ and f is AV.
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Another frequent goal in committee elections is propor-
tional representation: the chosen committee should propor-
tionally represent the voters’ preferences. To this end, we note
that if a party Pi with ni votes gets xi seats in the chosen com-
mittee, then each of the elected candidates in Pi represents
on average ni/xi voters. Hence, if ni/xi < nj/xj+1, then reas-
signing one seat from party Pi to party Pj intuitively results
in a more representative outcome. We will formalize this intu-
ition with a new proportionality notion since we aim to show
that SAV is more proportional than AV, but SAV violates all
commonly considered proportionality axioms. In more detail,
we say that an ABC voting rule f is party-proportional if for
all party-list profiles A, committees W ∈ f(A), and parties
Pi, Pj ∈ PA with ni/|Pi| < nj/|Pj |, it holds that Pi ⊆ W
implies Pj ⊆ W . Intuitively, this axiom states that we can
only choose all members of a party if there is no party that
represents on average more voters and is not fully chosen
yet. Hence, this axiom combines the idea of proportionality
with the native behavior of BSAV rules. Even though party-
proportionality is a rather weak axiom as it is, e.g., implied
by D’Hondt proportionality (Lackner and Skowron 2021b),
we show next that this condition characterizes PAV within the
class of Thiele rules. This demonstrates that our new axiom
is indeed a reasonable and non-trivial proportionality notion.
Proposition 2. PAV is the only Thiele rule that satisfies
party-proportionality.

Proof Sketch. First, we show that PAV is party-proportio-
nal. To this end, let A denote a party-list profile, consider
two parties Pi, Pj ∈ PA with ni

|Pi| <
nj

|Pj | , and suppose for
contradiction that there is a committee W ∈ PAV(A) such
that Pi ⊆ W , Pj ̸⊆ W . In this case, exchanging a candidate
x ∈ W∩Pi with a candidate y ∈ Pj\W leads to a committee
W ′ with higher PAV-score than W , which contradicts that
W ∈ PAV(A). Thus, PAV is party-proportional. For the other
direction, we proceed similarly to the proof of Proposition 1
and let f denote a Thiele rule that is party-proportional and
s its Thiele scoring function. First, we show that s(1) > 0
by the same construction as in the proof of Proposition 1 and
rescale s such that s(1) = 1. Then, we construct two profiles
showing that f fails party-proportionality if s(ℓ) ̸=

∑ℓ
x=1

1/x
for some ℓ ∈ {2, . . . , k}. So, f is indeed PAV.

It is easy to see that SAV satisfies—in contrast to AV—
party-proportionality, so SAV is more proportional than AV.
Even more, party-proportionality characterizes SAV within
the class of BSAV rules when only allowing voters to approve
at most k candidates. However, if there is a party Pi with
|Pi| > k, this is no longer true as not all member of such
parties can be elected. We thus introduce another axiom to
characterize SAV: an ABC voting rule f satisfies aversion to
single-party committees if for all party-list profiles A and par-
ties Pi ∈ PA, it holds that W ⊆ Pi for all W ∈ f(A) implies
that ni

|Pi| > nj for all other parties Pj ∈ PA with |Pj | = 1.
Intuitively, this axiom is a mild diversity criterion which re-
quires that a single party can only get all seats in the chosen
committee if it is approved by a sufficient number of voters
when compared to singleton parties. We next characterize
SAV based on this this axiom and party-proportionality.

Proposition 3. SAV is the only BSAV rule that satisfies party-
proportionality and aversion to single-party committees.

Proof Sketch. First, it follows immediately from the defini-
tion of SAV that it satisfies party-proportionality and aversion
to single-party committees. For the other direction, we con-
sider a BSAV rule f that satisfies the given axioms and let
α ∈ Rm

≥0 denote its weight vector. From here on, the proof
proceeds again just as the one of Proposition 1: we first show
that α1 > 0, rescale such that α1 = 1, and then use a similar
construction to infer that αℓ =

1
ℓ for all ℓ ∈ {1, . . . ,m}.

Remark 5. We note that PAV fails aversion to single-party
committees as the ratio is chosen too restrictive: there are
party-list profiles A with a party Pi such that W ⊆ Pi for all
W ∈ PAV(A) even though nj > ni/|Pi| for a singleton party
Pj . However, for all such profiles, it holds that ni/k > nj . In
the context of proportional representation, this bound seems
more reasonable as it states that each elected member of
Pi represents more voters than the single member of Pj .
Interestingly, party-proportionality together with a variant
of this condition (for all party-list profiles A and parties
Pi, it holds that W ⊆ Pi for all W ∈ f(A) if and only if
nj < ni/k for all singleton parties Pj) characterize the BSAV
rule defined by the weight vector αℓ = max(1/ℓ, 1/k) for all
ℓ. This rule is known as modified satisfaction approval voting
(Kilgour and Marshall 2012) and this observation shows that
it might be more desirable than SAV.

4 Conclusion
In this paper, we axiomatically characterize two important
classes of approval-based committee (ABC) voting rules,
namely Thiele rules and BSAV rules. Thiele rules choose
the committees that maximize the total score according to
a score function that only depends on the intersection size
of the considered committee and the ballots of the voters.
On the other hand, BSAV rules are a new generalization of
multi-winner approval voting which weight voters depending
on the size of their ballot. For both of our characterizations,
the central axiom is consistency which has famously been
used by Young (1975) for a characterization of single-winner
scoring rules or by Lackner and Skowron (2021b) for a char-
acterization of ABC scoring rules in the context of committee
ranking rules. In particular, our results allow for simple char-
acterizations of all important ABC scoring rules as all such
rules belong to one of our classes. We also demonstrate this
point by characterizing the well-known ABC voting rules AV,
SAV, and PAV. In particular, the result for SAV is, to the best
of our knowledge, the first full characterization of this rule.
Figure 1 shows a more detailed overview of our results.

Our paper offers several directions for future work. Firstly,
our main results allow, of course, to characterize further ABC
scoring rules. Secondly, characterizations of many important
ABC voting rules (e.g., Phragmén’s rule and the method of
equal shares) are still missing and some of our ideas might be
helpful to derive such results. Finally, even though all relevant
ABC scoring rules belong to one of our classes, we would
still find a full characterization of the set of ABC scoring
rules interesting.
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