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Abstract

We investigate a two-stage competitive model involving mul-
tiple contests. In this model, each contest designer chooses
two participants from a pool of candidate contestants and de-
termines the biases. Contestants strategically distribute their
efforts across various contests within their budget. We first
show the existence of a pure strategy Nash equilibrium (PNE)
for the contestants, and propose a fully polynomial-time ap-
proximation scheme to compute an approximate PNE. In the
scenario where designers simultaneously decide the partici-
pants and biases, the subgame perfect equilibrium (SPE) may
not exist. Nonetheless, when designers’ decisions are made
in two substages, the existence of SPE is established. In the
scenario where designers can hold multiple contests, we show
that the SPE always exists under mild conditions and can be
computed efficiently.

Introduction
Contest theory is a commonly used and classic tool in the
field of economics to define competition. In fact, many com-
petitive scenarios can be perceived as contests. These may
include political elections, sports events, promotional con-
tests between firms aiming to increase their market share,
and so forth. When designing a contest, the objective is to
motivate the contestants to put forth greater effort in order
to achieve specific goals. This involves determining the prize
amount, the number of participants, and the winning rule.

Pairwise contests are a type of competition where the
number of participants is limited to two. Classic examples
of pairwise contests include the Colonel Blotto games (Borel
1921), which depict two players engaged in a battle where
the outcome determines the victor. Such contests have nu-
merous real-world applications. For instance, the US presi-
dential election is a well-known example where two candi-
dates compete over all states. Similarly, in competitive sports
such as the NBA, two teams compete multiple times to de-
termine the champion. The Internet price war (Li et al. 2019)
provides another example, where two e-commerce platforms
compete for regional markets by offering discount coupons.

The lottery contest is a form of imperfectly discrimina-
tory competition, where the contestant who allocates more
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effort has a higher probability of winning than one who al-
locates lesser effort. In real-world scenarios, the lottery con-
test is highly applicable due to the stochastic factors that
may impact the outcome. More specifically, despite allocat-
ing greater effort towards a given issue, winning is not al-
ways certain due to the unpredictability of such factors.

Current research on pairwise and lottery contests tends to
center around studying the equilibrium behaviors of contes-
tants or optimizing lottery functions to achieve certain ob-
jectives. However, little attention has been paid to investi-
gating competing designers. According to a recent survey
on contest theory (Segev 2020), exploring the economy of
competitions among designers poses several challenges, par-
ticularly in analyzing their equilibrium behavior. In a single
contest or a fixed number of contests, the focus is primarily
on the strategic behavior of contestants. However, designers
also have strategic behavior that needs to be taken into ac-
count, including how contestants allocate their efforts and
how designers compete with one another.

In this paper, we concentrate on the pairwise lottery con-
tests (PLC), where two contestants compete for a prize with
a winning probability determined by the lottery rule that is
based on their (weighted) effort. Designers are allowed to
hold one or several PLCs. Each designer’s goal is to maxi-
mize the total exerted effort of the participants in all her held
contests. Each contestant pursues maximizing the expected
prize from the contests she joins. There is a two-stage game
in our model: one is among contest designers, who decide
the number of held contests and design the configuration
(including prize, participants and biases) of held contests.
The other is among contestants who decide how to allocate
effort.

Our Contributions
Our model introduces several innovative features that enrich
the current discourse in contest theory. Firstly, much of the
existing literature predominantly concentrates on single con-
test design or contestants’ equilibrium analysis within pre-
scribed multi-contest frameworks. In contrast, we cast sight
into the case of multiple contests held by different strate-
gic designers. Therefore, the designers’ strategic behaviors
are integrally addressed and analyzed. Secondly, traditional
models, exemplified by the Colonel Blotto games, typically
focus on pairwise contests involving just two contestants and
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mainly study equilibrium behaviors of these two contestants.
We expand this framework, allowing for n potential partici-
pants, thereby granting strategic designers the latitude to se-
lect any two from this candidate pool. While this expansion
offers a more richer and realistic representation, it increases
the analytical difficulty of the model.

Our contributions and results can be summarized as fol-
lows:
• Given the configurations of all contests, for the game

among contestants (the second stage in our model), we
propose a concept called equilibrium multiplier vector
(EMV) which represents marginal utilities of contestants
in equilibrium, as our main analytical tool characterize
the contestant equilibrium. We prove the existence of
EMV utilizing Brouwer’s fixed-point theorem, and show
the uniqueness of EMV leveraging a monotone property.
By establishing the connection between the EMV and
equilibrium strategy of contestants, we fully character-
ize the contestant equilibria. Furthermore, we design a
polynomial time algorithm to compute an ϵ-approximate
contestant equilibrium.

• For the game of designers (the first stage in our model),
when each designer is allowed to hold one contest only,
we first show the non-existence of subgame perfect equi-
librium (SPE) in certain cases, due to the complicated
deviation of the two-dimension strategy (choosing partic-
ipants and biases simultaneously). However, if designers
choose participants and set biases in two separated sub-
stages, we can always find an SPE. Specifically, when the
participants are fixed, considering the designers’ strate-
gies to set the biases, we show that it forms an equilib-
rium when all designers set balancing biases such that
every participants in each contest have the same winning
probability (i.e., 1/2). Under this situation, the equilib-
rium effort exerted by a contestant into each contest is
proportional to the contest prize. We observe that the de-
signers’ participants selection is actually equivalent to a
variant of weighted congestion game, where a pure Nash
equilibrium always exists, implying the existence of a se-
quential equilibrium in our model.

• When each designer can divide her budget to hold several
contests, although the strategy space of designers seems
to become more complicated, surprisingly, we show that
an SPE always exists even if the participants and biases
are decided simultaneously, under a very mild condition
that the maximum total effort of an individual contestant
does not exceed the total effort of all other contestants.
In this SPE, each contestant’s or designer’s utility will
be proportional to her total effort or prize budget, respec-
tively.

All missing proofs appear in the full version (posted in
arXiv).

Related Works
Our paper contributes to the literature in the field of eco-
nomics and computer science, particularly in topics of mul-
tiple contests competition and pairwise contest design. Our
work is closely related to the following several studies. (Li

and Zheng 2022) focus on the analysis of pure strategy Nash
equilibrium on 2-contestant lottery Colonel Blotto games.
However, our paper extends the total number of contestants
from 2 to n, which leads to that each contestant may have
different opponents in different pairwise contests. In addi-
tion, (Fu and Wu 2018) study designing the optimal lottery
contest by setting biases in the setting of single contest to
achieve different objectives. (Wang, Wu, and Xing 2023)
consider a setting of multi-battle contests where the same
two contestants battle with each other in every contest and
every designer sets biases to attract more effort. Our paper
can be viewed as a generalized model of these two papers,
where the designer of each contest picks up two contestants
from n candidates and sets the biases.

Our research focuses on two aspects: equilibrium analy-
sis and contest design. We summarize related works in three
fields: lottery contests, Colonel Blotto games, and competi-
tion among contests.
Lottery Contests The lottery-form contest is introduced
by (Skaperdas 1996) and (Clark and Riis 1998), where con-
testants’ winning probability is determined by a contest suc-
cess function (CSF). (Dasgupta and Nti 1998) consider the
optimal CSF with n symmetric contestants. (Nti 2004) stud-
ies the optimal CSF in two-contestant symmetric contest.
When employing a certain form of CSF, lottery contest is
classified as a specific type of Tullock contest (Nti 1999;
Tullock 2001; Stein 2002). (Clark and Riis 1998) examine
the contest performance affected by the different parame-
ters of Tullock CSF. Multiple equilibria in Tullock contest
is studied in (Chowdhury and Sheremeta 2011). When there
are only two contestants, the optimal contests obtained by
optimizing the parameters of Tullock CSF are investigated
(Wang 2010; Epstein, Mealem, and Nitzan 2011). (Franke
et al. 2013) provide the optimal biases for an n-player Tul-
lock contest. Besides, the lottery contests with multi-prize is
discussed in (Fu, Wu, and Zhu 2022). Additionally, the best
response dynamics of contestants is investigated by (Ewer-
hart 2017; Ghosh and Goldberg 2023).
Colonel Blotto Games Colonel Blotto Games (Borel
1921) characterize the competition between two players
across several contests (aka., battle-fields), which has some
similarity to the game among contestants in our model.
Many classic papers in this topic mainly focus on the de-
terministic CSFs, e.g., (Gross and Wagner 1950; Rober-
son 2006; Macdonell and Mastronardi 2015; Kovenock and
Roberson 2021). (Friedman 1958) first introduces lottery
CSFs into a two-contestant symmetric Blotto game and
shows the uniqueness of equilibrium. (Duffy and Matros
2015) generalize the results to the case with more than two
contestants. Some works (Robson et al. 2005; Xu and Zhou
2018) study the two-contestant Blotto game under the gen-
eral Tullock CSFs.
Competition among Contests The topic of competition
among contests has received increasing attention in the re-
cent decade. Initially, (Azmat and Möller 2009) examine
the two identical Tullock contests setting and investigate
the prize structure in different goals. (DiPalantino and Vo-
jnovic 2009) study multiple auction-based crowdsourcing
contests and give the contestants’ equilibrium in symmetric
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and asymmetric settings. Later, many sutdies (Büyükboyacı
2016; Azmat and Möller 2018; Juang, Sun, and Yuan 2020)
focus on comparing the performance of two parallel contests
with different types. Recently, (Deng et al. 2023) investigate
that the optimal CSF in the monopolistic setting is also the
equilibrium strategy in the competitive setting when design-
ers aim to maximize the total effort. (Körpeoğlu, Korpeoglu,
and Hafalır 2022) show that when a contestant can join sev-
eral contests but the output in each contest is affected by an
uncertainty variable, increasing the number of contests one
contestant participates in improves the utility of contest or-
ganizer. (Deng et al. 2022) focus on the environment of par-
allel contest. They analyze the equilibrium of contestants’
participation and design the prize policies of contests in dif-
ferent settings.

Model and Preliminaries
There are n contestants and m designers. We use the no-
tation i ∈ [n] and j ∈ [m] to denote a contestant and a
designer, respectively. We assume that each contestant i has
a limited total effort Ti ∈ R>0 to exert in contests and each
designer j has a limited budget Bj ∈ R>0.

In this work, we focus on pairwise general lottery con-
tests, in which the designer invites two contestants as the
participants, and sets a multiplicative bias for each partic-
ipant to incentivize their effort. Each participant’s winning
probability depends on the product of her bias and her effort
exerted into this contest.

Formally, a pairwise general lottery contest C is defined
as a tuple C = (SC , RC , αC): SC denotes two contestants
selected as participants of contest C, satisfying that SC ⊆
[n] and |SC | = 2; RC ∈ R>0 denotes the prize prepared
for the winner in the contest; and αC = (αC,i)i∈SC

, where
αC,i ∈ R>0 denotes the bias selected for the participant i.

Suppose SC = {i1, i2}, and let xi1,C and xi2,C be the ef-
fort that these two contestants exert in contest C. Each con-
testant’s effort is multiplied by her bias to get αC,i1 · xi1,C

and αC,i2 · xi2,C . The winning probabilities of contestants
i1 and i2 are f(αC,i1 · xi1,C ;αC,i2 · xi2,C) and f(αC,i2 ·
xi2,C ;αC,i1 · xi1,C) respectively, where f is the lottery CSF
defined as follows:

f(x; y) =

{
x

x+y , if x > 0 ∨ y > 0,
1
2 , if x = y = 0.

Note that f(x; y) + f(y;x) = 1.
We study two models of the designers, varying in whether

a designer can divide her budget to hold multiple contests.
1. In the divisible prize model (DPM), each designer j

is allowed to distribute her prize budget Bj to hold
an arbitrary number of contests, denoted by Cj =
{Cj,1, · · · , Cj,Kj}, satisfying that

∑
C∈Cj

RC ≤ Bj .

2. In the indivisible prize model (IPM), each designer j can
hold only one pairwise general lottery contest, denoted
by Cj , and RCj ≤ Bj . In this case we define Cj = {Cj}.

In both models, each designer j can arbitrarily design
the configuration of every contest C ∈ Cj , i.e., the invited
participants SC , the reward RC , and the bias αC , within

her budget. We call Cj the strategy of designer j and de-
fine C⃗ = (C1, · · · , Cm) as the strategy profile of design-
ers. Sometimes we use the notation C ∈ C⃗ to denote that
C ∈ ∪j∈[m]Cj .

Given designers’ strategy profile C⃗, for any contestant i,
let A(i, C⃗) = {C ∈ ∪j∈[m]Cj : i ∈ SC} be the set of
contests that i is invited to participate in. Each contestant i
decides non-negative amounts of effort to exert in those con-
tests inviting her, denoted by xi = (xi,C)C∈A(i,C⃗), which
satisfies

∑
C∈A(i,C⃗) xi,C ≤ Ti. We call xi the strategy of

contestant i, and x⃗ = (x1, · · · , xn) is called the strategy
profile of contestants. Sometimes we use C⃗−j and x⃗−i to de-
note the strategy profile of all designers except designer j
and the strategy profile of all contestants except contestant i,
respectively.

Given C⃗ and x⃗, for any contestant i and any contest C ∈
A(i, C⃗), let OPi,C denote her opponent in contest C, that
is, SC = {i,OPi,C}. Then, her winning probability in C is
denoted by

pi,C(x⃗) = f(αC,i · xi,C ;αC,OPi,C
· xOPi,C ,C).

The utility of contestant i is defined as her expected to-
tal prize, uContestant

i (C⃗, x⃗) =
∑

C∈A(i,C⃗) RC · pi,C(x⃗).
And the utility of a designer is the total effort exerted
by the participants in her all contests, uDesigner

j (C⃗, x⃗) =∑
C∈Cj

∑
i∈SC

xi,C .
With these definitions, we study a two-stage game model

of the competition among pairwise lottery contests.
Definition 1 An instance of Pairwise Lottery Contest
Competition Game (PLCCG) is defined as the tuple
(n,m, (Ti)i∈[n], (Bj)j∈[m]). The game has two stages:
1. In the first stage (called the stage of designers), all de-

signers simultaneously select their strategies. In other
words, each designer j ∈ [m] decides the number Kj =
|Cj | (under the indivisible prize model, Kj always equals
to 1.) of contests to hold, and the configuration of each
contest C ∈ Cj , within her total budget Bj .

2. In the second stage (called the stage of contestants), hav-
ing observed C1, · · · , Cm, all contestants simultaneously
select their strategies, i.e., each contestant i ∈ [n] de-
cides her effort xi = (xi,C)C∈A(i,C), within her total
effort Ti.

Our work mainly focuses on the sequential equilibrium,
i.e., subgame perfect equilibrium (SPE), of PLCCG. Before
giving the definition of SPE, we first define the contestant
equilibrium, i.e., the pure Nash equilibrium among contes-
tants in the second stage, when a strategy profile C⃗ of de-
signers is given.

Definition 2 Given designers’ strategy profile C⃗, we say a
contestant strategy profile x⃗ is a contestant equilibrium un-
der C⃗ , if for any i ∈ [n] and any feasible strategy x′

i, it holds
that

uContestant
i (C⃗, x⃗) ≥ uContestant

i (C⃗, (x′
i, x⃗−i)).

Define EC⃗ as the set of all contestant equilibria under C⃗.
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Next, we define the subgame perfect equilibrium and de-
signer equilibrium.

Definition 3 (C⃗, x⃗) is a subgame perfect equilibrium, if the
following two conditions hold:

1. x⃗ is a contestant equilibrium under C⃗, i.e., x⃗ ∈ EC⃗ .
2. For any designer j, any feasible strategy C′

j and any x⃗′ ∈
E(C′

j ,C⃗−j)
, it holds that 1

udesigner
j (C⃗, x⃗) ≥ udesigner

j ((C′
j , C⃗−j), x⃗

′).

We say C⃗ is a designer equilibrium if there is some x⃗ ∈ EC⃗
such that (C⃗, x⃗) is a subgame perfect equilibrium.

Contestant Equilibrium
In this section, we study the equilibrium behavior of contes-
tants in the contestants’ stage of PLCCG, i.e., the contestant
equilibrium, when the designers’ strategy profile is given.
In subsection , as a key tool for analyzing and character-
izing contestant equilibrium, we propose a concept called
equilibrium multiplier vector (EMV), which represents each
contestant’s equilibrium strategy by a multiplier variable, in-
dicating the contestant’s marginal utility under the contes-
tant equilibrium. We also show the close connection between
contestant equilibrium and EMV. This simplifies the contes-
tant’s multi-dimensional strategy into a single-dimensional
number. In subsection , we prove the existence and unique-
ness of equilibrium multiplier vector, which enables us to
fully characterize the set of all contestant equilibria. Addi-
tionally, in subsection , we show that an ϵ-approximate con-
testant equilibrium can be found in polynomial time through
an iterative updating process of the multiplier vector, which
draws inspiration from the tâtonnement algorithm used in
the field of market equilibrium.

Given any designers’ strategy profile C⃗, since the contes-
tants do not care about the holder of each contest, we can
simplify some notions. We use the notation C = ∪j∈[m]Cj to
denote the set of all contests, and define A(i, C) = {C ∈ C :
i ∈ SC} and ui(C, x⃗) =

∑
C∈A(i,C) RC · pi,C(x⃗). W.l.o.g,

we assume that for any contestant i ∈ [n], A(i, C) ̸= ∅.

Equilibrium Multiplier Vector
In this subsection, we propose equilibrium multiplier vector
as a representation of contestant equilibrium. We first give
the motivation and definition of EMV by Lemma 1 and Def-
inition 4. Then we characterize the contestant equilibrium
with the help of EMV. We derive a necessary and sufficient
condition for a vector being an EMV in Theorem 1, and then
characterize the set of all contestant equilibria corresponding
to an EMV as shown in Theorem 2. Combining Theorem 2

1Note that this definition is slightly stronger than the standard
definition of SPE since it requires that for any designer j, x⃗ is bet-
ter for the best x⃗′ ∈ E(C′

j ,C⃗−j)
, while the standard definition only

requires that x⃗ is better for some x⃗′ ∈ E(C′
j ,C⃗−j)

. However, this is
not an essential difference since the contestant equilibrium will be
unique in some sense as shown later.

and the uniqueness of EMV proved in the next subsection,
we can fully characterize the set of all contestant equilib-
rium.

If x⃗ is a contestant equilibrium, for each contestant i, xi

is a best response to x⃗−i. In other words, xi is an optimal
solution to the following optimization problem:

max
xi,C≥0 for C∈A(i,C)

∑
C∈A(i,C)

RC · pi,C(xi, x⃗−i), (1)

s.t.
∑

C∈A(i,C)

xi,C ≤ Ti.

Intuitively, if we use the Lagrange multiplier method, there
will be a Lagrange multiplier λi ≥ 0 so that xi maximizes
the Lagrangian function

∑
C∈A(i,C) RC · pi,C(xi, x⃗−i) −

λi(Ti −
∑

C∈A(i,C) xi,C). However, due to the discontinu-
ity of pi,C(xi, x⃗−i) at the point with xi,C = xOPi,C ,C = 0,
the Lagrange multiplier method cannot be applied directly.
Thus, we establish the existence of such λi for each contes-
tant i through some analysis, to obtain the following lemma.

Lemma 1 If x⃗ is a contestant equilibrium under strategy
profile C, there exist λ1, · · · , λn ∈ R≥0 such that, for any
contestant i and any contest C ∈ A(i, C), RC · ∂pi,C(x⃗)

∂xi,C
≤

λi, where the equation holds when xi,C > 0.

By Lemma 1, we know that every contestant equilibrium
x⃗ corresponds to a vector λ⃗ = (λ1, · · · , λn), which can be
viewed as the vector of contestants’ Lagrange multipliers in
Optimization 1. We refer to such λ⃗ as an EMV.

Definition 4 A vector λ⃗ = (λ1, · · · , λn) ∈ Rn
≥0 is an equi-

librium multiplier vector, if there exists a contestant equilib-
rium x⃗ such that x⃗ and λ⃗ satisfies the conditions in Lemma 1.
We call x⃗ a contestant equilibrium corresponding to λ⃗.

First, we present a necessary and sufficient condition to
decide whether a vector λ⃗ is an EMV. We say a vector λ⃗ ∈
Rn

≥0 is valid if for any contest C ∈ C, it holds
∑

i∈SC
λi >

0. Then, for any valid vector λ⃗ ∈ Rn
≥0, we define

x̂i,C(λ⃗) = RC ·
αC,iαC,OPi,C

λOPi,C

(αC,OPi,C
λi + αC,iλOPi,C

)2

for any contestant i and any contest C ∈ A(i, C). For any
contestant i, we also define T̂i(λ⃗) =

∑
C∈A(i,C) x̂i,C(λ⃗),

which can be viewed as the demand of contestant i’s effort
induced by λ⃗. Before giving the characterization of EMV, we
first give a lemma to show that x̂i,C(λ⃗) is the lowest exerted
effort in a contestant equilibrium corresponding to λ⃗.

Lemma 2 If x⃗ is a contestant equilibrium corresponding to
an equilibrium multiplier vector λ⃗, for any contestant i ∈ [n]

and any contest C ∈ A(i, C), it holds that xi,C ≥ x̂i,C(λ⃗),
where the equation holds when λi > 0.

Now, we can give a necessary and sufficient condition for
a vector λ⃗ to be an EMV, which enables us to identify an
EMV directly.
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Theorem 1 For any λ⃗ ∈ Rn
≥0, λ⃗ is an equilibrium multi-

plier vector if and only if the following statements hold:

1. λ⃗ is valid;
2. For any contest i with λi > 0, Ti = T̂i(λ⃗);
3. For any contest i with λi = 0, Ti ≥ T̂i(λ⃗).

Next, we show that, when given an EMV λ⃗, the set of
all contestant equilibria corresponding to λ⃗ is also uniquely
determined.

Theorem 2 If λ⃗ is an equilibrium multiplier vector, then a
contestant strategy profile x⃗ is a contestant equilibrium cor-
responding to λ⃗ if and only if x⃗ ∈ X (λ⃗), where

X (λ⃗) = {(xi,C)i∈[n],C∈A(i,C) :

∀i ∈ [n],
∑

C∈A(i,C)

xi,C ≤ Ti∧

∀C ∈ A(i, C), xi,C ≥ x̂i,C(λ⃗)}.

It is notable that in the next subsection, we will prove that
for any C, there always exists a unique EMV λ⃗. Combined
with this, Theorem 2 fully characterizes the set of all contes-
tant equilibria, which is exactly X (λ⃗).

Existence and Uniqueness
In this subsection, we mainly discuss the existence and
uniqueness of EMV. We prove that EMV always exists (The-
orem 3) and is unique (Theorem 4) for any strategy profile
of designers. Although the existence of contestant equilib-
rium follows immediately, there may exist multiple contes-
tant equilibria. Nonetheless, as mentioned before, the set of
all contestant equilibria is fully characterized by the unique
EMV through Theorem 2.

A conventional approach to prove the existence of a con-
testant equilibrium is to consider the best response updat-
ing process of the strategy profile x⃗ and show the existence
of a fixed point by Kakutani fixed-point theorem (Kakutani
1941). However, due to the discontinuity of the lottery CSF
f(x; y) at the point x = y = 0, the set of contestant i’s best
response is sometimes empty and the condition of Kakutani
fixed-point theorem is not satisfied. To address this problem,
we turn to the space of multiplier vectors. We carefully de-
sign a continuous mapping of the multiplier vector λ⃗ such
that the fixed point is an EMV, and prove the existence of
such a fixed point by Brouwer’s fixed-point theorem.

Theorem 3 For any designers’ strategy profile C⃗, there ex-
ists an equilibrium multiplier vector λ⃗.

Next, we prove the uniqueness of EMV. Recall that, for
any valid λ⃗, T̂i(λ⃗) can be viewed as the demand of contestant
i’s effort induced by λ⃗, and the conditions in Theorem 1 can
be interpreted as a complementary-slackness condition for
the demands T̂1(λ⃗), · · · , T̂n(λ⃗). We view these demands as a
vector function T̂ (λ⃗) = (T̂1(λ⃗), · · · , T̂n(λ⃗)). An important
observation is that, T̂ (λ⃗) satisfies a monotone property in λ⃗.

Lemma 3 For any two valid multiplier vectors λ⃗ and λ⃗′, it
holds that

n∑
i=1

(λ′
i − λi)(T̂i(λ⃗

′)− T̂i(λ⃗)) ≤ 0.

Moreover, the strict inequality holds when there ex-
ists some i such that λ′

i ̸= λi and maxC∈A(i,C)
max{λOPi,C

, λ′
OPi,C

} > 0.

With this monotone property, we can prove that the EMV
is unique 2. Intuitively, if there are two distinct EMVs, λ⃗ and
λ⃗′, by Lemma 3 they will induce different demand of efforts,
i.e., T̂ (λ⃗) ̸= T̂ (λ⃗′), which will contradict with Theorem 1.

Theorem 4 Given any designers’ strategy profile C⃗, there is
a unique equilibrium multiplier vector.

Computation of Contestant Equilibrium
In this subsection, we study the computation of the contes-
tant equilibrium. We design an algorithm which computes an
ϵ-contestant equilibrium in polynomial time given any strat-
egy profile of designers C⃗. Lemma 3 provides the insight
that, we can roughly adjust T̂ (λ⃗) towards some direction by
adjusting λ⃗ in the the opposing direction. Building upon this,
we firstly find an approximate EMV through an iterative up-
dating process inspired by the tâtonnement algorithm, and
then construct an approximate contestant equilibrium based
on this approximate EMV.
Definition 5 A strategy profile x⃗ is an ϵ-approximate con-
testant equilibrium, if for any i and any feasible strategy x′

i,
uContestant
i (C⃗, x⃗) ≥ (1−ϵ)uContestant

i (C⃗, (x′
i, x⃗−i)) holds.

Theorem 5 Given any strategy profile C⃗, for any ϵ > 0,
there exists an algorithm to compute an ϵ-approximate con-
testant equilibrium in polynomial time in 1

ϵ and the input
sizes, namely n, m, and | ∪j∈[m] Cj |.

Indivisible Prize Model
Starting from this section, we investigate the equilibrium be-
havior of designers. We study the indivisible prize model
(IPM) in this section and the divisible prize model (DPM) in
Section .

In this section, we first show that the designer equilibrium
(defined in Definition 3) may not exist in some instances
of IPM. Thus, we consider a weaker concept called weak
designer equilibrium (WDE), based on a setting where the
stage of designers is divided into two substages. By analyz-
ing the equilibrium of two substages in reverse order, we
prove that WDE always exists, in which all designers will
adopt balancing biases such that both sides of any contest
have an equal winning probability of 1/2 under a contestant
equilibrium.

2We remark that the uniqueness of EMV relies on the assump-
tion that for any contestant i, A(i, C) ̸= ∅. When there is some
contestant i with A(i, C) = ∅, it means that contestant i does not
participate in any contest, and we can assume that λi can take ar-
bitrary value. In this case, however, for any other contestant with
A(i, C) ̸= ∅, the equilibrium multiplier is still unique.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9666



Weak Designer Equilibrium
We first use a counterexample to show that the SPE may
not exist under IPM, even in a very simple instance with 3
identical contestants and 2 identical designers.
Theorem 6 In some instances of indivisible prize model, the
designer equilibrium does not exist.

Roughly speaking, the main reason of the nonexistence
of SPE is that modifying the choice of participants in some
contest can cause significant change in the optimal choice
of biases, which again leads to another better choice of par-
ticipants. Therefore, we relax the requirement of designer
equilibrium by separating the stage of designers into two
substages3: in the first substage, each designer decides the
amount of prize and participants of her contest; and in the
second stage, each designer decides the biases of her con-
test.

Now we provide the definition of WDE formally. For each
designer j, we call (RCj , SCj ) her first-stage strategy, and
(αCj ,i)i∈SCj

her second-stage strategy. Let BiasDev(Cj) =

{C ′
j : RC′

j
= RCj ∧ SC′

j
= SCj} denote all strategies of

designer j whose first-stage strategy is the same as that of
Cj . The WDE can be defined as follows.

Definition 6 In the IPM, we say a strategy profile C⃗ is a
second-substage equilibrium, if there exists x⃗ ∈ EC⃗ such
that, for any designer j, any C ′

j ∈ BiasDev(Cj) and
for any x⃗′ ∈ E(C′

j ,C⃗−j)
, it holds that udesigner

j (C⃗; x⃗) ≥

udesigner
j ((C′

j , C⃗−j); x⃗
′).

We say a strategy profile C⃗ is a first-substage equilibrium,
if the following holds:

1. C⃗ is a second-substage equilibrium.
2. There exists x⃗ ∈ EC⃗ such that, for any designer j and any

strategy C′
j , there is C⃗′

−j such that
• C ′

j′ ∈ BiasDev(Cj′) for any j′ ̸= j,

• C⃗′ = (C′
j , C⃗′

−j) is a second-substage equilibrium,

• udesigner
j (C⃗; x⃗) ≥ udesigner

j (C⃗′; x⃗′) for all x⃗′ ∈ EC⃗′ .

A strategy profile C⃗ is called a weak designer equilibrium if
it is a first-substage equilibrium.

It is not hard to find that WDE is a weaker concept than
designer equilibrium, since any beneficial deviation in ei-
ther substage leads to a beneficial deviation in the original
designer stage.

Equilibrium in the Second Substage
To analyze the weak designer equilibrium, we firstly study
the second-substage equilibrium, i.e., how the designers set
the biases when their first-stage strategies are fixed.

We extend an approach from the previous works to our
model, which considers the winning probability of a par-
ticipant under contestant equilibrium as designer’s decision

3This setting is justified by the common fact that the list of par-
ticipants is often announced before the contest beginning, and mod-
ifying the judging criteria for contestants’ performance is relatively
less costly than withdrawing the invitation to participants.

variable, instead of directly deciding the biases in the con-
test. We establish the validity of this approach in our model
by Lemma 5. Although existing literature suggests that a de-
signer’s dominate strategy is to set a balancing bias which
results in her participants having an equal winning probabil-
ity of 1/2, we show that this claim does not unconditionally
hold in our model in Theorem 7. Nonetheless, in Theorem 8
we prove that it still forms an second-substage equilibrium
when all designers are using the balancing biases.

Firstly we show that the winning probability is uniquely
determined by the designers’ strategy profile.

Lemma 4 Given the strategy profile C⃗, let λ⃗ be the unique
equilibrium multiplier vector with respect to C⃗. For any
contest C and any contestant i ∈ SC , define p̂i,C(λ⃗) =

αC,iλOPi,C

αC,iλOPi,C
+αC,OPi,C

λi
. Then, for any contestant equilib-

rium x⃗, it holds that pi,C(x⃗) = p̂i,C(λ⃗).

The following technical lemma shows that the designers
are able to manipulate the equilibrium winning probabili-
ties in their contests by adjusting the biases. This allows us
to consider the winning probability in a contest as the de-
signer’s decision variable in the second substage.

Lemma 5 Suppose the set of all contests is partitioned as
C = Cfix∪Cvar, such that every C ∈ Cfix’s configuration is
fixed, while every C ∈ Cvar only has fixed SC and RC , and
the biases αC need to be assigned. Given any target of win-
ning probabilities for these contests (p̃i,C)C∈Cvar,i∈SC

sat-
isfying that p̃i,C ∈ (0, 1) and

∑
i∈SC

p̃i,C = 1, there exists
an assignment of biases (αC,i)C∈Cvar,i∈SC

, under which it
holds for all C ∈ Cvar and i ∈ SC that p̂i,C(λ⃗) = p̃i,C ,
where λ⃗ is the EMV under C after assigning the biases
to contests in Cvar. Moreover, such assignment of bias is
unique when normalized such that α∗

C,i + α∗
C,OPi,C

= 1.

Viewing p̂i,C(λ⃗) as the decision varaible is an effective
approach, since it affects the contestants’ effort exertion
more directly. Define QC(λ⃗) = p̂i,C(λ⃗) · p̂OPi,C ,C(λ⃗) =

p̂i,C(λ⃗)(1 − p̂i,C(λ⃗)) for arbitrary i ∈ SC . Recall the def-
inition of x̂i,C(λ⃗) in Section , for any contestant i with
λi > 0, we can find that for any contest C ∈ A(i, C⃗),
x̂i,C(λ⃗) = RCQC(λ⃗)

λi
. Observe that QC(λ⃗) is maximized

when the bias is adjusted such that p̂i,C(λ⃗) = 1
2 for both

contestants i ∈ SC , which we call the balancing bias. Con-
sequently, using the balancing bias in C intuitively maxi-
mizes xi,C as long as the indirect influence on λi is lim-
ited. Previous works (Wang, Wu, and Xing 2023) also sug-
gest that, when there are only two candidate contestants, i.e.,
n = 2, the optimal choice for a designer under any strategies
of the other designers is to use the balancing bias. However,
surprisingly, this is not a dominant strategy in the second
substage of designers in our model.

Theorem 7 In some instances of IPM, setting the balancing
bias may not be the best response strategy for a designer in
the second substage of designers.
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Nonetheless, we can prove that, when all designers simul-
taneously use the balancing biases, it forms an equilibrium.
Therefore, it is still reasonable to assume that all designers
will use the balancing biases.

Theorem 8 In the IPM, for a strategy profile C⃗, let λ⃗ be
the unique equilibrium multiplier vector. If it holds that
p̂i,Cj

(λ⃗) = 1
2 for any contest Cj and any contestant i ∈ SCj

,
the biases of all contests in C⃗ form an equilibrium in the sec-
ond substage of designers.

Equilibrium in the First Substage
Assuming that all designers use the balancing biases in the
second substage, with a little calculation, we can find that the
contestants’ efforts are distributed in proportion to the prizes
of contests. Consequently the first substage of designers is
strategically equivalent to a variant of weighted congestion
game (Bhawalkar, Gairing, and Roughgarden 2014), which
has a pure Nash equilibrium. Therefore, we can guarantee
the existence of WDE in the IPM.

Theorem 9 In the IPM, there exists at least one weak de-
signer equilibrium.

Divisible Reward Model
In this section, we concentrate on DPM, in which each de-
signer is allowed to divide her budget to hold multiple con-
tests. Compared to IPM, the strategy space of a designer
under DPM is more complicated due to the involvement
of multiple contests, but at the same time, it also become
more flexible since the prize amount can be continuously
adjusted across different contests to achieve some balanced
state. Consequently, our result on DPM is two-fold: On the
one hand, we show by an counterexample that Theorem 8
cannot be extended to DPM (Theorem 10), which means
that using the balancing bias is sometimes no longer the best
choice, even if all other designers do so. On the other hand,
in contrast to IPM, we establish the existence of the designer
equilibrium in DPM (Theorem 11 & 12), under a mild con-
dition that maxi∈[n] Ti ≤ 1

2

∑
i∈[n] Ti.

We first show that Theorem 8 cannot be extended to the
DPM. That is, even when all designers use balancing bias si-
multaneously, it may not be an second-substage equilibrium.

Theorem 10 In some instances of DPM, there exists some
strategy profile C⃗ such that:

• Suppose λ⃗ is the EMV, it holds that p̂i,C(λ⃗) = 1
2 , for any

contest C ∈ ∪j∈[m]Cj and any participant i ∈ SC ,
• However, there is some designer who has the incentive to

change the biases of her contests.

However, interestingly, if every designer distributes her
budget of prize proportional to the total effort of each partic-
ipant and sets the balancing bias in each contest, it will be a
designer equilibrium.

Theorem 11 In the DPM, given designers’ strategy profile
C⃗, let λ⃗ be the EMV under C⃗. If the following two conditions
hold:

1. For any designer j and contestant i, it holds that∑
C∈A(i,Cj)

RC = 2Bj
Ti∑

k∈[n] Tk
;

2. For any contest C ∈ ∪j∈[m]Cj and any participant i ∈
SC , it holds that p̂i,C(λ⃗) = 1

2 ;

then C⃗ is a designer equilibrium.

Under the mild condition that the maximum effort of an
individual contestant is not too large, we can show the ex-
istence of a designer equilibrium by constructing a strategy
profile satisfying the condition of Theorem 11.
Theorem 12 In the DPM, if maxi∈[n] Ti ≤ 1

2

∑
i∈[n] Ti,

there exists a designer equilibrium.

It’s worth noting that, the designer equilibrium C⃗ shown in
Theorem 12 and its corresponding contestant equilibrium x⃗
exhibits a kind of balance: each contestant gets a utility pro-
portional to her total effort, and each designer gets a utility
proportional to her budget. Formally, it holds that

ucontestant
j (C⃗; x⃗) = Ti∑

i′∈[n] Ti′

∑
j∈[m]

Bj ,

udesigner
j (C⃗; x⃗) = Bj∑

j′∈[m] Bj′

∑
i∈[n]

Ti,

for all contestants i ∈ [n] and all designers j ∈ [m].

Conclusion and Future Work
This paper examines the competitive environment of mul-
tiple pairwise lottery contests, focusing on the equilibrium
behavior of contest designers and contestants. Designers de-
termine the prize amount, participants, and biases of their
contests, while contestants allocate their effort across con-
tests. We fully characterize the contestant equilibrium using
the equilibrium multiplier vector. When designers can hold
one or multiple contests, we demonstrate the designer equi-
librium under mild conditions.

We suggest two directions for future research. The first
is to extend our results to the general Tullock model with
a more complex contest success function. The second is to
analyze the equilibrium strategy of contestants and designers
when there are more than two participants in a contest.
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