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Abstract

In approval-based committee (ABC) voting, the goal is to
choose a subset of predefined size of the candidates based on
the voters’ approval preferences over the candidates. While
this problem has attracted significant attention in recent years,
the incentives for voters to participate in an election for a
given ABC voting rule have been neglected so far. This paper
is thus the first to explicitly study this property, typically called
participation, for ABC voting rules. In particular, we show
that all ABC scoring rules even satisfy group participation,
whereas most sequential rules severely fail participation. We
furthermore explore several escape routes to the impossibility
for sequential ABC voting rules: we prove for many sequential
rules that (i) they satisfy participation on laminar profiles, (ii)
voters who approve none of the elected candidates cannot
benefit by abstaining, and (iii) it is NP-hard for a voter to
decide whether she benefits from abstaining.

1 Introduction
Many questions in multi-agent systems reduce to the prob-
lem of selecting a subset of the available candidates based
on the preferences of a group of agents over these candidates.
Maybe the most apparent example for this are elections of
parliaments or city councils, but there are also numerous ap-
plications beyond classical voting. For instance, this model
can also be used to describe automated recommender systems
(Gawron and Faliszewski 2022) or the selection of validators
in a block chain (Cevallos and Stewart 2021). In the field
of computational social choice, such elections are known as
approval-based committee (ABC) elections and they have re-
cently attracted significant attention (Faliszewski et al. 2017;
Lackner and Skowron 2023). In more detail, this research
studies approval-based committee (ABC) voting rules, which
choose a fixed-size subset of the candidates, typically called
a committee, based on the voters’ approval ballots (i.e., vot-
ers express their preference about every candidate by either
approving or disapproving her).

One of the basic premises of ABC voting rules (and, more
generally, of all types of elections) is that voters will partic-
ipate in the election. However, this is not necessarily in the
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interest of the voters: for example, for many single-winner
voting rules, there are situations where voters prefer the out-
come chosen when abstaining to the outcome chosen when
voting (e.g., Moulin 1988; Pérez 2001; Brandl et al. 2019).
This undesirable phenomenon, which is known as the no-
show paradox, entails that voting can be disadvantageous
for a voter and hence disincentivizes participation. We are
thus interested in voting rules that avoid this paradox, which
are then said to satisfy participation. Note that while related
concepts have been analyzed (e.g., Sánchez-Fernández and
Fisteus 2019; Lackner and Skowron 2023, Prop. A.3), par-
ticipation has not been studied for ABC voting rules and we
thus initiate the study of this axiom for ABC elections.

Our contribution. In this paper, we study the participation
incentives of ABC voting rules. In more detail, we first inves-
tigate which ABC voting rules satisfy participation and prove
that all ABC scoring rules (including all Thiele rules) even
satisfy group participation. This generalizes the observation
that scoring rules satisfy participation for single-winner elec-
tions and gives a strong argument in favor of Thiele rules. By
contrast, we prove a general impossibility theorem, which
shows that most ABC voting rules that sequentially compute
the winning committees fail participation. In particular, our
result implies that all sequential Thiele rules (except for ap-
proval voting) as well as the sequential variant of Phragmén’s
rule and the method of equal shares severely fail participation:
there are situations where a voter only approves one of the
elected candidates when she votes but all except one of the
elected candidates when she abstains. These theorems also
subsume results by Sánchez-Fernández and Fisteus (2019)
and Lackner and Skowron (2023) who study a monotonicity
axiom that constitutes a special case of participation.

We furthermore analyze several approaches to circumvent
this negative result for sequential rules. Firstly, motivated
by the notion of strategyproofness for unrepresented voters
by Delemazure et al. (2023), we show that many sequential
ABC voting rules ensure that voters who do not approve
any of the elected candidates cannot benefit by abstaining
(Proposition 1). This result complements our impossibility
theorem, which shows that voters can significantly benefit
from abstaining when they approve at least one candidate and,
moreover, demonstrates that many sequential rules satisfy at
least a minimal degree of participation. Next, we prove that
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all sequential Thiele rules and the sequential Phragmén rule
satisfy participation when restricting the domain to laminar
profiles (Proposition 2). These profiles have been introduced
by Peters and Skowron (2020) and require that for all can-
didates x and y, the respective sets of voters approving x
and y are either disjoint or related by subset inclusion. Hence,
this result shows that sequential ABC voting rules satisfy
participation when focusing on an important special case.

Finally, we show that it is NP-hard for a voter to decide
whether she benefits from abstaining when using sequential
Thiele rules, sequential Phragmén, or the method of equal
shares (Section 3.3). Thus, even though a voter may benefit by
abstaining, she may not be able to recognize it. Moreover, our
technique for showing these hardness results is very universal
and allows us to recover, strengthen, or complement existing
hardness results by Faliszewski, Gawron, and Kusek (2022)
and Janeczko and Faliszewski (2023). In addition, our results
indicate that many basic problems (e.g., whether there is
a winning committee for which a given voter approves ℓ
candidates) are NP-hard for sequential rules.

Related Work. The topic of ABC voting currently attracts
significant attention and we refer to Lackner and Skowron
(2023) for a recent survey. While there is, to the best of
our knowledge, no explicit work on participation in ABC
voting, there are a few closely related papers. In particular,
Sánchez-Fernández and Fisteus (2019) study an axiom called
support monotonicity with population increase (SMWPI),
which requires that the abstention of a voter cannot result in a
committee that contains all of her approved candidates if such
a committee is not chosen when voting. Clearly, SMWPI is a
mild variant of participation and Sánchez-Fernández and Fis-
teus (2019) show that all ABC scoring rules satisfy this con-
dition. Moreover, Lackner and Skowron (2023, Prop. A.3),
Mora and Oliver (2015), and Janson (2016) consider vari-
ous sequential rules and prove that they fail SMWPI, which
implies that they also fail participation. Notably, the proof
of Theorem 2 also works with SMWPI and our result thus
strengthens the existing results by showing that essentially
all sequential rules fail this property.

Our paper is also related to the study of strategyproofness
and robustness in ABC voting (e.g., Aziz et al. 2015; Peters
2018; Bredereck et al. 2021; Faliszewski, Gawron, and Kusek
2022). In particular, participation can be seen as a variant
of strategyproofness that prohibits that voters manipulate by
abstaining, or as a robustness axiom that measures how much
impact an abstaining voter can have on the outcome. Many
of these papers are conceptually similar to ours as they first
study whether ABC voting rules satisfy an axiom and then
explore escape routes.

Finally, in the broader realm of social choice, there are
numerous papers that study participation. In his seminal pa-
per, Moulin (1988) showed that a large class of single-winner
voting rules known as Condorcet extensions fail participation.
This result caused a large amount of follow-up work, which
either strengthens the negative result (e.g., Jimeno, Pérez, and
Garcı́a 2009; Duddy 2014; Brandt, Geist, and Peters 2017)
or explores escape routes (e.g., Brandl, Brandt, and Hofbauer
2019; Brandl et al. 2019). A particularly noteworthy paper in

our context is by Pérez, Jimeno, and Garcı́a (2010) who show
that a large class of committee voting rules fail participa-
tion when voters report ranked ballots. We refer to Hofbauer
(2019) for a survey on participation in social choice.

2 Preliminaries
In this paper, we will use the standard ABC voting setting
following the notation of Lackner and Skowron (2023). To
formalize this model, let N denote an infinite set of voters
and let C denote a set of m > 1 candidates. An electorate N
is a non-empty and finite subset of N and we suppose that
every voter i ∈ N reports an approval ballot Ai to express
her preferences. Formally, an approval ballot is a non-empty
subset of C. An approval profile A is the collection of the
approval ballots of all voters i ∈ N , i.e., a function of the
type N → 2C \ {∅}. We denote by NA the set of voters that
report a ballot in profile A and by NA(c) the set of voters
who approve candidate c in A. Moreover, A−i (resp. A−I ) is
the profile derived from A when voter i ∈ NA (resp. a group
of voters I ⊆ NA) abstains. More formally, A′ = A−i is
defined by NA′ = NA \ {i} and A′

j = Aj for all j ∈ NA′ .
Given an approval profile, our goal is to elect a committee,

which is a subset of the candidates of predefined size. Follow-
ing the literature, we define k ∈ {1, . . . ,m− 1} as the target
committee size and Wk = {W ⊆ C : |W | = k} as the set of
size k committees. We collect all information associated with
an election in an election instance E = (N,C,A, k), where
we omit N and C whenever they are clear from the context.
Given an election instance E, our goal is to determine the
winning committee. To this end, we will use approval-based
committee (ABC) voting rules which map every election in-
stance E to a non-empty subset of Wk, i.e., ABC voting rules
may return multiple committees that are tied for the win.

2.1 Classes of Voting Rules
We now introduce several (classes of) ABC voting rules.
We assume that all rules return all committees that can be
obtained by some tie-breaking order.

ABC scoring rules. ABC scoring rules, which were in-
troduced by Lackner and Skowron (2021), generalize scor-
ing rules to ABC elections: each voter gives points to each
committee and the winning committees are those with the
maximal total score. Formally, these rules are defined by a
scoring function s which maps all x, y ∈ N0 with x ≤ y
to a rational number s(x, y) such that s(x, y) ≥ s(x′, y) for
all x′ ≤ x ≤ y. Without loss of generality, we suppose that
s(0, y) = 0 for all y. Intuitively, s(x, y) is the score a voter
gives to a committee W when she approves x members of
W and y in total. Thus, the total score of a committee W
in a profile A is ŝ(A,W ) :=

∑
i∈NA

s(|Ai ∩W |, |Ai|). The
ABC scoring rule defined by the scoring function s chooses
the committees W that maximize the total score ŝ(A,W ).

Thiele rules. Thiele rules, suggested by Thiele (1895), are
scoring rules that are independent of the ballot size, i.e.,
s(x, y) = s(x, y′) for all x ≤ y ≤ y′. Therefore, we drop
the second argument of the scoring function. We impose the
standard requirements that s(1) > 0 and s(x+ 1)− s(x) ≥
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s(x + 2) − s(x + 1) for all x ∈ N0 (concavity). Important
examples of Thiele rules are multiwinner approval voting
(AV), defined by s(x) = x, proportional approval voting
(PAV), defined by s(x) =

∑x
y=1

1
y , and Chamberlin-Courant

approval voting (CCAV), defined by s(x) = 1 for all x > 0.

Sequential query rules. Generalizing concepts of Brill
et al. (2023) and Dong and Lederer (2023), we introduce
the class of sequential query rules. The idea of this class is
to encapsulate ABC voting rules that compute the winning
committees by sequentially adding candidates. To formal-
ize this, we let S(C) denote the set of all non-repeating
sequences of candidates with length ℓ ≤ m − 2. In partic-
ular, the empty set is the only sequence of length 0. The
central concept for sequential query rules are query func-
tions g which take a profile A, a target committee size k, and
a sequence S = (c1, . . . , cℓ) ∈ S(C) as input and return
a subset of C \ {c1, . . . , cℓ}. Intuitively, g(A, k, S) are the
candidates that will be chosen next given that the candidates
in S have been selected in this order. Moreover, we demand
that g(A, k, S) is non-empty whenever S is generated by g.
Formally, we say a sequence S = (c1, . . . , cℓ) is valid for
g(A, k, ·) if S = ∅ or ci ∈ g(A, k, (c1, . . . , ci−1)) for all
1 ≤ i ≤ ℓ. We require that g(A, k, S) ̸= ∅ whenever S is
valid and ℓ < k. Finally, an ABC voting rule f is a sequential
query rule induced by the query function g if f(A, k) =
{{c1, . . . , ck} ∈ Wk : (c1, . . . , ck) is valid for g(A, k, ·)}
for all profiles A and committee sizes k. The class of se-
quential query rules as defined here is actually equivalent
to the set of ABC voting rules as there are no restrictions
on g. Hence, we will later introduce axioms for sequential
query rules to pinpoint when a sequential query rule fails
participation. In the following, we introduce several voting
rules that can be easily described as sequential query rules.

Sequential Thiele rules. Sequential Thiele rules are greedy
versions of Thiele rules and have also been suggested by
Thiele (1895). Given some Thiele scoring function s, these
rules extend in every step each committee W of the previous
step with the candidates c that increase the score the most.
More formally, sequential Thiele rules are sequential query
rules defined by the query function g(A, k, (c1, . . . , cℓ)) =
argmaxx∈C\{c1,...,cℓ}ŝ(A, {x, c1, . . . , cℓ}). Prominent exam-
ples of sequential Thiele rules are seqCCAV and seqPAV
which are the sequential versions of CCAV and PAV. Note
that the sequential version of AV is identical to AV.

Sequential Phragmén. This rule (seqPhragmén), which
was suggested by Phragmén (1895) and rediscovered by Brill
et al. (2017), relies on a cost-sharing mechanism. In more
detail, seqPhragmén assumes that each candidate has a
cost of 1 and each voter starts with a budget of 0. Over time,
the budget of each voter increases uniformly and as soon as
the voters that approve some candidate c have a total budget
of 1, they buy c and add it to the winning committee. The
budget of these (and only these) voters is then reset to 0.
The process continues until k candidates have been bought.
Clearly, seqPhragmén is a sequential query rule.

Method of equal shares. The method of equal shares
(MES), which is due to Peters and Skowron (2020), works sim-

ilar to seqPhragmén. In particular, every candidate again
costs 1, but every voter i starts with a budget of x0(i) =

k
n

instead of earning budget over time. MES then tries to buy can-
didates in sequential steps. In more detail, let xr(i) denote the
budget of each voter i after r steps and let X = {c1, . . . , cr}
denote the set of candidates that have already been bought.
We define by Cr := {c ∈ C \ X :

∑
i∈NA(c) xr(i) ≥ 1}

the set of candidates that can still be afforded. If Cr ̸= ∅,
we add the candidate c ∈ Cr to the winning committee
that incurs the minimal cost to the voter paying the most
when splitting the cost as equally as possible, i.e., c mini-
mizes ρ(c) with

∑
i∈NA(c) min(ρ(c), xr(i)) = 1. Next, we

set xr+1(i) = xr(i) −min(ρ(c), xr(i)) for i ∈ NA(c) and
xr+1(i) = xr(i), otherwise. We then continue with the next
round. This process, typically called Phase 1 of MES, iterates
until Cr = ∅. If at this point less than k candidates have been
bought, Phase 2 of MES starts where we have to complete
the committee. For this, a variant of seqPhragmén is used
where voters keep their remaining budget from Phase 1.

2.2 Participation
We next turn to the central axiom of this paper, participation.
The idea of this condition is that voters should not be worse
off when voting instead of abstaining. To formalize this, we
say that a voter i (weakly) prefers a committee W to com-
mittee W ′ (denoted by W ≿i W

′) if |W ∩Ai| ≥ |W ′ ∩Ai|,
and strictly prefers W to W ′ (denoted by W ≻i W ′) if
|W ∩Ai| > |W ′ ∩Ai|. This approach is the standard to ex-
tend voters’ preferences to preferences over committees (see,
e.g., Aziz et al. 2015; Botan 2021; Delemazure et al. 2023).
Since our ABC voting rules return sets of committees, we
furthermore need to lift the voters’ preferences to sets of com-
mittees. Following the literature (Kluiving et al. 2020; Botan
2021), we use Kelly’s extension. This extension states that a
voter i prefers a set of committees X to another set of com-
mittees Y (denoted by X ≿i Y ) if W ≿i W

′ for all W ∈ X
and W ′ ∈ Y (Kelly 1977). Moreover, this preference is strict
(denoted by X ≻i Y ) if there are W ∈ X , W ′ ∈ Y with
W ≻i W

′. Kelly’s extension guarantees that X ≿i Y if and
only if voter i weakly prefers the outcome chosen from X
to the outcome chosen from Y regardless of the tie-breaking.
We note, however, that all of our results except the com-
plexity results in Section 3.3 are rather independent of the
extension to sets of committees and, for instance, also hold
under lexicographic tie-breaking or other extensions such as
Fishburn’s extension (Fishburn 1972), Gärdenfors’ extension
(Gärdenfors 1976) or the leximax extension (Jimeno, Pérez,
and Garcı́a 2009).

Now, an ABC voting rule f satisfies participation if
f(A−i, k) ̸≻i f(A, k) for all profiles A, voters i ∈ NA,
and committee sizes k ∈ {1, . . . ,m − 1}. Put differently,
participation ensures that voters can never benefit by abstain-
ing. To further strengthen the axiom, we say that a group of
voters I ⊊ NA benefits from abstaining for a profile A and
committee size k if f(A−I , k) ≿i f(A, k) for all i ∈ I and
f(A−I , k) ≻i f(A, k) for some i ∈ I . Then, an ABC voting
rule f satisfies group participation if it is never possible for
a group of voters to benefit by abstaining.
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3 Results
We are now ready to formulate our results. In Section 3.1, we
will show that ABC scoring rules satisfy group participation
and that most sequential ABC voting rules fail participation.
In Section 3.2, we thus explore two axiomatic escape routes to
the impossibility for sequential rules. Finally, in Section 3.3,
we show for our considered sequential ABC voting rules that
it is NP-hard to decide for a voter whether she benefits by
abstaining. Due to space restrictions, we defer all proofs not
discussed here to the full version (Bullinger et al. 2023).

3.1 Participation for ABC Voting Rules
The goal of this section is to understand which ABC voting
rules satisfy participation. To this end, we first show that all
ABC scoring rules even satisfy group participation.

Theorem 1. Every ABC scoring rule satisfies group partici-
pation.

Proof. Let f be an ABC scoring rule and let s denote its scor-
ing function. We assume for contradiction that there is a pro-
file A, a committee size k, and a group of voters I ⊊ NA that
benefits from abstaining, i.e., f(A−I , k) ≿i f(A, k) for all
i ∈ I and f(A−I , k) ≻i∗ f(A, k) for some i∗ ∈ I . Next, we
proceed with a case distinction with respect to f(A−I , k) and
first consider the case that there is W ∈ f(A−I , k) \ f(A, k).
By definition of Kelly’s extension, this means that |W∩Ai| ≥
|W ′ ∩Ai| for all W ′ ∈ f(A, k) and i ∈ I . Using the defini-
tion of ABC scoring rules, it hence follows that

∑
i∈I s(|Ai∩

W |, |Ai|) ≥
∑

i∈I s(|Ai ∩ W ′|, |Ai|). On the other hand,
it holds that ŝ(A,W ′) > ŝ(A,W ) since W ′ ∈ f(A, k)
and W ̸∈ f(A, k). Combining these facts then implies
that ŝ(A−I ,W ) = ŝ(A,W ) −

∑
i∈I s(|Ai ∩ W |, |Ai|) <

ŝ(A,W ′)−
∑

i∈I s(|Ai ∩W ′|, |Ai|) = ŝ(A−I ,W
′), which

contradicts that W ∈ f(A−I , k). As the second case, we
suppose that f(A−I , k) ⊊ f(A, k) and let W ∈ f(A−I , k),
W ′ ∈ f(A, k) \ f(A−I , k). Using Kelly’s extension, we
infer again that |W ∩ Ai| ≥ |W ′ ∩ Ai| for all i ∈ I , so∑

i∈I s(|Ai ∩W |, |Ai|) ≥
∑

i∈I s(|Ai ∩W ′|, |Ai|). More-
over, ŝ(A,W ) = ŝ(A,W ′) because W,W ′ ∈ f(A, k). We
conclude that ŝ(A−I ,W ) ≤ ŝ(A−I ,W

′), which contradicts
our assumption because W ∈ f(A−I , k) is then only pos-
sible if W ′ ∈ f(A−I , k). Since we have a contradiction in
both cases, f satisfies group participation.

Next, we turn to sequential ABC voting rules. As dis-
cussed before, for some of these rules (e.g., seqPAV,
seqPhragmén, and MES), earlier results in the literature
imply that they fail participation (Janson 2016; Lackner and
Skowron 2023, Prop. A.3). We will next show that the in-
compatibility is much more far-reaching as essentially all
sequential rules other than AV fail participation. In more de-
tail, we introduce three mild axioms for query functions and
prove that every sequential query rule whose query function
satisfies these conditions fails participation.

Continuity. Continuity has been introduced by Young
(1975) for single-winner voting rules and requires that large
groups of voters can enforce that some of their desired out-
comes are chosen. Formally, we say that a query function g

satisfies continuity if for all A,A′, k and S ∈ S(C), it holds
that g(λA + A′, k, S) ⊆ g(A, k, S) for every sufficiently
large λ ∈ N. The sum of approval profiles means that a copy
for each voter in each profile is present, and the multiplica-
tion by a non-negative integer λ that λ copies of each voter
are present.

Standardness. A condition that almost all commonly con-
sidered sequential ABC voting rules satisfy is that they typi-
cally choose the approval winner as first candidate. We for-
malize this as standardness: a query function g is standard if
g(A, k, ∅) = AV(A, 1).

Concurrence. While the previous two axioms are neces-
sary for Theorem 2, they do not capture its essence as AV and
other sequential rules satisfy continuity, standardness, and
participation. The crucial observation is that sequential query
rules only optimize the voter satisfaction myopically, which
causes a dependence on the history of previous choices. For
instance, consider the following profile with 4 ballots, let
k = 2, and suppose that candidate c is chosen first.

1× {a, b} 1× {b, c} 1× {a} 1× {c}

Essentially all commonly considered sequential ABC voting
rules but AVwill choose a and not b as next candidate because
the voter who approves b and c is already partially satisfied.
More generally, let S ∈ S(C) be a sequence of already
chosen candidates and consider a, b ∈ C with |NA(a)| ≥
|NA(b)| such that in each step of S the voters approving b are
at least as satisfied as the voters approving a. Concurrence
captures the idea that sequential rules prefer to choose a
over b in such a situation. To formalize this in a fashion that
encompasses all commonly considered sequential rules, we
add technical restrictions which weaken the axiom. In more
detail, we call a query function g concurring if the following
holds: Consider a profile A such that |Ai| ≤ 2 for all i ∈
NA and |NA(c)| = |NA(d)| ≤ n

k for all c, d ∈ C, and a
sequence of already chosen candidates (c1, . . . , cℓ) ∈ S(C).
Then, for all candidates c, d ∈ C \ {c1, . . . , cℓ} such that
|{i ∈ NA : Ai = {cj , d}}| ≥ |{i ∈ NA : Ai = {cj , c}}| for
all j ∈ {1, . . . , ℓ}, where one of these inequalities is strict,
it holds that d ̸∈ g(A, k, (c1, . . . , cℓ)). As we show next,
myopic efficiency (in the form of concurrence) is the main
culprit for the no-show paradox of sequential query rules.

Theorem 2. Every sequential query rule fails participation
if k ≥ 3 and its query function is standard, concurring, and
continuous. Even more, a voter can obtain only 1 approved
candidate when participating while obtaining k−1 approved
candidates when abstaining.

Proof. Let f denote a sequential query rule and suppose its
query function g is standard, concurring, and continuous.
Moreover, we let k ≥ 3 denote the target committee size
and set C = {a1, . . . , ar, b1, . . . , br} for r = k − 1. Next,
consider the following profile A: first, we add for every two el-
ement subset B ⊆ C except for {a1, b1} and {ar, br} a voter
who approves B; second, we add for each i ∈ {2, . . . , r} two
voters who approve {ai, b1} and for each j ∈ {2, . . . , r− 1}
two voters who approve {bj , ar}; third, we add a voter who

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9549



a1

a2

· · ·
ar−1

ar

b1

b2
· · ·

br−1

br

Figure 1: Visualization of the profile A for the proof of Theo-
rem 2. A black, orange, or blue edge between two alternatives
means that there is (are) exactly one, two, or three voter(s)
who approve(s) the connected candidates, respectively.

approves {b1, br} and a voter who approves {a1, ar}; finally,
we add voters who approve only a single candidate such that
all candidates have the same approval score. Moreover, if
k = 3, we add another candidate d before the last step that
shares three ballots {b, x} with each x ∈ C to ensure that
|NA(x)| ≤ n

k for all x ∈ C. This candidate will be ignored
from now on as it does not affect our analysis. Figure 1 vi-
sualizes this profile by depicting ballots of size 2 as edges.

We next determine the winning committees for A and first
note that g(A, k, ∅) = C by standardness. Hence, (a1) is
a valid sequence. Our first goal is to show that all ways of
extending (a1) lead to the committee {a1, b1, . . . , br}. First,
concurrence implies that g(A, (a1)) = {b1}, as all other
candidates share some ballot with a1. Hence, the only valid
continuation is (a1, b1). We next suppose inductively that
(a1, b1, . . . , bℓ−1) is a valid sequence with ℓ < r. We now
check the requirements for concurrence and consider to this
end the candidate bℓ. First, we note that there is one voter who
reports {bℓ, x} for each alternative x ∈ {a1, b1, . . . , bℓ−1}.
By contrast, for each candidate ai with i ≥ 2, there
is at least one voter who reports {ai, x} for each x ∈
{a1, b2, . . . , bℓ−1} and three voters who report {b1, ai}. So,
concurrence implies that ai ̸∈ g(A, k, (a1, b1, . . . , bℓ−1)).
Similarly, we can check that br is not in this set because two
voters report {b1, br} but only a single voter reports {b1, bℓ}.
Hence, g(A, k, (a1, b1, . . . , bℓ−1)) ⊆ {bℓ, . . . , br−1} and
due to the symmetry of these candidates in A, we can sup-
pose that bℓ ∈ g(A, k, (a1, b1, . . . , bℓ−1)). For the final step,
we need to compare br with ai with i > 1. Since b1 only
shares two ballots with br and three with each candidate ai
for i ≥ 2, and each other candidate x ∈ {a1, b2, . . . , br−1}
shares one ballot with br and at least one ballot with ai,
concurrence necessitates g(A, (a1, b1, . . . , br−1)) = {br}.
Finally, we conclude that {a1, b1, . . . , bk} is the only chosen
committee of size k when electing a1 in the first round. More-
over, an analogous argument shows that g can only extend
the sequence (br) to the committee {br, a1, . . . , ar}.

As the next step, we let A′ denote a profile which consists
of four voters who report {a1, . . . , ar}, {b1, . . . , br}, {a1},
and {br} respectively. Furthermore, let A∗ = λA + A′ for
some λ ∈ N. By standardness, we obtain that g(A∗, ∅) =
{a1, br} regardless of the choice of λ. Next, by continuity,
we can choose λ large enough such that g(A∗, s) ⊆ g(A, s)
for all sequences s ∈ S(C). By combining this with our
previous analysis, it is now easy to infer that f(A∗, k) =
{{a1, b1, . . . , br}, {br, a1, . . . , ar}}.

Finally, to show that f fails participation, we consider
the profile A∗

−i where the voter i with ballot {a1, . . . , ar}
abstains. By standardness, it follows that g(A∗

−i, ∅) = {br}.
Furthermore, for large enough λ, we get again that g(λA+
A′

−i, k, s) ⊆ g(A, k, s) for all s ∈ S(C). This means that
f(A∗

−i, k) = {{br, ar, . . . , a1}}, so voter i can benefit by
abstaining and f fails participation.

As a corollary of Theorem 2, it follows immediately that
seqPhragmén, MES, and all sequential Thiele rules but AV
fail participation because the query functions of these rules
satisfy all conditions of Theorem 2.

Corollary 1. Every sequential Thiele rule except AV, as well
as seqPhragmén and MES fail participation.

Remark 1. The axioms of Theorem 2 are independent. All
Thiele rules but AV satisfy all properties but standardness and
AV only violates concurrence. Moreover, if we adapt AV to
break ties whenever concurrence requires it, the resulting rule
only fails continuity. By contrast, Theorem 2 turns into a pos-
sibility if k ≤ 2 or if requiring that a voter needs to approve
all of the elected candidates after abstaining as sequential
Thiele rules then satisfy participation.

Remark 2. We note that the proof of Theorem 2 can be
adapted to show that also reverse sequential ABC voting
rules, which start with a full committee and then iteratively
delete candidates, and sequential Thiele rules with increasing
marginal contribution fail participation. While such rules
are only rarely considered in the literature, this shows that
Theorem 2 is rather robust. Moreover, Example 7 by Sánchez-
Fernández and Fisteus (2019) entails that also the optimizing
variants of seqPhragmén fail participation.

By contrast, there are sequential rules other than AV that
satisfy participation. In particular, Dong and Lederer (2024)
introduce the class of ballot size weighted approval voting
(BSWAV) rules. Since these rules are ABC scoring rules, they
satisfy group participation by Theorem 1. However, all these
rules coincide with their sequential version, thus giving a
class of sequential ABC voting rules that satisfy participation.
Notably, the proof of Theorem 2 can be modified to show that
every sequential ABC scoring rule that satisfies participation
and s(x, y) > 0 for all x, y > 0 belongs to this class.

3.2 Axiomatic Escape Routes to Theorem 2
We next consider two escape routes to Theorem 2: we first
show that at least voters who do not approve any of the
elected candidates cannot benefit by abstaining for most se-
quential ABC voting rules, and then that these rules satisfy
participation on the important special case of laminar profiles.
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Unrepresented Voters. The proof of Theorem 2 shows
that voters who only approve a single elected candidate can
significantly gain by abstaining and it is easy to extend this
result to voters who approve more than one elected candidate.
Hence, the only open case is whether voters who approve
none of the elected candidates can benefit by abstaining. In
analogy to the notion of strategyproofness for unrepresented
voters by Delemazure et al. (2023), we thus require that a
voter who approves none of the elected candidates cannot
benefit by abstaining. More formally, we say an ABC vot-
ing rule f satisfies participation for unrepresented voters if
f(A−i, k) ̸≻i f(A, k) for all approval profiles A, committee
sizes k, and voters i ∈ NA for which there is a committee
W ∈ f(A, k) with W ∩Ai = ∅. As we show next, all sequen-
tial Thiele rules and seqPhragmén satisfy this condition,
whereas MES even fails this minimal notion of participation.
We note that these results complement Theorem 2 by show-
ing that the violation of participation observed in this result is
maximal and, moreover, strengthen insights by Lackner and
Skowron (2023, Prop. A.3) on a mild monotonicity axiom.

Proposition 1. Sequential Thiele rules and seqPhragmén
satisfy participation for unrepresented voters. MES violates
participation for unrepresented voters.

Proof sketch. The key insight why seqPhragmén and se-
quential Thiele rules satisfy participation for unrepresented
voters is that an abstaining voter who does not approve any of
the elected candidates cannot affect the picking sequence of
the candidates. Indeed, the scores of her approved candidates
are always too low to be picked and the voter only further
reduces these scores by abstaining. By contrast, for MES, we
construct a counterexample by using that an abstaining voter
influences the budgets of other voters.

Laminar Profiles. As our second escape route to Theo-
rem 2, we consider the effect of restricting the domain of
feasible profiles. In particular, we will show that sequen-
tial Thiele rules, seqPhragmén, and MES satisfy participa-
tion on laminar profiles. To this end, we say that a profile
A is laminar if for all candidates c, d ∈ C, it holds that
NA(c) ⊆ NA(d), NA(d) ⊆ NA(c), or NA(c) ∩NA(d) = ∅.
These profiles have been introduced by Peters and Skowron
(2020) who additionally require size constraints on the sets
NA(c) which make no sense in our context. Laminar pro-
files generalize the concept of party-list profiles (e.g., Brill,
Laslier, and Skowron 2018; Botan 2021) and thus constitute
an important special case of approval profiles.

Proposition 2. Sequential Thiele rules, seqPhragmén,
and MES satisfy participation on laminar profiles.

Proof Sketch. The central idea for this proposition is that
for laminar profiles A, the sets NA(c) can be represented
by a forest F on the candidates where c is a child of d if
NA(c) ⊆ NA(d). For all considered rules, it then follows
that it is always valid to add a candidate to the winning
committee before any of her children. This structure on the
picking order can be used to show that a voter cannot increase
the number of her approved candidates by abstaining as the
picking order imposed by the profile does not change.

3.3 Hardness of Abstention
In this section, we investigate the following decision problem:
given an election instance and a voter, can this voter benefit
by abstaining from the election when a specific rule (e.g.,
MES or seqPAV) is used. This offers yet another perspective
on Theorem 2: while many sequential rules fail participation,
it can still be the case that the voters—even when knowing the
preferences of all other participants—are unlikely to be able
to efficiently decide whether they can benefit from abstention.

The general proof idea for our reductions is as follows:
the reduced instances consist of a part of the election mim-
icking an NP-hard problem together with a gadget that is
a small election where it is beneficial to abstain for a voter.
The elections then consist of essentially two stages. First, we
select candidates associated with a proposed solution to the
NP-hard source problem, e.g., a set of vertices of a given
target size. Then, certain gadget candidates are selected. If
the proposed solution to the NP-hard problem is not of the
desired form, e.g., if the vertex set is not an independent
set, then the selection of gadget candidates cannot be influ-
enced by abstention. However, if the source instance is a
Yes-instance, then some voter approving gadget candidates
can benefit from abstention.

As a first result in this section, we find that participa-
tion leads to a computational intractability for sequential
Thiele rules. The proof is inspired by Janeczko and Fal-
iszewski (2023). We showcase the proof and the general
proof technique of this section by considering the special
case of seqPAV.
Theorem 3. For every sequential Thiele rule except AV,
it is NP-hard to decide whether a voter can benefit from
abstention.

Proof sketch for seqPAV. We perform a reduction from IN-
DEPENDENTSET for cubic graphs (Garey and Johnson 1979).
Given an instance (G, t) of INDEPENDENTSET, where G =
(V,E) is a cubic graph and t ∈ N is the target size of the
independent set, we construct the following reduced instance.
Without loss of generality, we assume that we only consider
instances where |V | ≥ 3, |E| > 0, |V |3 is divisible by 8, and
t is divisible by 2. Since the independent set needs to be of
size t and the graph is cubic, we assume |E| ≥ 3t.

The set of candidates is C = {gi : i ∈ {1, . . . , 4}} ∪
CV , where CV = {cv : v ∈ V }. The candidates gi, called
gadget candidates, form a gadget in which abstention might
be performed and candidates cv, called vertex candidates,
represent vertices v of the source instance.

Let x = |V | and y = 1
2

(
x4 − tx

3

2 + x3

4

)
. This is an inte-

ger by assumption. The approval profile is given as follows:

• For each vertex v ∈ V , there exist x3 voters approving
{cv}. For each pair of vertices {v, w} ⊆ V , there exist x3

voters with approval set {cv, cw}. For each edge {v, w} ∈
E, there exists one voter with approval set {cv, cw, g1}.

• Moreover, there are voters approving only the gadget can-
didates. These are y voters for each of the approval sets
{g1, g2}, {g1, g3}, {g2, g4}, {g3, g4}, |E| − 3

2 t ∈ N>0

voters approving {g2} (recall that t is divisible by 2,
|E| > 0, and |E| ≥ 3t), and one voter approving {g1}.
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As usual, A denotes the approval profile. The target com-
mittee size is k = x+ 3. Eventually, we will select all candi-
dates in CV as well as 3 gadget candidates. We claim that a
voter with approval set {g1, g3} can benefit from abstention
if and only if the source instance is a Yes-instance.

We qualitatively describe the election by seqPAV in the
reduced instance. Initially, the score of vertex candidates is
larger than the score of gadget candidates. By design of the
scores, the first t candidates to be selected are vertex candi-
dates. Now, the marginal gain to the score by gadget candi-
dates overtakes the gain by vertex candidates, and we select
two gadget candidates. The reduced instance is designed in a
way such that without abstention, g1 always has the highest
score among gadget candidates and is selected first. Then, the
candidate g4 is selected. Afterwards, the committee is filled
with the remaining vertex candidates and then a third gadget
candidate. Since g2 contributes more than g3, we select g2 as
the final candidate in the committee. Together, the choice set
contains exactly the committee CV ∪ {g1, g2, g4}.

If, however, a voter with approval set {g1, g3} abstains
from the election, the election is similar but the committee
CV ∪ {g1, g2, g3} may be selected additionally if the source
instance was a Yes-instance.

In summary, if the source instance is a No-instance, then
the choice set is identical after abstention, and there is no
incentive to abstain. Otherwise, the choice set additionally
contains CV ∪ {g1, g2, g3} and is preferred by a voter with
approval set {g1, g3} (due to Kelly’s extension).

As a next result, we want to consider the method of equal
shares. Importantly, an execution of MES may heavily rely on
the completion method applied in Phase 2. We thus provide
a reduction where a voter benefits from abstention both after
Phase 1 and Phase 2 of MES. The same reduction also yields
a result for seqPhragmén.

Theorem 4. Consider voting by MES. Then,

1. it is NP-hard to decide whether a voter can benefit from
abstention after Phase 1.

2. it is NP-hard to decide whether a voter can benefit from
abstention after Phase 2, even if none of her approved
candidates are elected in Phase 2.

Moreover, for seqPhragmén, it is NP-hard to decide
whether a voter can benefit from abstention.

The proofs of our hardness results are quite universal and
allow for a number of interesting consequences. First, if we
omit the abstaining voter from the reduced instance, then
there is exactly one possibly selected committee if the source
instance is a No-instance, and two possible committees if
the source instance is a Yes-instance. Hence, we recover the
hardness of deciding whether the election contains more than
one possible committee (Janeczko and Faliszewski 2023).

Second, it is interesting to see why we formulate our theo-
rems as NP-hardness, but not NP-completeness, i.e., we do
not know whether membership in NP holds. In fact, it is un-
clear whether this actually is true. In particular, we cannot use
the outcomes of elections as polynomial-size certificates for
verifying whether a voter benefits from abstention because
we cannot check this in polynomial time.

Corollary 2. For every sequential Thiele rule except AV, as
well as for Phase 1 or complete MES, and seqPhragmén,
the following statements are true.
1. Given a set of committees C, it is coNP-complete to decide

whether C is the outcome of the election.
2. Given a positive integer s, it is NP-complete to decide

whether a given voter approves at least s candidates in
some winning committee.

Finally, our reductions give novel insights into the robust-
ness of sequential ABC voting rules. Faliszewski, Gawron,
and Kusek (2022) consider the question whether the out-
come of an election can change if a given number of ap-
provals of candidates can be added or removed. They find
that this problem is NP-hard for seqCCAV, seqPAV, and
seqPhragmén. However, they operate in a setting, where
the election of a single committee is enforced by lexico-
graphic tie-breaking and they need an unbounded budget of
approvals to be added or deleted (but of linear magnitude
with respect to the size of the source instance). As a third
corollary from our reductions, we complement their results in
the set-valued setting and obtain hardness even if we only add
or delete a single approval. The result holds because for a tied
second committee, only the approval of g1 by the abstaining
voter is relevant. So, if the source instance is a Yes-instance,
then this approval can be added or deleted to create or pre-
vent a second outcome of the election. The reductions can be
modified so that the addition or deletion of other candidates
does not matter for its outcome.
Corollary 3. For every sequential Thiele rule except AV, as
well as for Phase 1 or complete MES, and seqPhragmén,
it is NP-complete to decide if the outcome of the election can
change if a single approval is added or deleted.

4 Conclusion
In this paper, we initiate the study of participation for ABC
voting rules. This axiom states that it can never be beneficial
for voters to abstain and thus describes an incentive for ac-
tive participation in elections. In more detail, we prove that
all ABC scoring rules even satisfy group participation, thus
generalizing a prominent phenomenon from single-winner
voting to ABC elections. Moreover, we give a strong impossi-
bility theorem demonstrating that most sequential rules (e.g.,
all sequential Thiele rules but AV, sequential Phragmén, and
the method of equal shares) severely fail participation.

In light of this strong negative result for sequential rules,
we then explore various escape routes. In particular, we show
that sequential Thiele rules and sequential Phragmén satisfy
participation for voters who do not approve any candidate in
the winning committee as well as participation on laminar
profiles. These results demonstrate that sequential rules sat-
isfy participation at least in important special cases. Finally,
we also show that for all commonly studied sequential ABC
voting rules, it is NP-hard to decide for a voter whether she
can benefit by abstaining. This indicates that, while voters
can in general benefit by abstaining, they may not be able to
recognize this. Our approach for deriving these results is very
universal and allows us to recover, strengthen, and extend
existing hardness results.
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