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Abstract

I We develop a model of content filtering as a game between
the filter and the content consumer, where the latter incurs
information costs for examining the content. Motivating ex-
amples include censoring misinformation, spam/phish filter-
ing, and recommender systems acting on a stream of con-
tent. When the attacker is exogenous, we show that improv-
ing the filter’s quality is weakly Pareto improving, but has no
impact on equilibrium payoffs until the filter becomes suffi-
ciently accurate. Further, if the filter does not internalize the
consumer’s information costs, its lack of commitment power
may render it useless and lead to inefficient outcomes. When
the attacker is also strategic, improvements in filter quality
may decrease equilibrium payoffs.

1 Introduction
Content filtering is a crucial and widely-applied tool for im-
proving the experience of information consumers. Email fil-
ters automatically sort normal, malicious and spam mes-
sages, increasing security and saving users from manually
sorting mail (Gangavarapu, Jaidhar, and Chanduka 2020;
Chae et al. 2017; Bhowmick and Hazarika 2018). Informa-
tion aggregators and social media platforms have deployed
content filters that censor non-credible and potentially de-
ceptive claims (Aldwairi and Alwahedi 2018; Kumar and
Geethakumari 2014). Recommender systems learn con-
sumers’ preferences to save them from having to sift through
unwanted content (Bagher, Hassanpour, and Mashayekhi
2017; Wei, Moreau, and Jennings 2003; Bergemann and Oz-
men 2006).1Despite major efforts to improve content filters,
information consumers remain susceptible to malicious or
illegitimate content, e.g., they click on phishing messages
(Blythe, Petrie, and Clark 2011; Benenson, Gassmann, and
Landwirth 2017) and fall victim to misinformation (Roozen-
beek et al. 2020; Pennycook and Rand 2019).

Consumers can take measures to avoid the malicious con-
tent. For example, a recipient of a suspicious email could

*All proofs are in the full version, at arXiv:2205.14060.
JG and IB were affiliated with Microsoft during this research.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

examine the email more carefully, do a quick web search for
known malicious patterns, ask an acquaintance’s opinion, or
even attempt to reach the purported sender by other means.
A social media user could carefully check the argumenta-
tion in a given post, or consult reputable sources. However,
such measures incur substantial costs in time, effort and at-
tention. In particular, the literature on “attention economy”
documents that attention in the digital sphere is a scarce re-
source (Hendricks and Vestergaard 2019). We will refer to
these costs as information costs2.

Due to information costs, consumers tend to strategically
alter their behavior in response to the (perceived) filter qual-
ity. When consumers perceive that a filter is poor, either al-
lowing too much malicious content or censoring too much,
they abandon the platform (a risk acknowledged by major
platforms for email, social media and news (D’Onfro 2018)).
When the filter is exceptional, consumers take content at
face value (Sterrett et al. 2019). In the “middle ground,” the
filter is imperfect and consumers choose whether/how to ex-
amine the content to determine its quality.3

The considerable investment in improving content filters
and consumers’ strategic allocation of scarce attention mo-
tivates three salient questions:
(Q1) Can the benefits of an increase in filter quality be
crowded out by reduced consumer attention in response to
the increase in filter quality?
(Q2) If the filter’s payoffs do not depend on the consumer’s
information costs, what inefficiencies (i.e. sub-optimal equi-
libria) arise and how can they be abated?
(Q3) How does the interaction between the filter and con-
sumer change when the attacker strategically crafts its attack
in anticipation of this interaction? How does this affect the
cost-benefit tradeoff for improving the filter quality?

To answer these questions, we model content filtering as

1Our model is most relevant to recommender systems that pro-
cess a stream of items such as new event announcements: e.g., new
concerts for a music app, or new properties for a real estate app.

2An alternative term, attention costs, is also well-established.
3An ironic example: a conference serves as a filter for academic

publications, and its reputation (i.e., perceived filter quality) is of-
ten used to evaluate the merit of a scientific claim (Sangster 2015).
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a game between a filter and an information consumer. The
filter receives a batch of content, wherein each piece is ei-
ther legitimate or malicious with some exogenously speci-
fied probability. For each piece of content, the filter receives
a signal regarding its legitimacy, and either blocks it or for-
wards it to the consumer. In the latter case, the consumer
exerts costly effort to examine the content and then decides
whether to accept or ignore it. Both players benefit when the
consumer accepts legitimate content, and incur a cost when
it does not consume legitimate content or consumes mali-
cious content. In an extension, an endogenous attacker sets
the mean amount of the malicious content (attack propen-
sity) to maximize the expected amount of malicious content
the consumer ultimately accepts.

The key novelty is that the consumer strategically chooses
the fidelity of its signal and incurs the corresponding infor-
mation cost. This represents strategic information acquisi-
tions where consumers optimally trade off the physical and
cognitive costs of obtaining higher fidelity signals with the
benefit associated with the higher fidelity information. We
adopt rational inattention (Sims 2003), a standard model
for consumer’s information cost. Specifically, cost is pro-
portional to the expected drop in entropy between the con-
sumer’s prior and posterior.4 The filter may internalize these
costs, aiming to maximize consumers’ welfare.5 We also
consider a variant in which the filter does not internalize the
information costs, e.g., when it only cares about detection
rates, which may be the case when platforms compete in per-
formance benchmarks. We call these variants, resp., aligned
utilities and semi-aligned utilities.

With this model, we answer our questions as follows:
(A1) With an exogenous attacker and aligned utilities, in-
creasing filter quality is Pareto-improving, but only weakly
(Theorem 4.2). There is a “barrier to entry”: equilibrium out-
comes improve only when the filter is accurate enough.
(A2) A new inefficiency arises when we switch to semi-
aligned utilities. Since the filter does not internalize the con-
sumer’s information cost, the filter is biased toward forward-
ing more content. It may not be credible for the filter to block
any content, thus introducing a Pareto inefficiency (Theorem
5.1). However, this inefficiency vanishes once the filter is
sufficiently accurate (Theorem 5.2), upon which further in-
creases to filter quality are Pareto improving (Theorem 5.3).
(A3) With a strategic attacker, there are two surprising con-
sequences: the consumer does not examine any content in
any equilibrium (Theorem 6.1), and improving the filter can
make both the filter and the consumer worse off (Theorem

4Despite alternatives (Milgrom and Weber 1982; Vives 1984;
Zhong 2022; Pomatto, Strack, and Tamuz 2023; Caplin, Dean, and
Leahy 2022; Gabaix 2019), rational inattention is widely adopted
as a standard model for information costs (Martin 2017; Bertoli,
Moraga, and Guichard 2020; Ravid 2020; Maćkowiak and Wieder-
holt 2015; Jiang, Fosgerau, and Lo 2020; Acharya and Wee 2020;
Dasgupta and Mondria 2018), in the absence of further behavioral
evidence or assumptions (Caplin 2016).

5Maximizing users’ welfare is a common modeling choice and
a reasonable proxy for many online platforms that indirectly profit
from user engagement, e.g., via advertising.

6.2). The attacker raises its attack propensity, and this out-
weighs the direct benefit of a more accurate filter.

The main practical implication of our results is that rote
marginal improvements in filter quality are not unambigu-
ously beneficial. These improvements should either be large
enough, or be coupled with other interventions (such as
training to decrease information costs), to avoid a damaging
reduction in consumer attention.

Conceptually, we identify strategic interaction between
content filters and information consumers as a relevant as-
pect of content filtering. In contrast, prior game-theoretic
work on content filtering studies games between filters and
attackers (e.g., Lu and Niu 2015; Laszka, Lou, and Vorob-
eychik 2016), between filters and a mediator (Ben-Porat
and Tennenholtz 2018), or between consumers (Acemoglu,
Ozdaglar, and Siderius 2021). Adversarial machine learning
(Vorobeychik and Kantarcioglu 2018; Joseph et al. 2019)
studies attacks on machine learning algorithms (such as
content filters). In all this work, consumers naively follow
the filter’s recommendations. We show that filter-consumer
strategic interaction is not captured by attacker-filter games.

While our model may appear similar to models in infor-
mation design (Kamenica 2019; Candogan and Drakopoulos
2020), and especially information design with rational inat-
tention (Matyskova and Montes 2023), these models are fun-
damentally different: senders can design arbitrary Blackwell
(Blackwell 1951) experiments that generate the receiver’s
signal. In our model, the filter chooses an action that has
a direct impact on utility as well as consumer beliefs. This
coupling between actions and consumer beliefs is what sets
our model apart from those of information design and yields
new results.

Our model is similar to (Papanastasiou 2020, P2020 for
short) in that they both consider binary environments where
a filter and consumers inspect content before choosing an ac-
tion. However, because consumers in our model choose their
signal quality and the filter’s signal is noisy (unlike that in
P2020), we examine the utility and behavioral impacts in
changing filter quality, which is absent in P2020. Addition-
ally, we extend the environment and consider an endogenous
attacker, another feature not included in P2020.

2 Our Model and Preliminaries
We consider the content-filtering game: a game between two
strategic players, an info filter and an info consumer that
make decisions about content’s legitimacy. We call them the
filter and the consumer, and denote the resp. notation with
subscripts f and c. The game’s protocol is as follows:
1. The filter receives a batch of content (e.g., a day’s worth
of news). The batch consists of malicious content that arrives
at a Poisson rate of ρ0 and legitimate content that arrives at
a Poisson rate of ρ1, per unit time interval. Both rates are
common knowledge. W.l.o.g., we normalize ρ1 = 1.

Each piece of content in the batch is identified with a bi-
nary random variable X , where X = 0 means “malicious”
and X = 1 means “legitimate.” We define

q := Pr[X = 0] = ρ0/(ρ0 + 1).
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2. Each piece of content X ∈ {0, 1} is processed by
the filter as follows. The filter receives a private signal
Ψf ∈ {0, 1} about the content type, representing the out-
put of a classifier so that Ψf = 0 means “likely malicious”
and Ψf = 1 means “likely legitimate”. The signal is drawn
independently from a known conditional distribution given
X . Denote the resp. true and false positive rates as

πx = Pr [Ψf = 0 | X = x ] , x ∈ {0, 1}. (1)

W.l.o.g. assume π0 ≥ π1 (since the filter is free to choose its
action conditional on its signal). After receiving the signal,
the filter chooses its action af ∈ {0, 1}: whether to block the
content (af = 0) or to forward it to the consumer (af = 1).
3. Each piece of forwarded content is processed by the con-
sumer as follows. The consumer chooses how to examine
the content. Formally, the consumer controls the distribution
of a signal Ψc ∈ {0, 1}, where Ψc = 0 means “likely ma-
licious” and Ψc = 1 means “likely legitimate”. The signal
is drawn independently from some conditional distribution
given X , characterized by

π̃x = Pr [Ψc = 0 | X = x ] , x ∈ {0, 1}. (2)

These probabilities are chosen by the consumer in advance,
at the (information) cost specified below. Then, the con-
sumer chooses its action ac ∈ {0, 1}: whether to accept the
content as legitimate (ac = 1) or to ignore it (ac = 0).

Strategies. The filter and the consumer have pure action
strategies sf, sc : {0, 1} → {0, 1} so that af = sf(Ψf)
and ac = sc(Ψc). The consumer also chooses probabili-
ties µ = ( π̃0, π̃1 ) from Eq. (2), called its information strat-
egy. Thus, pure strategies are sf for the filter, and (sc, µ) for
the consumer. Both players choose their (mixed) strategies
before the game starts, and those strategies are applied to
the entire batch. (This is justified because the pieces of con-
tent are ex-ante equivalent.) We posit that the filter and the
consumer choose their (mixed) strategies simultaneously,
i.e., without observing one another.
Remark 2.1. When the filter and consumer have fully
aligned utilities (as defined below and discussed in Sec-
tions 4, 6), our results carry over to the variant where the
players choose their mixed strategies sequentially: the filter
moves first, and the consumer best-responds. This is because
our results focus on the socially optimal strategy profile (de-
fined in Section 4), which is the same in both variants.
Remark 2.2. One pure strategy for the consumer is to not
examine the content and incur no info cost.

Notation. A generic mixed strategy profile is denoted σ. The
players’ mixed action strategies are, resp., σf and σc.

We label three filter pure strategies: the blocking strategy
sblk which always blocks the content: sblk(·) ≡ 0, the for-
warding strategy sfwd which always forwards the content:
sfwd(·) ≡ 1, and the differentiating strategy sdif which dif-
ferentiates between the signals: sdif(ψ) ≡ ψ. We ignore the
“unreasonable strategy” in which the filter forwards “likely
malicious” content and blocks content that is “likely clean”
as it can never be part of a non-trivial equilibrium (see the
full version for technical details).

A strategy profile is called consumer-optimal if the con-
sumer best-responds to the filter’s strategy. Let the blocking
profile σblk, the forwarding profile σfwd, and the differenti-
ating profile σdif, be consumer-optimal strategy profiles in
which the filter’s pure strategy is, resp., sblk, sfwd, and sdif.

sf(1) = 0 sf(1) = 1

sf(0) = 0 blocking profile σblk different. profile σdif

sf(0) = 1 (sf is “unreasonable”) forwarding profile σfwd

Utilities. The consumer’s utility per piece of content is the
difference between the action payoff u(af · ac, X), deter-
mined by how the actions match the content type, and the
information cost for examining the content. We interpret the
product af · ac ∈ {0, 1} as an aggregate action: indeed, the
content is accepted if af · ac = 1, and ignored otherwise.
The consumer receives a reward when legitimate content is
accepted (af · ac = X = 1), and penalties if the content is
misclassified (af · ac ̸= X). We normalize action payoffs to
0 if malicious content is ignored (af · ac = X = 0). Thus,
action payoffs u(af ·ac, X) are summarized by a 2×2 table
below, with b, c1, c2 ≥ 0.

X = 0 X = 1
af · ac = 0 0 −c1
af · ac = 1 −c2 b

The information cost is the cost of obtaining signal Ψc

about content type X . It is proportional to how far the con-
sumer’s beliefs shift away from its prior, and only accrues
when the filter does not block content. More abstractly, we
define the information cost for obtaining some randomized
signal Ψ about some hidden stateX given some event E , de-
noted C [ Ψ;X | E ] and determined by the conditional joint
distribution of (Ψ, X) given E . We adopt the (widely ac-
cepted) definition from Sims (2003).

C [ Ψ;X | E ] = λ · I (Ψ;X | E ) , (3)

where I (Ψ;X | E ) ≥ 0 is the mutual information condi-
tional on the event E and λ > 0 is a known parameter. Thus,
the information cost for examining the content is defined
via (3) as C [ Ψc;X | af = 1 ]. Note that the cost indirectly
depends on filter’s mixed action strategy since information
costs are a function of the consumers prior upon receiving
content, which depends on the filter’s strategy.

The consumer’s expected payoff per a random piece of
content X under mixed strategy profile σ is therefore

vc(σ) = E [u(ac · af, X)− af · C [ Ψc;X | af = 1 ] ] ,

where the expectation is over X,Ψf,Ψc,σ. As a short-
hand, let u(σ) = E [u(ac · af, X) ] and C(σ) =
C [ Ψc;X | af = 1 ] be the corresponding expected action
payoff and information cost.

The consumer’s total expected utility over the batch is

Vc(σ) = (1 + ρ0) vc(σ) = vc(σ)/(1− q). (4)

where 1 + ρ0 represents the expected batch size.
To define the filter’s utility, we consider two variants.

The main variant (aligned utilities) is that the filter’s util-
ity equals the consumer’s. We also consider another variant
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(semi-aligned utilities) when the filter internalizes the action
costs but not the information costs. Let Vf(σ) be filter’s to-
tal expected utility under profile σ. Then Vf(σ) = Vc(σ) for
aligned utilities, and Vf(σ) = u(σ)/(1−q) for semi-aligned
utilities.

Value of Technological Change. We are particularly inter-
ested in how improving the technology impacts equilibrium
outcomes. Specifically, we consider improving the quality
of the filter, in terms of raising π0 and/or lowering π1.6 We
adopt Perfect Bayesian Equilibrium (PBE) as a solution con-
cept (Mas-Colell et al. 1995).

For concreteness, fix some equilibrium selection rule, f ,
(Matsui and Matsuyama 1995) and filter quality parameters,
π0 and π1. For each player i ∈ { f, c }, let V f

i (π0, π1) be
i’s equilibrium payoff under this rule. We are interested in
the difference in equilibrium payoffs between a high- and
low-quality filter:

V f
i (π′

0, π
′
1)− V f

i (π0, π1) : i ∈ { f, c } , (5)

where π′
0 ≥ π0 and π′

1 ≤ π1. We call (5) the value of techno-
logical change (VoTC). We say that VoTC is positive (resp.,
negative) if Eq. (5) is that way for both players, i.e., if im-
proving the filter Pareto-increases (resp., Pareto-decreases)
equilibrium payoffs.

Consider VoTC under infinitesimal filter improvement:

∂

∂π0
V f
i (π0, π1), −

∂

∂π1
V f
i (π0, π1) : i ∈ { f, c } , (6)

assuming the partial derivatives in (6) are well-defined. We
call (6) the Marginal Value of Technology (MVoT). The
MVoT specifies how much a rational filter would pay to im-
prove its quality. A zero (resp., negative) MVoT means the
filter would not pay anything (resp., would have to be paid).

3 Consumer Beliefs
This section presents a preliminary analysis of consumer be-
havior, which applies to both aligned and semi-aligned util-
ities, and serves as scaffolding for what follows.

An important quantity is the consumer’s belief that the
forwarded content is malicious, given that the filter’s mixed
action strategy is σf. We define this quantity as:

q(σf) := Pr [X = 0 | σf, af = 1 ] . (7)

Note that q(sfwd) is simply q := Pr[X = 0].
The following lemma shows that the consumer’s behavior

is uniquely determined by q(σf):
Lemma 3.1. Given any filter mixed strategy σf ̸= sblk the
consumer’s best response to σf is determined by q(σf).

As per Remark 2.2, the consumer can choose to not ex-
amine the content and incur no information costs. Below we
establish a regime where that is indeed optimal. Define:

1 > qH :=
exp(b/λ)− exp(−c1/λ)

exp(b/λ)− exp(−(c1 + c2)/λ)

> qL := qH · exp(−c2/λ) > 0. (8)
6Filter’s quality takes two numbers to describe.

Proposition 3.2. Let σ be a consumer-optimal mixed strat-
egy profile with filter’s mixed action strategy σf ̸= sblk.
Then C(σ) = 0 if and only if q(σf) ̸∈ (qL, qH). Furthermore,
if q(σf) ≤ qL the consumer’s optimal strategy is to accept
all content. If q(σf) > qH the consumer’s optimal strategy is
to ignore all content.

In words, if unblocked content is too likely to be mali-
cious (resp., legitimate) for a given σf, the consumer’s best-
response is to ignore (resp., accept) it without examination.
Remark 3.3. The quantities q(σf), qH, qL are meaningful
as per Proposition 3.2. They usefully encapsulate the nu-
merous parameters in our model, and are essential in our
subsequent results. Note that (7) is determined by the joint
distribution of X and the filter’s signal Ψf, whereas (8) is
determined by all parameters related to the costs.

We now derive the MVoT under some consumer-optimal
profiles in some parameter regimes. A key quantity here is

qdif := q(sdif) = Pr [X = 0 | sdif,Ψf = 1 ] < q, (9)

where the inequality follows because π0 ≥ π1.
Proposition 3.4. For i ∈ { f, c } and x ∈ {0, 1}:

(a) Zero MVoT. ∂
∂πx

Vi(σfwd) =
∂

∂πx
Vi(σblk) = 0.

If qdif > qH then ∂
∂πx

Vi(σdif) = 0.
(b) Constant MVoT. If qdif < qL then

∂

∂π0
Vi(σdif) =

q

1− q
c2 > 0

∂

∂π1
Vi(σdif) = −(c1 + b) < 0.

In words, there is no benefit to improving the filter if
the filter’s action does not depend on its signal, or the con-
sumer’s best response is simply to ignore all content. On the
other hand, if the consumer accepts the filter’s recommenda-
tion, then MVoT is constant. To fully characterize the MVoT,
subsequent analysis will focus on deriving the MVoT when
qL < q(σ) < qH and establishing which profile constitutes
an equilibrium.

4 Aligned Utilities (Vf = Vc)
In this section, we consider aligned utilities. Let V := Vf =
Vc. We focus on socially optimal profiles (ones that maxi-
mize V ), noting that any such profile is an equilibrium. Let
V ∗ = V f

i (π0, π1), where f chooses the equilibrium that
maximizes V among all equilibria. Our first result is that V ∗

has a simple characterization in terms of two pure profiles
defined in Section 2, the differentiating profile σdif and for-
warding profile σfwd:
Proposition 4.1. V ∗ = max (V (σdif), V (σfwd) ).

While it is straightforward to algebraically demonstrate
which of these two profiles are the best among the pure
strategy profiles, it is more difficult to prove that there is
no benefit from the filter using a mixed strategy. Indeed, in
our game the payoffs at a mixed equilibrium are not (neces-
sarily) linear in the mixing probabilities, because the latter
enter non-linearly in the information costs. Consequently, it
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is no longer trivially guaranteed that some pure strategy pro-
file is socially optimal.

The main result here fully characterizes the marginal
value of technological change (MVoT) in terms of V ∗.
Theorem 4.2.
(a) Zero MVoT. Suppose qdif > qH or V (σdif) < V (σfwd).

Then ∂V ∗/∂π0 = ∂V ∗/∂π1 = 0.
(b) Constant MVoT. If qdif < qL and V (σdif) > V (σfwd),

∂V ∗

∂π0
=

q

1− q
c2 > 0 and

∂V ∗

∂π1
= −(c1 + b) < 0.

(c) Non-constant MVoT. Suppose qdif ∈ (qL, qH) and
V (σdif) > V (σfwd). Then

∂V ∗

∂π0
=

q

1− q
λ · log

(
qH
qdif

)
> 0 (10)

∂V ∗

∂π1
= λ · log

(
1− qH
1− qdif

)
< 0.

The main insight of Theorem 4.2 is that MVoT is weakly
but not strictly positive. That is, when incentives are aligned,
improving the filter quality can never hurt the players,
though in some cases it may have no impact. Moreover, we
fully characterize MVoT behavior based on how qdif com-
pares with (qL, qH), and whether V (σdif) < V (σfwd). This is
summarized in the table below. (In this table, VoTC is posi-
tive in both cells in which it is not zero.)

qdif < qL qdif ∈ (qL, qH) qdif > qH

V ∗(σdif) >
V ∗(σfwd) Constant Non-linear Zero

V ∗(σdif) <
V ∗(σfwd) Zero VoTC

We have two barriers to entry in filter technology. First,
recall that we have zero MVoT when qdif > qH, and note that
the filter quality is higher for lower values of qdif. Therefore,
the filter must be of sufficiently high quality for improve-
ments to make a difference.

Second, if V (σfwd) > V (σdif) then improving the fil-
ter does not help, either. In particular, the forwarding pro-
file σfwd is now socially optimal, and so the filter is better
off forwarding all content regardless of its signal. The next
proposition shows that there exists parameter regimes where
the socially optimal equilibrium is one in which the MVoT is
0. To this end, we characterize this regime precisely in terms
of the model fundamentals.
Proposition 4.3. Let DKL ( p ∥ q ) be the Kullback-Leibler
divergence between Bernoulli distributions with success
probabilities p and q. Then V (σdif) ≥ V (σfwd) if and only
if one of the following conditions hold:

(a) q ≥ qH,
(b) qL < qdif < q < qH and

△U > λ [DKL ( q ∥ qL )− β ·DKL ( qdif ∥ qL ) ] ,

(c) qdif ≤ qL < q < qH and △U > λ ·DKL ( q ∥ qL ),
(d) qdif < q ≤ qL < qH and △U > 0,

where we used the following shorthand

△U := E [u ( sdif(Ψf), X ) ]− E [u ( sfwd(Ψf), X ) ] ,

for the expected increase in action payoffs with an always-
accepting consumer when the filter’s strategy switches from
sfwd to sdif; and β := Pr [ af = 1 | sf = sdif ] is the ex ante
probability that a differentiating filter forwards the content.7

It is straighforward to show that both barriers are cleared
once the filter quality is high enough:
Corollary 4.4. There exist thresholds π′

0 < 1 and π′
1 > 0

such that qdif < qH and V (σdif) > V (σfwd) for any π0 >
π′
0 and π1 < π′

1.
Finally, Proposition 4.3 implies that the non-linear VoTC

regime from Theorem 4.2 is feasible. Indeed, this regime
corresponds to case (b) of the proposition.

5 Semi-Aligned Utilities (Vf = u)
This section considers semi-aligned utilities: Vf(σ) = u(σ).
Our results concern Pareto-efficiency. We show that all equi-
libria may be Pareto-inefficient (in stark contrast with the
aligned utilities), but this inefficiency vanishes if the filter
quality is sufficiently high. Put differently, improving the
filter has an important side benefit of guaranteeing Pareto-
efficient equilibria.

For clarity, we focus on the regime where qL < qdif <
qH < q (Similar results holds for other regimes, but have
a higher notation burden). In this regime, the inefficiency
arises when one measure of filter quality is sufficiently low.
Specifically, we summarize filter quality as one number that
is strictly pointwise-increasing in π0 and −π1,

Q(π0, π1) =
π0
π1

1− π1
1− π0

. (11)

We compare (11) to a threshold driven by cost parameters:

Λ =
b+ c1
c2

1− qL
qL

. (12)

Theorem 5.1 (inefficiency). Assume qL < qdif < qH <
q. If furthermore Q(π0, π1) < Λ, then profile σdif strictly
Pareto-dominates any equilibrium but is not an equilibrium
itself. In particular, any equilibrium is Pareto-inefficient.

The key insight behind Theorem 5.1 is that a low quality
filter cannot commit to σdif because it has an incentive to
trick the consumer into incurring information costs that are
higher than optimal for the consumer. Under σdif, the filter
incurs a cost of (1−q)π1c1 for blocking clean content but in-
curs some benefit from the consumer’s content inspection. If
the filter could convince the consumer it would choose sdif,
the filter would be better off by instead forwarding all con-
tent, not incurring the cost of (1− q)π1c1 and still enjoying
the benefit of the consumer inspecting the content. Knowing
this, the filter can not convince the consumer that it would
play sdif and thus σdif is not an equilibrium.

To escape this inefficiency, one can improve the filter, en-
suring that Q > Λ. The VoTC would be strictly positive.

7Unwrapping, △U = π0qc2 − π1(1 − q)(b + c1) and β =
(1− π0)q + (1− π1)(1− q).
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Theorem 5.2 (escaping the inefficiency). Assume qH < q
and suppose π′

0 ≤ π0, π′
1 > π1 and Q(π0, π1) > Λ >

Q(π′
0, π

′
1). Then:

(a) The differentiating profile σdif is a Pareto-efficient equi-
librium, and it Pareto-dominates any other equilibrium.

(b) The VoTC by switching from any equilibrium with fil-
ter quality (π′

0, π
′
1) to σdif with filter quality (π0, π1) is

strictly positive.

The intuition behind Theorem 5.2 is as follows. As soon
as the filter is of sufficiently high quality, σdif becomes an
equilibrium, is Pareto efficient and furthermore, is the equi-
librium preferred by both players. Behaviorally, when the
filter is of sufficiently high quality, it is credible for the filter
to use strategy sdif. Content with a strong bad signal is so
likely to be malicious that the filter prefers not to forward it.
As a result, the filter can credibly commit to playing σdif.
This characterization again highlights the non-linear nature
of filter improvements and the importance of the filter meet-
ing a baseline level of quality. However, unlike in the aligned
section where it was the consumer that would abandon plat-
forms with low quality filters, with semi-aligned incentives
it is the filter’s incentive to forward too much content that
leads to inefficient outcomes with low quality filters.

Consider the regime of Theorem 5.2(a), i.e., qH < q and
Q(π0, π1) > Λ. Once the filter and consumer enter this
regime, further improving the filter would keep them in that
regime. Theorem 5.3 shows that such improvements would
benefit both players, and characterizes the resulting VoTC.

Theorem 5.3. Assume qL < qdif < qH < qH and
Q(π0, π1) > Λ. Under equilibrium σdif, the MVoT is posi-
tive for both players, constant for the filter, and non-constant
for the consumer.

6 Endogenous Attacker
In this section, we extend our model to include the attacker:
a third strategic player who is responsible for choosing the
rate of malicious content, ρ0. We focus on aligned utilities,
to better isolate the novelty brought by endogenizing the at-
tacker. We find two surprising consequences: the consumer
does not incur information costs in equilibrium, and that
improving the filter can make both the filter and consumer
worse off.

Modeling choices and notation. We restrict the attacker to
pure strategies, i.e., to choose its rate ρ0 deterministically for
the entire batch. One interpretation is that the attacker is not
sophisticated enough to implement mixed strategies in this
context.8

As in the original model, all three players choose a strat-
egy to use on the entire batch. The attacker and filter move
first and simultaneously. The consumer observes the at-
tacker’s choice of ρ0 but not the filter’s chosen strategy, and
moves next. Therefore, for a fixed and known value of ρ0,
the game reduces to the content-filtering game defined in
Section 2. Importantly, as per Remark 2.1, our results carry

8A mixed strategy chooses ρ0 at random once and keeps it fixed.

over to the variant where the consumer observes the strate-
gies of both the attacker and the filter. Furthermore, the re-
sults carry over to the case where the filter also observes ρ0.

The attacker’s expected utility, denoted Va, is the expected
number of malicious pieces of content that are accepted by
the consumer.9 Fixing the strategies of all players and letting
Y be the number of malicious messages in a batch, we have

Va = E[Y ] Pr [ af = ac = 1 | X = 0 ] , (13)

where E[Y ] = ρ0 = q/(1− q).
Denote strategy profiles as (ρ0,σ). We denote the play-

ers’ utilities by Va and V = Vf = Vc. In general, we ex-
pand any quantities that take as an input σ to also take as
an input ρ0. For example, we write Va = Va(ρ0,σ) and
V = V (ρ0,σ). Likewise, we write q(σf) = q(ρ0,σf) in
Eq. (7).

Note that the rate ρ0 only enters the model through its
impact on q := Pr[X = 0] = ρ0/(ρ0 + 1), which can take
an arbitrary value in the interval (0, 1). Therefore, one could
equivalently reparameterize the model so that the attacker
sets q ∈ (0, 1) directly.

Equilibrium information costs. Our first result is that the
consumer never incurs information costs in an equilibrium.
Theorem 6.1. C(ρ∗0,σ

∗) = 0 for any equilibrium (ρ∗0,σ
∗).

The key driver of Theorem 6.1 is that for a fixed filter’s
strategy, the attacker’s expected payoff under the consumer’s
best response is decreasing in ρ0 when q(ρ0,σf) ∈ (qL, qH).
Behaviorally, as the relative proportion of malicious content
rises, a combination of the consumer’s increased informa-
tion costs and required certainty to accept content reduces
the total amount of malicious content that is ultimately ac-
cepted (of course, this comes at a higher cost due to ignoring
clean content). On the other hand, for q(ρ0,σf) < qL, the at-
tacker’s payoff is increasing in ρ0 since the consumer’s best
response is to accept all content. As a result, for a fixed fil-
ter strategy, the attacker’s optimal strategy is to set ρ0 such
that q(ρ0,σf) = qL. In this sense, the consumer’s attention
serves as a deterrent to attack: the amount of malicious con-
tent will not exceed the amount such that the consumer in-
curs information costs in deciding whether content is legiti-
mate.

Negative VoTC. We find that improving the filter can reduce
the equilibrium utility of the filter and the consumer.

As in Section 4, we focus on equilibria (ρ∗0,σ
∗) that max-

imizes the utility for the filter and the consumer, i.e., satisfy

V (ρ∗0,σ
∗) ≥ V (ρ0,σ) for any equilibrium (ρ0,σ).

and label this equilibrium payoff V ∗. We are interested in
VoTC in terms of V ∗.

Our negative VoTC result can now be succinctly formu-
lated using the ratio π0

π1
and the threshold Λ from Eq. (12).

9We do not impose production costs on the attacker for gen-
erating malicious content. These costs are often small in practice:
e.g., a generative AI model can produce many deep-fakes, an in-
expensive phish-kit can generate many fake emails (Volkov 2020).
Our results generalize to allow for small but positive production
costs.
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Theorem 6.2 (Negative VoTC). Suppose π0/π1 < Λ. Then
sufficiently improving both π0 and π1 strictly decreases the
equilibrium utility V ∗. More formally: there exist thresholds
π̂0 ∈ (π0, 1) and π̂1 ∈ (0, π1) such that for any π′

0 ∈ (π̂0, 1)
and π′

1 ∈ (0, π̂1) improving the filter quality to (π′
0, π

′
1)

strictly decreases V ∗.

What drives this result is that improvements in filter tech-
nology can be completely crowded out by an increase in the
attack propensity. One key reason is that the socially optimal
equilibrium switches from σfwd to σdif as the filter technol-
ogy improves. Specifically, when the filter is poor quality,
the socially optimal equilibrium is σfwd. Then, the attacker
sets ρ0 such that q(ρ0, σfwd) = qL and the consumer accepts
all content. However, for a high quality filter, the socially
optimal equilibrium is σdif. In that case, the attacker sets ρ0
such that q(ρ0, σdif) = qL. Consequently, the expected frac-
tion of malicious content that reaches the consumer is the
same in both equilibria and therefore, the equilibrium ex-
pected utility for the filter and consumer conditional on con-
tent reaching the consumer is the same. However, since un-
der σdif the filter blocks some clean content, the filter’s and
consumer’s expected utility under the σdif is strictly lower
than the expected utility under σfwd. Although under σdif
the filter blocks some malicious content, that benefit is not
justified by the increase in attack intensity.

Another key feature driving this result is the filter’s in-
ability to commit to sfwd. If the filter were able to commit to
sfwd, then equilibrium expected utilities would not depend
on π0 and π1 and thus payoffs would not change as the filter
improved in quality. However, because the filter and attacker
act simultaneously, once the filter is of sufficiently high qual-
ity, the filter has an incentive to switch to sdif. However, un-
der sdif, the attacker increases ρ0, ultimately lowering equi-
librium expected payoffs for the filter and consumer.

7 Conclusions and Open Questions
We develop a model of strategic interactions between a con-
tent filter and inattentive content consumers; such interac-
tions are a common feature in many applications. Our equi-
librium analysis undermines the common notions that im-
proving filter quality is unambiguously beneficial and that
the improvements are necessarily linear in the natural pa-
rameters (such as the true/false positive rates). We conclude
that consumers’ strategic inattention is essential for the anal-
ysis of content filtering.

The main policy implication is that content filtering does
not reduce to a classification problem in machine learn-
ing. In addition to rote improvements in filter quality, one
should consider interventions to reduce consumers’ infor-
mation costs and increase vigilance.10 Our analysis illumi-
nates non-obvious positive consequences of these interven-
tions that arise due to strategic interactions: e.g., increasing
the marginal benefits of improvements in filter quality, or
disincentivizing the attacker from inserting more malicious

10Such interventions are not uncommon in practice. Mandatory
corporate trainings are now wide-spread. Some IT departments
even implement “secret exercises”, e.g., send out phishing emails
to all employees and reprimand those who fall for these emails.

content. Detailing whether and which interventions are de-
sirable remains an intriguing open question.

We focus on a homogeneous and stationary world in
which the homogeneous players’ strategies are non-adaptive
and fixed throughout. Effectively, we consider a “single-
round” game that concerns a single piece of content. This
stationary world is, of course, an idealization of a dynamic
world in which the players continuously adapt to one an-
other. Such dynamic worlds are notoriously difficult to an-
alyze, and are not well-understood even in simple scenar-
ios.11 Focusing on equilibria of a “single-round” game is a
common route towards tractability. Nevertheless, adding dy-
namics with heterogeneous consumers is a viable extension.

A key simplification in our model is that all legitimacy-
related quantities are binary: the legitimacy itself, the filter’s
signal and action and the consumer’s signal and action. In-
deed, the filter’s and the consumer’s signal could be frac-
tional, reflecting the likelihood of the content piece being
malicious. Filter’s actions could also include, e.g., putting
the content piece into a spam folder or attaching a warn-
ing. Furthermore, the content piece itself may sometimes
be a mix of genuine and malicious, e.g., a genuine social
media post may be contaminated by propaganda. Accord-
ingly, a consumer might choose an ‘intermediate’ action,
e.g., accept the content piece with some reservations. Re-
laxing these binary choices could potentially lead to more
refined conclusions, but might also lose the appealing sim-
plicity and tractability of the “binary” model.

Our model of information costs, while suitable (and stan-
dard) for idealized models, could potentially be refined to
reflect more realistic scenarios of information discovery.
First, the process of information discovery could be mod-
eled more explicitly, perhaps via an analogy to machine
learning algorithms for similar problems. Second, the infor-
mation sources available to a human user may differ from
the one readily available to the filter. For example, a hu-
man receiving an email might intuitively pick up on a sus-
picious tone or an unusual visual layout, whereas a spam
filter would be restricted to specific pre-trained characteris-
tics of the email. Moreover, a human user might do a quick
web search to resolve a suspicion (e.g., of spam, phishing, or
misinformation), or even ask a friend, whereas a spam/con-
tent filter might consult its internal database. On the other
hand, such refinements might be application-specific and/or
involve some unobvious modeling choices.

Another approach towards modeling information costs is
to handle a large, abstract class thereof, without attempting
to micro-found any particular function shape in this class.
In the full version, we obtain an initial result in this direc-
tion, generalizing the conclusions in Section 4 to arbitrary
information costs under some generic conditions.
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