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Abstract
Envy-freeness is one of the most important fairness concerns
when allocating resources. We study the envy-free house al-
location problem when agents have uncertain preferences
over items and consider several well-studied preference un-
certainty models. The central problem that we focus on is
computing an allocation that has the highest probability of
being envy-free. We show that each model leads to a distinct
set of algorithmic and complexity results, including detailed
results on (in-)approximability. En route, we consider two re-
lated problems of checking whether there exists an allocation
that is possibly or necessarily envy-free. We give a complete
picture of the computational complexity of these two prob-
lems for all the uncertainty models we consider.

1 Introduction
Multi-agent resource allocation is one of the fundamen-
tal issues at the intersection of computer science and eco-
nomics. We consider a fundamental allocation problem in
which agents have preferences over items or houses and
each agent is allocated one house while taking into account
their preferences. The problem has been referred to as the
house allocation or assignment problem. When agents have
deterministic preferences over items, the problem is very
well-understood. For example, there are characterizations
of Pareto optimal allocations (see, e.g. (Abdulkadiroğlu and
Sönmez 1998)) and polynomial-time algorithms for comput-
ing envy-free allocations (see, e.g. (Gan, Suksompong, and
Voudouris 2019)).

In this paper, we focus on fairly allocating items in the
house allocation problem. The central fairness concept we
consider is envy-freeness (EF) which is considered one of
the gold-standard for capturing fairness. An allocation is EF
if every agent gets her favorite house among all the houses
assigned to the agents. While the structure of EF allocations
under deterministic preferences is well-understood, there is
little prior work on the complexity of computing EF house
allocations under uncertain preferences. Uncertain prefer-
ences are important to model when agents’ preferences may
not be completely known, and the central planner may have
to make decisions based on limited information. The uncer-
tainty model can also capture the situation when the agents
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represent a group of agents with a composition of prefer-
ences. Various types of uncertain preferences have been ex-
amined in the literature (see, e.g, (Hazon et al. 2012; Aziz
et al. 2019, 2020, 2022)), including the lottery Model, the
joint probability model, and the compact indifference model.
All the models are well motivated and some real-world ap-
plications can be found in, for example, (Aziz et al. 2020).

Given an instance in which agents’ uncertain preferences
are given as input, the central problem that we consider
is MAX-PROBEF which concerns computing an allocation
with the highest probability of being EF. Such an allocation
can be viewed as being robustly fair under uncertain infor-
mation. En route, we consider two related problems: EX-
ISTSPOSSIBLYEF (i.e., does there exist an allocation that is
EF with non-zero probability?) and EXISTSCERTAINLYEF
(i.e., does there exist an allocation that is EF with probabil-
ity one?). Our work aims to present a comprehensive study
of the computation complexity for all these problems under
various uncertainty models.

Problems Lottery Compact Joint
indifference Prob

EXISTSPOSSIBLYEF NP-c in P in P

EXISTSCERTAINLYEF NP-c in P NP-c

MAX-PROBEF NP-h NP-h NP-h
♣ ♠ † ♦

Table 1: Summary of the main results. The symbol ♣ indi-
cates that the problem admits no bounded multiplicative ap-
proximation, assuming P6=NP. The symbol ♠ indicates that
the problem admits no polynomially-bounded multiplicative
approximation, assuming P6=NP. The symbol ♦ indicates
that there is no polynomial-time algorithm with better than
6
5 -approximation ratio, assuming P6=NP. The symbol † indi-
cates the problem admits a polynomial-time algorithm that
either solves MAX-PROBEF exactly or certifies that every
allocation has a small probability of being EF.

Contributions In this work, we consider three natural
and well-motivated uncertain preference models, namely,
the lottery model, the compact indifference model, and the
joint probability model. In the lottery model, each agent has
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an independent probability distribution over linear prefer-
ences. In the joint probability model, the input is a proba-
bility distribution over preference profiles. The compact in-
difference model is a special type of lottery model in which
the input is each agent having a corresponding weak order
of the items and each complete linear order extension of
this weak order is assumed to be equally likely. For each
model, we first present the computational complexity results
of checking whether there exists an allocation that is pos-
sibly envy-free (EXISTSPOSSIBLYEF) or necessarily envy-
free (EXISTSCERTAINLYEF). Then we undertake a detailed
complexity analysis of the central problem MAX-PROBEF
of computing an allocation that has the highest probability
of being envy-free. Our results are summarized in Table 1.

Lottery Model We start with the lottery model. We prove
that both EXISTSPOSSIBLYEF and EXISTSCERTAINLYEF
are NP-complete. The intractability of EXISTSPOSSIBLYEF
also implies that there is no polynomial-time algorithm
with bounded multiplicative approximation ratio for MAX-
PROBEF, assuming P6=NP.

Compact Indifference Model In sharp contrast to the lot-
tery model, we show that there exist polynomial-time algo-
rithms for EXISTSPOSSIBLYEF and EXISTSCERTAINLY-
EF. However, the main problem MAX-PROBEF continues
to be intractable: we actually prove that finding an f(n,m)-
approximation of MAX-PROBEF under the compact indif-
ference model is NP-hard where f(n,m) is an arbitrary
polynomial in the numbers of agents n and houses m. We
complement this result by presenting a central algorithmic
result: for any fixed ε > 0, there exists a polynomial-time al-
gorithm that either computes the optimal solution for MAX-
PROBEF exactly, or returns a certificate that every alloca-
tion has EF probability less than ε. We regard this part as the
main contribution of this work.

Joint Probability Model Finally, we study the joint prob-
ability model. We first show that EXISTSPOSSIBLYEF can
be solved in polynomial time, while EXISTSCERTAINLYEF
is NP-complete. Then we prove that there is no polynomial-
time algorithm with a ( 6

5−ε)-approximation ratio for MAX-
PROBEF for any constant ε > 0, assuming P6=NP.

2 Related Work
Our work combines aspects of envy-free allocation and un-
certainty in preferences that have been explored in the con-
text of stable marriage, voting, and Pareto optimal alloca-
tion.

The house allocation problem is one of the most funda-
mental and well-studied problems in economics and com-
puter science (Abdulkadiroğlu and Sönmez 1999; Abra-
ham et al. 2005; Aziz et al. 2016; Bogomolnaia and Moulin
2001; Gärdenfors 1973; Svensson 1994, 1999). Typically,
the problem has an equal number of agents and houses
and the goal is to allocate one house to each agent. In our
setup, we allow the number of houses to be more than the
number of agents. Gan, Suksompong, and Voudouris (2019)
presented an elegant polynomial-time algorithm to check
whether an envy-free allocation exists or not in which each

agent gets one item. Aigner-Horev and Segal-Halevi (2022)
also presented similar arguments for envy-free outcomes for
bipartite graphs.

Uncertainty in preferences has already been studied in
voting (Hazon et al. 2012). They examine the computation of
the probability of a particular candidate winning an election
under uncertain preferences for various voting rules such
as Plurality, k-approval, Borda, Copeland, and Bucklin etc.
Aziz et al. (2019) explore the Pareto optimal allocation un-
der uncertain preferences. We consider the same problem
setup and preference uncertainty models as them but in-
stead of focusing on Pareto optimality, our central property
is envy-freeness. Aziz et al. (2020, 2022) examined uncer-
tain preferences in the context of two-sided matching. The
central property they examine is stability and they compute
matchings that have the highest probability of being stable.

In a related line of work, Dickerson et al. (2014) initi-
ated the study of existence of envy-free allocations when
agent valuations for items are drawn from a probability dis-
tribution. In follow up work, Manurangsi and Suksompong
(2019, 2021) further refined the parameter ranges for which
envy-free allocations exist with high probability. There has
been several other works (Farhadi et al. 2019; Bai et al.
2022; Bai and Gölz 2022) on studying fair division under
distributional models. In these models, where agent values
are drawn from a distribution, allocations can change after
the realization of the coin toss, whereas in our setting, we
study a fixed allocation that is “robust” under uncertainty.

3 Preliminaries
An instance of the (deterministic) house allocation problem
is a triple (N,H,�) where N = {1, . . . , n} is the set of n
agents, H = {h1, . . . , hm} is the set of m items (also re-
ferred to as houses), and the preference profile � = (�1

, . . . ,�n) specifies complete and asymmetric preferences
�i of each agent i over H . Note that in the classical allo-
cation problem, agents’ preferences are also assumed to be
transitive, hence resulting in linearly ordered preferences.
In some examples, we will represent the preferences as an
ordered list in decreasing order of preferences from left to
right. Let R(H) denote the set of all complete and asym-
metric relations over the set of items H .

An allocation is an assignment of items to agents such
that each agent is allocated a unique item, and each item
is allocated to at most one agent. Throughout the paper we
assumem ≥ n as the only envy-free allocation in the case of
m < n is one in which no agent gets any item. For a given
allocation ω, let ω(i) denote the item allocated to agent i.
We denote the set of all allocations by A . An allocation ω is
envy-free (EF) if ω(i) �i ω(j) for i ∈ N and j ∈ N \ {i}.

In this work, we allow agents to express uncertainty in
their preferences and consider various uncertainty models.

• Lottery Model: For each agent i ∈ N , we are given
a probability distribution ∆i(R(H)) over linear prefer-
ences. We assume that the probability distributions are
independent.

• Compact Indifference Model: Each agent reports a sin-
gle weak preference list that allows for ties. Each com-
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plete linear order extension of this weak order is assumed
to be equally likely. We use a %i b to represent that a is
weakly preferred by i over b. We use a ∼i b to represent
that agent i is indifferent between a and b in the weak
preference order. 1

• Joint Probability Model: A probability distribution
∆(R(H)n) over linear preference profiles is specified
where a preference profile specifies (deterministic) pref-
erences of each agent over items.

An uncertain preference model is independent if any un-
certain preference profile L under the model can be writ-
ten as a product of uncertain preferences Li for all agents
i, where all Li’s are independent. Note that the joint proba-
bility model is not independent in general, but all the other
problems that we study are independent.

For the uncertainty models, we consider the following
corresponding problems:

• MAX-PROBEF: Given an instance of the problem, com-
pute an allocation that maximizes the probability of being
envy-free (EF). Formally,

arg max
w∈A

Pr
D∼∆(R(H)n)

[w is EF under profile D].

• EXISTSCERTAINLYEF: Determine whether there exists
an allocation that is EF with probability one.

• EXISTSPOSSIBLYEF: Determine whether there exists an
allocation that is EF with non-zero probability.

Note the answer to MAX-PROBEF also gives an answer to
EXISTSCERTAINLYEF and EXISTSPOSSIBLYEF.

4 Initial Structural & Algorithmic Results
In this section, we present some initial structural and algo-
rithmic results. First we show that given an allocation, the
probability that it is EF can be computed efficiently.
Proposition 4.1. Given allocation w, the probability that w
is EF can be computed in polynomial time for the (i) joint
probability model, (ii) lottery model, and (iii) compact indif-
ference model.

The argument for the joint probability model is trivial. For
the other models, for each agent i ∈ N , we find the prob-
ability qi that the agent is not envious. The probability that
w is envy-free is equal to the probability that all agents are
envy-free which is computed as

∏
i∈N qi. The details are in

the full paper (Aziz et al. 2023).
Next, we present some structural results that suggest that

the main challenge of Max-ProbEF lies in determining
which houses are included in the matching. We say that
an uncertain preference model is reasonable if for any set
M ′ ⊂ M with |M ′| = n of houses, and any i ∈ N and

1The assignment problem is also known as the House Alloca-
tion problem. The compact indifference model can be viewed as the
assignment problem with ties, or as it is widely known in the liter-
ature as the House Allocation problem with Ties (HRT) (Manlove
2013), where any preference list obtained by breaking ties arbitrar-
ily is possible, and all possible preferences have the same likeli-
hood of being realized.

j ∈ M ′, the probability pij that j is the most preferred
house for agent i among houses in M ′ can be computed in
polynomial time. Note that all the models we consider are
reasonable. For example, we argue why the lottery model is
reasonable. Let ∆i = (λr,�ri )r∈S be the uncertain prefer-
ences of agent i, observe that pij can be computed efficiently
since pij =

∑
{r∈S |j�ri `,∀`∈M ′\j}

λr.

Proposition 4.2. For any reasonable uncertainty model that
is independent, given a set M ′ ⊂ M with |M ′| = n of
houses, an allocation ofM ′ toN which maximizes the prob-
ability of EF can be computed in polynomial time.

Proof. Construct a complete weighted bipartite graph G =
(N ∪ M ′, E) with edge weights wij = log(pij) for each
i ∈ N , j ∈ M ′. Here pij denotes the probability that the
house j is agent i’s favourite when the houses are restricted
to M ′. Observe now that the maximum weight matching in
G gives an allocation that maximizes the probability of EF
when the houses are restricted to M ′. This holds since pij is
the probability that i does not envy any other agent when as-
signed j, and thus the probability that an allocationw is envy
free is

∏
i∈N pi,w(i). Furthermore, the allocation that maxi-

mizes
∏
i∈N pi,w(i) also maximizes

∑
i∈N log(pi,w(i)).

Proposition 4.2 implies that in order to find the optimal
solution to Max-ProbEF it suffices to find the houses that
are assigned in the optimal solution rather than the allocation
itself. Hence we may focus our attention on finding a set of
houses M∗ with |M∗| = n such that G = (N ∪M∗, E)
has the highest max weight matching. Our insights give the
following algorithmic result.

Proposition 4.3. For any independent reasonable uncer-
tainty model, Max-ProbEF problem withm = n+k houses
can be solved in polynomial time, for any constant k ∈ N.

Proof. We iterate through each of the
(
m
n

)
house restrictions

and run the polynomial-time algorithm proposed in Proposi-
tion 4.2. Return the allocation with the highest max weight
matching among the

(
m
n

)
bipartite graphs. This procedure

is polynomial-time since the algorithm in Proposition 4.2 is
called at most

(
m
n

)
=
(
n+k
n

)
=
(
n+k
k

)
= O(nk) times. Note

that aforementioned procedure outputs an optimal solution
since it outputs an allocation that maximizes the probability
of EF under the each possible house restriction.

5 Lottery Model
In this section, we study the lottery model.

Theorem 5.1. For the lottery model, EXISTSCERTAIN-
LYEF is NP-complete.

Proof Sketch. The problem EXISTSCERTAINLYEF is in NP
because it can be checked in polynomial time whether a
given allocation is certainly EF or not.

To prove NP-hardness, we reduce from Restricted 3-Exact
Cover: given a family F = {S1, . . . , Sn} of n subsets of
S = {u1, . . . , u3m}, where each subset of F has cardinality
three, and moreover each element in S appears in exactly
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three subsets of F (hence n = 3m). The problems asks if
there is a subfamily of m subsets that covers S.

We now construct a house allocation instance under the
lottery model with a set {1, . . . , 3m} of 3m agents and a set
H = {h1

1, h
2
1, h

3
1, h

1
2, h

2
2, h

3
2, . . . , h

1
n, h

2
n, h

3
n} of 3n houses.

Intuitively, every agent i corresponds to the element ui of
Restricted 3-Exact Cover problem. For every subset Sj , we
construct three houses h1

j , h
2
j , h

3
j . If an agent i is allocated

one of these houses, this corresponds to the element ui be-
ing covered by the subset Sj . Preference lists of the agents
are as follows. Fix an agent i, and let Si1 , Si2 , Si3 be the
three subsets including element ui in the Restricted 3-Exact
Cover instance. Then, for each Sij , we construct two prefer-
ence lists for agent i, and hence in total six preference lists
for each agent. In each linear preference, agent i prefers the
nine houses corresponding to Si1 , Si2 , and Si3 more than
the other houses. The order of the other houses is arbitrary,
and so we only provide partial preference lists.

For j = 1, 2, 3, suppose that element ui is the one
with l(j)-th smallest index in Sij , and let {p(j), q(j)} =
{1, 2, 3} \ {l(j)} be the set of other two indices. We say that
the house hl(j)ij

corresponds to element ui in the subset Sij .
Agent i’s two preferences for Si1 are

1. hl(1)
i1
� h

p(1)
i1

� h
q(1)
i1

� h
l(2)
i2
� h

p(2)
i2

� h
q(2)
i2

�
h
l(3)
i3
� hp(3)

i3
� hq(3)

i3
� other houses;

2. hl(1)
i1
� h

q(1)
i1

� h
p(1)
i1

� h
l(2)
i2
� h

p(2)
i2

� h
q(2)
i2

�
h
l(3)
i3
� hp(3)

i3
� hq(3)

i3
� other houses;

In particular, agent i prefers the three houses representing
elements from Si1 . Then, among the three houses from Sid
(d 6= 1), she likes the one corresponding to ui the most.

We construct similar lists for Si2 and Si3 . In the full ver-
sion of the paper (Aziz et al. 2023), we complete the reduc-
tion by showing there exists Restricted 3-Exact Cover if and
only if there is a certainly EF allocation.

Theorem 5.2. For the lottery model, EXISTSPOSSIBLYEF
is NP-complete.

We prove Theorem 5.2 via a sequence of reductions start-
ing from MINIMUM COVERAGE, which is known to be NP-
hard (Vinterbo 2002). For this purpose, we introduce two
new problems:

• EXISTSPARTIALEF under binary preferences. In this
problem, there is a set [n] of agents and a set H of m
houses. Each agent has deterministic binary preferences
over the houses: in particular, each agent i partitions the
houses into two sets Ai, Bi where houses in the same set
are valued equally, and ha �i hb for all ha ∈ Ai and
hb ∈ Bi.
Additionally, an integer k is supplied (with k ≤ n). The
goal is to determine whether there exists an allocation of
houses to k agents such that these k agents are envy-free.
The n−k agents without a house do not experience envy.

• EXISTSPARTIALPOSSIBLYEF under the lottery model.
This problem is similar to EXISTSPOSSIBLYEF, how-
ever an additional integer k is supplied (with k ≤ n). The

goal is to determine whether there exists an allocation of
houses to k agents such the probability of envy-freeness
is nonzero. The n− k agents without a house do not ex-
perience envy.

We show that MINIMUM COVERAGE reduces to EX-
ISTSPARTIALEF, which in turn reduces to EXISTSPAR-
TIALPOSSIBLYEF which finally reduces to EXISTSPOSSI-
BLYEF. To prove the next lemma, we use a modification
of the proof from Theorem 3.5 of Kamiyama, Manurangsi,
and Suksompong (2021). They prove hardness for a similar
problem, where all n agents must be allocated houses with
the requirement that at least k agents are envy-free. This is
detailed in the full paper (Aziz et al. 2023).

Lemma 5.3. With binary preferences, EXISTSPARTIALEF
is NP-hard.

For the next lemma, we reduce from EXISTSPAR-
TIALEF under binary preferences, which is NP-hard from
Lemma 5.3.

Lemma 5.4. For the lottery model, EXISTSPARTIALPOS-
SIBLYEF is NP-hard.

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. The problem EXISTSPOSSIBLYEF
is in NP because it can be checked in polynomial time
whether an allocation is possibly EF or not.

To prove NP-hardness, we reduce from EXISTSPARTIAL-
POSSIBLYEF under the lottery model, which is NP-hard
from Lemma 5.4. Consider an instance I of EXISTSPAR-
TIALPOSSIBLYEF under the lottery model with n agents
and m houses {h1, . . . , hm} and parameter k. We con-
struct an instance I ′ of EXISTSPOSSIBLYEF under the lot-
tery model with n agents and m + n − k houses, where
the agents in I ′ correspond to agents in I . The houses are
{h1, . . . , hm} ∪ {e1, . . . , en−k}.

Consider some agent i. Assume that this agent has ` pref-
erence lists in I , and that the j-th such preference list is
aj,1 � . . . � aj,m. In the instance I ′, agent i has `+ n− k
preference lists, each with equal probability:

• For each j ∈ [`], we have the list aj,1 � . . . � aj,m �
e1 � . . . � en−k.

• For each j ∈ [n − k], we have the list ej � e1 � . . . �
ej−1 � ej+1 � . . . � en−k � a1,1 � . . . � a1,m. Note
that the e1 � . . . � ej−1 segment is empty if j = 1, and
the ej+1 � . . . � en−k segment is empty if j = n− k.

We now prove the answer to I is “yes” if and only if
the answer to I ′ is “yes”. Assume the answer to I is “yes”
and we have an allocation where agents u1, . . . , uk are
each allocated house ω(ui) in a possibly envy-free way. Let
uk+1, . . . , un be the agents that were not allocated a house.

We create an allocation ω′ for I ′ as follows:

• For each i ∈ [k], ω′(ui) = ω(ui),
• For each i ∈ [k + 1, n], ω′(ui) = ei−k.

Consider some agent i ∈ [k], where ω′(ui) = ω(ui). Since
agent i is possibly envy-free in I , there exists some pref-
erence list in I where ω(ui) is preferred over every other
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allocated house. However, this corresponds to a preference
list in I ′ where ω′(ui) is preferred to all the other houses
allocated in ω′. Hence, agent ui is possibly envy-free in I ′.
Now, consider some i ∈ [k+1, n]. There exists a preference
list in I ′ where ω′(ui) = ei−k is the most preferred house,
and so agent ui is possibly envy-free in I ′.

For the other direction, suppose we have a possibly envy-
free allocation in I ′. At most n − k agents were allocated
houses in {e1, . . . , en−k} and so at least k agents were allo-
cated houses in {h1, . . . , hm}. These agents remain possibly
envy-free if they are allocated the same house in I .

As a corollary, we get the following result.

Corollary 5.5. For the lottery model, there is no
polynomial-time algorithm with bounded multiplicative ap-
proximation ratio for MAX-PROBEF, assuming P6=NP.

6 Compact Indifference Model
In this section, we show that, in contrast to the lottery
model, EXISTSPOSSIBLYEF and EXISTSCERTAINLYEF
are polynomial-time solvable. However, perhaps surpris-
ingly, multiplicative approximation to MAX-PROBEF still
remains hard. On the positive side, we give a polynomial-
time algorithm that either solves MAX-PROBEF exactly or
certifies that every allocation has a small probability of being
EF. Due to space constraints, we defer the missing proofs in
this section to the full version of the paper (Aziz et al. 2023).

6.1 Complexity Results
Our first complexity result is a strong inapproximability one.

Theorem 6.1. Let f(n,m) be a polynomial in the number of
agents and houses. Then, finding an f(n,m)-approximation
of MAX-PROBEF under the compact indifference model is
NP-hard.

Proof. We begin by describing how to find the probability
that a given allocation is EF. In particular, consider some
allocation ω where agent i is allocated house ω(i). Firstly,
if ω(j) �i ω(i) for any i, j ∈ N then the allocation is
envy-free with probability 0. Otherwise, for each agent i,
let Xi = {j ∈ N : ω(i) ∼i ω(j)}. Then, the probability
of agent i being envy-free is 1

|Xi| , and, by independence, the
probability that the allocation is envy-free is Πi∈N

1
|Xi| .

We prove NP-hardness via a reduction from INDEPEN-
DENT SET. Firstly, for convenience, we only provide partial
preference lists in the proof. In particular, for each agent i,
we provide a subset of houses H ′ ⊆ H and a weak prefer-
ence list over these houses. For all other houses in H \H ′,
we assume that agent i values these strictly worse than all
houses in H ′, and that agent i cannot be allocated any house
in H \ H ′ in a possibly-EF allocation. To do this, we in-
troduce two new agents a1, a2 and two new houses e1, e2.
Agents a1 and a2 have the following preferences:

• a1: e1 �a1 e2 �a1 all houses in H , in some arbitrary
strict ordering.

• a2: e2 �a2 e1 �a2 all houses in H , in the same arbitrary
strict ordering.

Then, any possibly-EF allocation ω has ω(a1) = e1 and
ω(a2) = e2. Now, reconsider agent i and the subsetH ′ ⊆ H
of houses that they have a preference list over. We can ex-
tend this preference list into a complete preference list over
all houses inH∪{e1, e2}. In particular, assume that agent i’s
preference list over H ′ is h1 �i . . . �i h|H′| (note that this
list could include weak preferences). Then, agent i’s pref-
erence list over H ∪ {e1, e2} is: h1 �i . . . �i h|H′| �i
e1 �i e2 �i all houses in H \ H ′, in any arbitrary order.
Then, agent i cannot be allocated any house in H \H ′ (oth-
erwise, agent i would envy agents a1 and a2), and so for
convenience we omit these houses from the preference list.

We now describe the reduction. First, note that any poly-
nomial f(n,m) can be upper bounded by a function of the
form a(n + m)r for some positive integers a and r. So, we
assume that f(n,m) is of this form. Now, consider an in-
stance I of INDEPENDENT SET with a graph G = (V,E),
and a target k. The goal is to determine if there exists an
independent set in G of size k.

We construct an instance I ′ of MAX-PROBEF as follows.
For each vertex v ∈ V , we introduce two houses tv and fv ,
and an agent av . We will design our instance so that house
tv will be allocated to agent av if v is in the independent
set, and fv will be allocated to agent av otherwise. We will
show later that no other agent can be allocated tv or fv . In
particular, agent av’s preference list is tv ∼av fv .

Our goal is to find a large independent set, and so we
would rather house tv be allocated. We do this using a sin-
gle penalty gadget, where we apply a penalty for allocating
house fv . In a single penalty gadget, we add two new agents
a1, a2 and four new houses e1, e2, e3, e4:

• a1’s preference list: e1 ∼a1 e2 �a1 fv �a1 e3.
• a2’s preference list: e1 ∼a2 e2 �a2 fv �a2 e4.

First, note that house fv cannot be allocated to agent a1 nor
a2, because doing so is impossible without one of the agents
being envious. Now, if fv is unallocated, then a1 can be al-
located house e3 and a2 can be allocated house e4, so that
both agents are certainly EF. Otherwise, if fv is allocated,
then agents a1 and a2 must be allocated houses e1 and e2,
giving each agent a 1

2 probability of EF. Hence, this gadget
multiplies the probability of EF by 1

4 if house fv is allocated.
Let α = 49ar2|V ||E|. We create α copies of the single

penalty gadget for each house fv . Hence, if fv is allocated
(and hence, vertex v is not in the independent set), then the
probability of EF is multiplied by 1

4α .
Now, for each edge uv ∈ E, either vertex u or v must

not be in the independent set. Thus, at least one of tu and
tv must be unallocated. We use double penalty gadgets for
this purpose. A double penalty gadget is built for two houses
h1, h2 and adds four new agents a1, a2, a3, a4 and eight new
houses e1, e2, e3, e4, e5, e6, e7, e8:

• a1’s preference list: e1 ∼a1 e2 ∼a1 e3 ∼a1 e4 �a1
h1 �a1 e5.

• a2’s preference list: e1 ∼a2 e2 ∼a2 e3 ∼a2 e4 �a2
h1 �a2 e6.

• a3’s preference list: e1 ∼a3 e2 ∼a3 e3 ∼a3 e4 �a3
h2 �a3 e7.
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• a4’s preference list: e1 ∼a4 e2 ∼a4 e3 ∼a4 e4 �a4
h2 �a4 e8.

First, note that neither h1 nor h2 can be allocated to any of
these agents. In particular, without loss of generality, if h1 is
allocated to agents a1 or a2, then at least one of agent a1 and
a2 will always be envious of the other. Now, if either h1 or
h2 is allocated to some other agent, then one of the houses
e1, e2, e3, e4 will be allocated to a1, a2, a3 or a4. Then, to
avoid envy, all the agents a1, a2, a3, a4 will be allocated
houses e1, e2, e3, e4 in some permutation. Therefore each
agent will be EF with probability 1

4 , and so all the agents are
EF with probability 1

256 . However, if both h1 and h2 are un-
allocated, then agents a1, a2, a3, a4 can be allocated houses
e5, e6, e7, e8 respectively, and will all be EF with probability
1. Hence, this gadget multiplies the EF-probability by 1

256 if
either of h1 or h2 are allocated.

For each edge uv ∈ E, we add |V |α copies of this gadget
for the following pairs of houses: (tu, tv), (tu, fv), (fu, tv).
We claim that these gadgets together provide a penalty if
both houses tu, tv are allocated:

• If both tu and tv are allocated, then all 3|V |α gadgets
provide penalty. Hence, the EF-probability is multiplied
by 1

2563|V |α .
• If at most one of tu and tv are allocated, then exactly

2|V |α of the gadgets provide penalty. In particular, if nei-
ther tu and tv are allocated, then both fu and fv will be
allocated, and so the (tu, fv) and (fu, tv) gadgets pro-
vide penalty, but the (tu, tv) gadgets do not. On the other
hand, if tu is allocated but tv is unallocated, then fv is
allocated and so the (tu, tv) and (tu, fv) gadgets provide
penalty but the (fu, tv) gadgets do not. Finally, the case
when tu is unallocated but tv is allocated is symmetric.
Thus, the EF-probability is multiplied by 1

2562|V |α .

Therefore, if both tu and tv are allocated, then the EF-
probability is multiplied by an additional 1

256|V |α , compared
to the case where this does not happen.

This completes the description of the instance I ′. It can
be shown that the MAX-PROBEF instance I ′ is polynomial
in size, and has the same answer as the INDEPENDENT SET
instance I . For further details, please refer to the full paper
(Aziz et al. 2023).

Next, we complement the above result by showing that
additive approximations for MAX-PROBEF are computa-
tionally tractable.

6.2 Algorithm for MAX-PROBEF
Let OPT be EF probability of the optimal solution to MAX-
PROBEF.

Theorem 6.2. For any fixed ε > 0, there is a polynomial
time algorithm such that it either

• computes OPT exactly, or
• returns a certificate that OPT < ε i.e., every allocation

has probability of EF less than ε

To prove the theorem, we show that there is a polynomial-
time algorithm (Algorithm 1) with the above properties.
Next, we specify some terminology and machinery for the
algorithm and the corresponding proof. Consider some in-
stance I under the compact indifference model, and as-
sume that there exists an allocation ω with a non-zero EF-
probability. Then, this allocation ω must be envy-free with
respect to the underlying weak deterministic preferences,
that is, ω(i) %i ω(j) for all agents i, j. We define an n × n
binary matrix A, which we call the envy-matrix of ω, as fol-
lows:

Ai,j =

{
0, if ω(i) �i ω(j)

1, otherwise (i.e. ω(i) ∼i ω(j))

Lemma 6.3. Let ε be a constant satisfying 0 < ε ≤ 1.
Consider an instance under the compact indifference model
that admits an allocation ω with EF-probability at least ε.
Let A be the envy-matrix of ω. Then:
1. The EF-probability of ω is

∏n
i=1

1∑n
j=1 Ai,j

, and

2. Excluding the main diagonal, the number of 1s in the
envy-matrix is at most 1

ε .
For the first condition, a single agent is envy-free with

probability 1∑n
j=1 Ai,j

, which is equivalent to the formula de-
scribed in the proof of Proposition 4.1. Due to independence,
we multiply these values for each agent. The second condi-
tion can be derived from the first condition and the assump-
tion that the EF-probability is at least ε.

We utilise envy-matrices to prove Theorem 6.2. To this
end, we introduce the ALLOCSATISFYINGENVYMATRIX
problem. In this problem, each agent has weak deterministic
preferences over the houses. Additionally, an n × n matrix
A is supplied. The goal is to find an allocation ω satisfying
the following condition, or determine that such an allocation
does not exist. For all agents i, j:
• If Ai,j = 1, then ω(i) %i ω(j).
• Otherwise, if Ai,j = 0, then ω(i) �i ω(j).

Informally, the goal is to find an allocation that is “at least
as good” as the envy matrix.
Lemma 6.4. ALLOCSATISFYINGENVYMATRIX can be
solved in polynomial time.

We prove Lemma 6.4 by extending the algorithm of Gan,
Suksompong, and Voudouris (2019). As an overview, our
algorithm either (i) finds an allocation, or (ii) identifies a
set of houses, such that none of these houses can appear in
any allocation satisfying the envy-matrix. In the case of (ii),
these houses are deleted and the procedure repeats. This ter-
minates when either an allocation is found, or less than n
houses remain, and so no allocation exists.

Proof of Theorem 6.2. We introduce Algorithm 1 and prove
its correctness. Consider an instance I . Let ω be an allo-
cation with maximum EF-probability in I , and let this EF-
probability be p. We first consider the case where p ≥ ε. Let
A be the envy-matrix of ω. From Lemma 6.3, we know that∏n
i=1

1∑n
j=1 Ai,j

= p ≥ ε and A has at most 1
ε 1s (exclud-

ing the main diagonal). Hence, line 4 will be run with this
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Algorithm 1: Additive Approximation for MAX-PROBEF
Input: A compact indifference instance I and constant ε satisfying
0 < ε ≤ 1.
Output: An allocation with maximum EF-Prob, if there is one with
EF-Prob at least ε; otherwise, returns null.
1: allocs← empty array
2: for each n× n binary matrix A where Ai,i = 1 for all i ∈ N

and there are at most 1
ε

1s outside the main diagonal do
3: if 1∑n

i=1

∑n
j=1 Ai,j

≥ ε then
4: Create an ALLOCSATISFYINGENVYMATRIX instance

with envy-matrix A and the same weak preferences as
I . Solve this using Lemma 6.4 and let the result be ω.

5: if ω 6= null then
6: Append ω to allocs
7: end if
8: end if
9: end for

10: if allocs is non-empty then
11: return an allocation in allocs with maximum EF-Prob
12: else
13: return no solution
14: end if

envy-matrix and so an allocation ω will be found with EF-
probability p. It follows that Algorithm 1 finds an allocation
with maximum EF-probability in this case.

Now, assume that p < ε. Then, every instance of ALLOC-
SATISFYINGENVYMATRIX will report no solution, and so
Algorithm 1 will correctly determine that no allocation ex-
ists with EF-probability at least ε.

We now analyse the time complexity. The for loop on

line 2 iterates over
∑b 1

ε c
i=0

(
n2

i

)
= O(n

2
ε ) matrices, and this

can be done with only polynomial overhead. Since the al-
gorithm of Lemma 6.4 runs in polynomial time, the overall
running time is O(n

2
ε × poly(n,m)).

Next, we remark that EXISTSCERTAINLYEF can be
solved in polynomial time for the compact indifference
model, which is implied by Theorem 6.2 (with ε = 1).

Corollary 6.5. EXISTSCERTAINLYEF can be solved in
polynomial time for the compact indifference model.

Additionally, by using the algorithm of Gan, Suksom-
pong, and Voudouris (2019), we have the following:

Proposition 6.6. EXISTSPOSSIBLYEF can be solved in
polynomial time for the compact indifference model.

7 Joint Probability Model
We next show that even for an expansive uncertainty model
such as joint probability, EXISTSCERTAINLYEF is NP-
complete.

Theorem 7.1. For the joint probability model, EXISTSCER-
TAINLYEF is NP-complete, even with a constant number of
profiles.

The NP-hardness is proved via a reduction from EX-
ISTSCERTAINLYEF under a restricted case of lottery model
where each agent has at most six linear preferences. One

can verify that the proof of Theorem 5.1 shows that EX-
ISTSCERTAINLYEF is NP-complete even in the restricted
case of lottery model where each agent has six preferences.

Consider an instance I of the restricted lottery model,
in which there are n agents and m houses, and moreover
each agent has six linear preferences. Denote by Pi = {�i,1
, . . . ,�i,6} the set of ordinal preferences for agent i under
I . We now construct an instance I ′ of the joint probability
model. Instance I ′ has the same number n of agents and
m of houses. There are six preference profiles, each with
equal probability 1

6 . For t ∈ [6], the t-th preference profile
is (�1,t,�2,t, . . . ,�n,t). The detailed proofs are in included
the full paper (Aziz et al. 2023).

Recall that the probability of an assignment ω being EF is
the summation of probability of preference profile Pi, under
which ω is EF. The reduction in the proof of Theorem 7.1
indeed implies the following; (i) there exists an assignment
with EF-probability one in the restricted lottery model if and
only if there exists an assignment with EF-probability one
in the joint probability model; (ii) there does not exist an
assignment with EF-probability one in the restricted lottery
model if and only if there does not exist an assignment with
EF-probability strictly greater than 5

6 in the joint probability
model. Then we have the following theorem.

Theorem 7.2. For any constant ε > 0, there is no
polynomial-time algorithm with a ( 6

5−ε)-approximation ra-
tio for MAX-PROBEF under the joint probability model, as-
suming P6=NP.

In contrast, EXISTSPOSSIBLYEF can be solved in poly-
nomial time by running the algorithm of Gan, Suksompong,
and Voudouris (2019) on each realizable preference profile.

Proposition 7.3. EXISTSPOSSIBLYEF can be solved in
polynomial time for the joint probability model.

8 Conclusion
In this paper, we study a fundamental problem of envy-free
house allocation under uncertainty. For each of the uncertain
preference models considered, we provide a complete set of
complexity results. We find that, surprisingly, each model
gives rise to a different set of complexity results.

Although we mainly focus on uncertainty models that as-
sume underlying linear preferences, we also study uncer-
tainty models that go beyond this assumption. For example,
in the pairwise probability model, where each agent has pair-
wise independent preferences over items, we show (in the
full paper (Aziz et al. 2023)) that all the problems we con-
sider are NP-hard.

One of our central results is a polynomial-time algorithm
that either solves MAX-PROBEF exactly or certifies that ev-
ery allocation has a small probability of being EF in the com-
pact indifference model. It is interesting to see if similar re-
sults can be achieved for other uncertain preference models.
Another possible future direction is to find the best multi-
plicative approximation ratio achievable for the joint prob-
ability model. Finally, it is intriguing to investigate similar
problems for general resource allocation settings.
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