
An Efficient Subgraph-Inferring Framework for Large-Scale Heterogeneous
Graphs

Wei Zhou, Hong Huang*, Ruize Shi, Kehan Yin, Hai Jin
National Engineering Research Center for Big Data Technology and System

Services Computing Technology and System Lab, Cluster and Grid Computing Lab
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China

{weizhou2021, honghuang, rzshi, kehanyin, hjin}@hust.edu.cn

Abstract

Heterogeneous Graph Neural Networks (HGNNs) play a vi-
tal role in advancing the field of graph representation learn-
ing by addressing the complexities arising from diverse data
types and interconnected relationships in real-world scenar-
ios. However, traditional HGNNs face challenges when ap-
plied to large-scale graphs due to the necessity of training or
inferring on the entire graph. As the size of the heterogeneous
graphs increases, the time and memory overhead required by
these models escalates rapidly, even reaching unacceptable
levels. To address this issue, in this paper, we present a novel
framework named SubInfer, which conducts training and in-
ferring on subgraphs instead of the entire graphs, hence effi-
ciently handling large-scale heterogeneous graphs. The pro-
posed framework comprises three main steps: 1) partitioning
the heterogeneous graph from multiple perspectives to pre-
serve various semantic information, 2) completing the sub-
graphs to improve the convergence speed of subgraph train-
ing and the performance of subgraph inferring, and 3) training
and inferring the HGNN model on distributed clusters to fur-
ther reduce the time overhead. The framework applies to the
vast majority of HGNN models. Experiments on five bench-
mark datasets demonstrate that SubInfer effectively optimizes
the training and inferring phase, delivering comparable per-
formance to traditional HGNN models while significantly re-
ducing time and memory overhead.

Introduction
Representing real-world data with rich structural and seman-
tic information is a crucial task in many fields, and hetero-
geneous graphs (HGs) have proven to be a powerful tool for
this purpose (Luo et al. 2023; Zeng et al. 2023; Zhou et al.
2023; Huang et al. 2021). However, learning representations
from large-scale HGs remains a challenge in the field of het-
erogeneous graph representation learning.

To address this challenge, an increasing number of het-
erogeneous graph neural network (HGNN) methods have
been proposed for large-scale HGs, which can generally be
divided into three categories: decoupled-based, mini-batch-
based, and partition-based methods. Decoupled-based meth-
ods, such as NARS (Yu et al. 2020) and SeHGNN (Yang

*Corresponding author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Method Type Training Inferring
NARS Decoupled 15s/38.4G 13s/36.5G

SeHGNN Decoupled 19s/16.9G 18s/14.7G
R-HGNN Mini-batch 221s/16.8G 140s/16.1G

Cluster-RGCN Partition 15s/7.4G 42s/29.5G

Table 1: Time and memory overhead of HGNN methods for
training and inferring on the ogbn-mag dataset. The table
shows the time spent in one epoch.

et al. 2023), decouple the message propagation and up-
date operations of the HGNN, saving node embeddings in
pre-processing to greatly accelerate training. Mini-batch-
based methods, such as R-GraphSAGE1, R-GraphSAINT2,
HGT (Hu et al. 2020) and R-HGNN (Yu et al. 2023), sample
a set of neighbors associated with the target node, enabling
models to be trained more efficiently in terms of both time
and memory consumption. Partition-based methods, such as
Cluster-RGCN2, partition the entire graph into subgraphs
and apply the message passing over the induced subgraphs.

However, these methods only reduce part of the overhead
in training and inferring. As shown in Table 1, decoupled-
based methods achieve a relatively balanced time overhead
during training and inferring but require more memory to
save the results of message propagation, while partition-
based methods like Cluster-RGCN have less training time
and memory overhead due to their training being confined
to subgraphs, but more overhead during inference as they
require entire graph inferring. Considering the superior per-
formance of partition-based methods during training and the
natural potential for distributed processing offered by sub-
graphs, we aim to develop a subgraph-inferring framework
suitable for large-scale HGs, which can leverage the benefits
of subgraphs on the one hand, and significantly reduce the
overhead during inferring on the other hand.

Nevertheless, subgraph inferring encounters three major
challenges: 1. How to partition large-scale HGs? There is
still no efficient method to partition large-scale HGs. Exist-
ing methods (NetClus (Sun, Yu, and Han 2009), Sclump (Li

1https://ogb.stanford.edu/docs/lsc/leaderboards/#mag240m
2https://ogb.stanford.edu/docs/leader nodeprop/#ogbn-mag

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9431

et al. 2019)) need to factorize a large matrix, which makes
them too complex to be applied to large-scale HGs, while
other methods (Metis (Karypis and Kumar 1998), Lou-
vain (Blondel et al. 2008)) on large homogeneous graphs
ignore the types of nodes and edges, causing loss of seman-
tic information. 2. How to make the model converge when
subgraph training? The higher the label distribution dif-
ference between subgraphs, the more difficult it is for the
model to converge. To train a good model, the distribution
differences between subgraphs need to be minimized. Al-
though some methods like Cluster-GCN (Chiang et al. 2019)
have considered this problem for homogeneous graphs, they
result in a loss of information, which affects the perfor-
mance of subgraph inferring. 3. How to guarantee the effi-
ciency and performance of subgraph inferring? Informa-
tion loss during partitioning is inevitable, if subgraphs are
too small, significant information is lost, which affects the
performance of subgraph inferring. On the contrary, if the
subgraphs are too large, it consumes more time and memory.
Therefore, to ensure efficiency and performance, we need to
not only consider the size of the subgraph but also complete
the missing information.

To solve these problems, we propose a novel distributed
HGNN framework based on Subgraph training and In-
ferring(SubInfer). Firstly, the framework partitions the se-
mantic graph constructed by the meta-path, and the remain-
ing nodes are then allocated to each subgraph using a greedy
algorithm that aims to minimize edge loss. With differ-
ent meta-paths, the framework preserves multiple semantic
information. Secondly, the framework completes the sub-
graphs by sampling the top k degree nodes from the orig-
inal HG as global information. This improves the model’s
performance and reduces disparities in label distribution
among the subgraphs. Finally, the training and inferring of
the HGNN model are performed on the subgraphs, which
are independent and easily extendable to distributed clus-
ters. The framework can be applied to most HGNN models.
Experiments conducted on five datasets showcase that our
framework significantly enhances both training and infer-
ring speeds, while also mitigating memory overhead. These
improvements are achieved while maintaining acceptable
performance levels, as compared to inferring on the entire
graph.

Our contribution can be summarized as follows:

• We propose a distributed HGNN framework SubInfer
to conduct the training and inferring of HGNNs on the
subgraphs with less time and memory. Without com-
plex adaptations, SubInfer is easy to be applied to most
HGNN models.

• We are the first to propose a partition method for large-
scale HGs using meta-paths, which analyzes and divides
the HG from various perspectives to gather rich semantic
information. Subgraph completion is further proposed to
make HGNN models converge during subgraph training
and improve the performance of subgraph inferring.

• Experiments on five datasets show that using our frame-
work SubInfer, baselines require less time and memory
while maintaining acceptable performance.

Preliminary
Definition 1: Heterogeneous Graph. A HG is a graph that
contains many types of edges or nodes. Specifically defined
as follows: given a graphG = (V,E), which is a HG if it sat-
isfies vi ∈ V, ej ∈ E,ψ(vi) ∈ Ψ, ϕ(ej) ∈ Φ, |Ψ|+ |Φ| > 2,
where V and E denote the set of nodes and edges, while ψ
and ϕ are type mapping functions by which we can get the
types of nodes and edges. Furthermore, Ψ is the set of node
types, and Φ is the set of edge types.
Definition 2: Meta-path. The meta-path means a path that
expresses specific semantic information with the combina-
tion of the node type and edge type. It can be defined as

ψ1
ϕ1−→ ψ2

ϕ2−→ · · · ϕl−→ ψl+1, where ψi denotes the type of
node i and ϕj denote the type of edge j. For easy to express,
the meta-path is generally abbreviated as ψ1ψ2 · · ·ψl+1.
Definition 3: Semantic Graph. The semantic graph is a
homogeneous graph constructed by meta-paths. For any
meta-path ψ1ψ2 · · ·ψ2ψ1, which is a palindrome string, the
adjacency matrix of the corresponding semantic graph is
Ŵψ1ψ1 = Wψ1ψ2 ∗ · · · ∗ Wψ2ψ1 , where Wψiψj repre-
sents the adjacency matrix from ψi to ψj . Furthermore,
Ŵψ1ψ1
uv represents the number of instances following meta-

path ψ1ψ2 · · ·ψ2ψ1 between ψ1u and ψ1v .

Our Framework
In this section, we present our framework SubInfer in de-
tail. As shown in Figure 1, the framework can be divided
into three parts: 1. Subgraph partition. It is difficult to pre-
serve all kinds of semantic information in a single partition.
To preserve one kind of semantic information, SubInfer first
divides the semantic graph constructed by the correspond-
ing meta-path, and then allocates the remaining nodes to
subgraphs with a greedy algorithm that aims to minimize
edge loss. With different meta-paths, multiple semantic in-
formation is well preserved. 2. Subgraph completion. Since
the partitioned subgraphs lose a lot of information and have
different label distributions, SubInfer selects the top k de-
gree nodes from the original HG to complete the subgraphs.
3. Subgraph training and inferring. To further reduce the
time overhead, the subgraphs are batched and uniformly dis-
tributed to each compute node for subgraph training and
inferring. The individual components of SubInfer are ex-
plained below.

Subgraph Partition
Previous partition methods (Karypis and Kumar 1998; Blon-
del et al. 2008) for large-scale homogeneous graphs do not
account for the types of nodes and edges, resulting in the
loss of semantic information and poor performance of the
HGNN model.

In HGs, diverse types of nodes and edges constitute var-
ious forms of semantic information, making it challenging
to retain all of them within a single partition. For instance,
taking into account an academic network comprising nodes
that represent authors (A = {a1, a2 · · · }), papers (P =
{p1, p2, · · · }), and research fields (F = {f1, f2, · · · }), as
well as relationships such as authorship of papers (A − P),

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9432

HG

Partition and completion in parallel loss

loss

mean

𝑌𝑝𝑟𝑒𝑑

𝑌𝑝𝑟𝑒𝑑
(𝑌𝑝𝑟𝑒𝑑)𝑓𝑖𝑛𝑎𝑙

mean

Batches

HGNN(𝑓𝜃)

Node 0

HGNN(𝑓𝜃)

Node 1

Update 𝑓𝜃

Final Subgraph ℎ𝑠

⋯

𝐿 HGNN layers

mean𝐴

𝑋

𝐻

add

𝐷𝑇

Subgraph ℎ𝑠Subgraph 𝑠

v

Partition Top 𝑘 degree nodes

MLP

Figure 1: The structure of SubInfer.

citations between papers (P −P), and associations between
papers and fields (P − F), including their inverse relation-
ships. In a partition, node a1 and its associated semantic in-
formation a1p1a2 are assigned to subgraph s1, while nodes
p2, a3 are assigned to subgraph s2, resulting in the loss of
semantic information a1p1f1p2a3. Therefore, we design a
new partition strategy that retains only one type of semantic
information in each partition to reduce information loss.

With the meta-path APA, which represents two authors
writing the same paper, the corresponding semantic graph
consisting only of author nodes is derived, and its adjacency
matrix is

ŴAA = WAP ∗W PA, (1)

where WAP represents the adjacency matrix from author
to paper, and W PA is its transpose matrix. Next, since
the semantic graph is homogeneous, we use Metis (Karypis
and Kumar 1998) to partition it, resulting in a set of sub-
graphs SAPA = {sAPA1 , sAPA2 , · · · , sAPAϱ } that effectively
preserve the semantic information related to the meta-path
APA. Here, ϱ is the hyper-parameter representing the num-
ber of subgraphs in a single partition.

As only author nodes are included in the subgraphs, we
have to allocate the remaining other types of nodes to the
subgraphs as well. When assigning the remaining nodes, two
constraints are imposed to ensure the training speed and per-
formance of the model: 1) the size of each subgraph should
be as similar as possible, and 2) the number of missing edges
should be minimized. The entire allocation process can be
expressed as an optimization problem

min
{hsAPA

1 ,··· ,hsAPA
ϱ }

|E| −
ϱ∑
i=1

|Ei|

s.t. ∀i ∈ [1, ϱ], Ni≤ ⌊N/ϱ⌋+ 1

, (2)

where {hsAPA1 , · · · , hsAPAϱ } is final subgraphs retaining
the semantic information of APA, while SAPA denotes its
initial state. |Ei| and Ni represent the number of edges and

nodes in subgraph hsAPAi respectively. N denotes the num-
ber of nodes in the original HG, and ⌊⌋ means the floor func-
tion.

We employ a greedy algorithm to solve this problem.
Specifically, we first compute the degree between paper
nodes and the subgraphs as

adj = W PA ∗WAS , (3)

where WAS ∈ RNA×ϱ is the relationship matrix between
the author nodes and the set of subgraphs SAPA, and NA
means the number of author nodes in the original HG. For
example, if author node ai belongs to subgraph sAPAj , the
element in the i-th row and j-th column of matrix WAS is
set to 1, otherwise it is set to 0.

For nodes except authors, the higher the degree between
them and the subgraph, the closer the relationship is. There-
fore, the paper node is assigned to the closest subgraph,
but if the number of nodes in the subgraph is greater than
⌊N/ϱ⌋+1, it is allocated to the next closest subgraph. Sim-
ilarly, we assign other types of nodes to the subgraphs (The
complete allocation process is shown in Supplementary ma-
terials3 Algorithm 1).

Finally, there are many meta-paths in a HG, so we can get
multiple subgraph sets as follows:

S = {{hsm1 , · · · , hsmϱ },m ∈M}, (4)

where M is the set of meta-paths, which is set by prior
knowledge and experience (Wang et al. 2020b; Shi et al.
2020). In this way, with the meta-path, we can explore
and partition the large-scale HG from different perspectives
while preserving semantic information.

Subgraph Completion
We find the pain point of subgraph training is that the huge
difference in label distribution among subgraphs makes it
difficult for the HGNN model to converge. A similar con-
clusion from experiments has also been drawn in a prior

3https://github.com/CGCL-codes/SubInfer

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9433

work (Chiang et al. 2019). Therefore, we propose subgraph
completion to solve this problem.

For any two subgraphs, assuming that their label distribu-
tions are P and Q. Thus the distance between these two dis-
tributions can be expressed in terms of the Kullback-Leibler
divergence (Kullback and Leibler 1951) as
Dis(P,Q) = DKL(P||Q) +DKL(Q||P)

=
∑
i

P(yi) log
P(yi)

Q(yi)
+ Q(yi) log

Q(yi)

P(yi)

=
∑
i

(P(yi)− Q(yi)) log
P(yi)

Q(yi)

,

(5)
where yi indicates the i-th label. From Eq. 5, we can see
that only when ∀i, log P(yi)

Q(yi)
→ 0, we have Dis(P,Q) → 0.

Suppose we add qi nodes with label yi to the two subgraphs,
then we have

log
P(yi) + qi
Q(yi) + qi

= log
Q(yi) + qi +P(yi)− Q(yi)

Q(yi) + qi

= log(1 +
P(yi)− Q(yi)

Q(yi) + qi
)

. (6)

Assuming that N(y = yi) represents the number of nodes
with label yi in the original large-scale HG, if qi → N(y =

yi), we will get log P(yi)+qi
Q(yi)+qi

→ 0. Therefore, by sampling

k =
∑C
i=1 qi nodes from the original large-scale HG and

adding them to each subgraph, the distribution difference
Dis(P,Q) decreases, where C is the total number of la-
bels. In other words, the more identical nodes contained in
the two distributions, the more similar they are.

However, randomly adding nodes merely helps the model
to converge without completing the missing information
during partitioning. The partitioned subgraphs only contain
local information, which is the key to the decline in the
model’s performance. Therefore, it is necessary to use global
information to complete the subgraphs. Research has shown
that higher degree nodes contain more information and the
top k degree nodes hold most of the information of the entire
graph (Kong et al. 2021). Hence, we select them as global
information Iglobal to complete the subgraph as

ĥs
m

i = hsmi ∪ Iglobal, (7)
where m is any meta-path. In fact, an excess of global infor-
mation can impair performance, while an insufficiency may
fail to enhance it, so it is necessary to carefully balance the
amount of global information. The most intuitive manifes-
tation of the amount of information is the number of nodes,
so we set k = ⌊N/ϱ⌋ × σ, where σ is a hyper-parameter to
control the ratio of global and local information.

Subgraph Training and Inferring
The label distribution between subgraphs with the same
meta-path is similar after completing. However, there are
multiple meta-paths, so to allow the model to converge bet-
ter during training, we package these subgraphs into batches
as

batchi = {ĥs
m

i ,m ∈M}. (8)

In this way, the label distribution between each batch is sim-
ilar. For any batchi, assuming that the node features are Xi

and the number of layers in the HGNN is L, we can get

Z
(l)
i = HGNN layer(Z

(l−1)
i , batchi)

Z
(0)
i = Xi +DT (Hi)

, (9)

where Z
(l)
i represents the output of the l-th layer when

HGNN is trained on batchi, and Hi is the label feature. For
the nodes in the training set, their label features are repre-
sented as one-hot vectors while other nodes are zero vec-
tors. To prevent over-fitting, we mask some label features in
the training set, and the masking ratio is controlled by the
hyper-parameter α. Furthermore, the dimensional transfor-
mation operation (DT) is utilized to match the dimensions
of the label feature matrix and node feature matrix, where a
learnable parameter matrix is used to perform this mapping.

Followed by recent work (Yu et al. 2020; Yang et al. 2023;
Frasca et al. 2020; Duan et al. 2022), we average the outputs
of each layer as the final output of the model to get a better
performance, which is expressed as

Zfinal
i = mean({Z(l)

i , l ∈ [0, L]}), (10)

then we train the model according to the downstream tasks.
For example, in the node classification task, we map the fi-
nal output Zfinali to the corresponding class by an mlp and
calculate the loss with the cross-entropy loss function as

Y pred
i = softmax(mlp(Zfinal

i))

loss = CrossEntropy(Y pred
i ,Yi)

, (11)

where Yi represents the ground truth for the training nodes
existing in batchi.

For any node vi in the test set, it is included in mul-
tiple subgraphs. For example, it may be included in sub-
graph ĥs

APA

ν corresponding to meta-path APA and sub-

graph ĥs
PFP

µ corresponding to meta-path PFP . Therefore,
during inferring, SubInfer obtains the label prediction prob-
ability for node vi on these subgraphs and averages them to
produce the final prediction result as

(Y pred)final =
1

|M |

M∑
m

(Y pred)m, (12)

where (Y pred)m represents the label prediction probability
for all test nodes on the set of subgraphs corresponding to
meta-path m.

Distributed Implementation
Since subgraphs do not interfere with each other, we can eas-
ily speed up training and inferring by distribution. Firstly, to
ensure load balancing between distributed nodes, we divide
the batch equally into T parts and distribute them to dif-
ferent nodes, where T is the number of distributed nodes.
Secondly, we initialize the HGNN model with random pa-
rameters on the master node and copy it to each distributed
node. Thirdly, in the training process, to ensure that the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9434

model parameters are consistent in all nodes, for each train-
ing batch we first aggregate the losses of all nodes to the
master node and then distribute the average loss to each node
to update the model parameters. This also ensures that dis-
tributed training has the same effect as single GPU training.
Finally, in the inferring stage, we collect the output results
of all nodes to the master node for processing and verify the
performance of the model on the validation set and test set.

Analysis of Complexity
Time. For the sake of convenience in the calculation, we
assume that N/ϱ is an integer and the time complexity of
the HGNN model is O(N2). In the pre-processing, the main
time overhead is using Metis to partition the semantic graph,
and the time complexity of partitioning the HG in parallel
can be approximated as O(NlogN). During the training,
when the model is trained on a single subgraph, the time
complexity is O((1 + σ)N2/ϱ2), so the time complexity on
all subgraphs isO((1+σ)N2|M |/ϱ), where |M | represents
the number of meta-paths. Moreover, we further accelerate
the training process by distribution. When the number of
distributed nodes is T , the final time complexity can be ap-
proximated asO((1+σ)N2|M |/(ϱT)). For example, on the
Ogbn-mag dataset, we set σ = 0.1, |M | = 2, ϱ = 100, T =
2, and the optimized time complexity is O(1.1N2/100),
which is about 1/100 of the original.
Memory. Assuming that the space complexity of the HGNN
model is O(N). The size of the subgraph obtained by par-
titioning and completing does not exceed (1 + σ)N/ϱ, so
the batch size is about (1 + σ)N |M |/ϱ. When training
and inferring models on the batch, the space complexity is
O((1+σ)N |M |/ϱ). Similarly, on the Ogbn-mag dataset, the
space complexity of training and inferring on the subgraph
is O(1.1N/50), about 1/50 of the original.

Experiment
In this section, employing the state-of-the-art HGNN back-
bones, we demonstrate the performance and efficiency of
SubInfer on five datasets. Moreover, we conduct ablation ex-
periments to determine the contribution of each component
and study the effect of hyper-parameters and meta-paths on
performance. Please see the Supplementary materials for de-
tails of experiment results on the MAG240M (Wang et al.
2020a) and the study of meta-paths.

Experimental Setup
Datasets. To validate the performance and efficiency of our
framework, we train both our framework (SubInfer) with
the baseline on five benchmark datasets: Ogbn-mag (Wang
et al. 2020a), DBLP (Yang et al. 2022), PubMed (Yang et al.
2022), Yelp (Yang et al. 2022) and Freebase(Lv et al. 2021).
The details of these datasets are provided in Table 2.
Baselines. We compare SubInfer with several state-
of-the-art baselines, including basic methods (R-GCN,
R-GAT), mini-batch-based methods (R-GraphSAGE, R-
GraphSAINT, R-GSN, and R-HGNN), partition-based
methods (Cluster-RGCN), and decoupled-based methods
(NARS, SeHGNN). Details of the experimental setup are
shown in Supplementary materials.

Dataset #Node/Edge type #Node #Edge
Ogbn-mag 4 / 7 1,939,743 42,222,014

DBLP 4 / 9 1,989,077 275,940,913
Freebase 8 / 64 180,098 2,115,376
PubMed 4 / 16 63,109 244,986

Yelp 4 / 7 8,2465 30,542,675

Table 2: Dataset statistics.

Node Classification
In the node classification task, we run the state-of-the-art
method and SubInfer on three datasets, Ogbn-mag, DBLP,
and Freebase. We show their time and memory overhead
during the training and inferring in Table 3 and demonstrate
the prediction accuracy on the test set.

As can be seen from Table 3, although R-GraphSAGE,
R-GraphSAINT, and Cluster-RGCN all optimize time and
memory overhead during training, they still require infer-
ring over the entire graph, resulting in a significant amount
of overhead. In contrast, SubInfer remarkably reduces time
and memory overhead by subgraph inferring, while main-
taining acceptable accuracy and even outperforming base-
lines on some datasets. For decoupled-based methods, as the
reduced memory to store message propagation results when
training and inferring on subgraphs, our framework uses less
memory, especially on the DBLP dataset, where SubInfer-
NARS requires only 8-9% of the original memory.

However, there are some anomalies in experimental re-
sults. For instance, R-GraphSAGE and R-GraphSAINT con-
sume less time when training on DBLP and Freebase
datasets. First, for these datasets, the size of the training
set is only a small fraction of the HG, and mini-batch-based
methods only need to learn embeddings of the nodes in the
training set, while partition-based methods have to gener-
ate embeddings for all nodes in the subgraph. Second, they
all use the neighbor sampling strategy, which can further
reduce the time overhead. Additionally, SubInfer-SeHGNN
performs better than SeHGNN on the DBLP dataset. Our
analysis reveals that the high heterogeneity of labels in the
DBLP dataset results in substantial noise, while partitioning
the subgraph effectively mitigates label heterogeneity, lead-
ing to higher-quality pseudo-labels for multi-stage training.

Link Prediction
In the link prediction task, several models are run on three
datasets (DBLP, PubMed, and Yelp), with the experimen-
tal results presented in Table 4. The partition-based meth-
ods result in two nodes of the edge being divided into dif-
ferent subgraphs, making it impossible to perform training
and inferring on separate subgraphs. Consequently, the ex-
perimental results for these methods are not shown. Fortu-
nately, since the decoupled-based method propagates only
in the pre-processing, while training and inferring are in-
dependent of the graph structure, SubInfer-SeHGNN and
SubInfer-NARS can be modified to meet the requirements of
the link prediction task. Instead of training on the subgraph,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9435

Ogbn-mag DBLP Freebase
Runtime/Memory Acc Runtime/Memory Acc Runtime/Memory Acc

Training Inferring Training Inferring Training Inferring

R-GCN 1.0h/40.6G 42s/29.5G 46.08 4.3h/75.6G 296s/62.7G 52.14 34s/8.1G 19s/6.4G 64.47

Mini-batch R-GraphSAGE* 22s/8.6G 42s/29.5G 47.51 12s/23.6G 296s/62.7G 50.40 4s/2.5G 19s/6.4G 61.42

R-GraphSAINT* 23s/6.9G 42s/29.5G 47.06 14s/20.8G 296s/62.7G 54.39 4s/1.9G 19s/6.4G 63.25

Partition Cluster-RGCN* 15s/7.4G 42s/29.5G 42.93 71s/21.9G 296s/62.7G 50.28 10s/2.1G 19s/6.4G 59.92
SubInfer-RGCN 6s/10.4G 9s/10.1G 47.56 23s/24.3G 26s/22.7G 52.14 4s/3.8G 3s/3.5G 63.40

R-GAT 1.2h/43.3G 51s/31.9G 49.66 5.0h/82.2G 372s/68.9G 51.30 42s/10.2G 25s/8.3G 65.63

Mini-batch R-GraphSAGE† 27s/9.8G 51s/31.9G 48.25 16s/25.7G 372s/68.9G 50.81 5s/2.9G 25s/8.3G 62.15

R-GraphSAINT† 27s/8.3G 51s/31.9G 47.96 19s/23.1G 372s/68.9G 54.10 6s/2.3G 25s/8.3G 63.61

Partition Cluster-RGCN† 19s/9.0G 51s/31.9G 46.27 80s/24.9G 372s/68.9G 51.84 12s/2.8G 25s/8.3G 61.34
SubInfer-RGAT 7s/11.5G 10s/11.3G 48.13 26s/26.1G 29s/23.4G 52.03 5s/4.3G 5s/3.9G 63.97

Mini-batch R-GSN 192s/19.8G 206s/20.3G 50.96 304s/32.5G 331s/34.1G 53.12 10s/6.7G 13s/7.4G 65.69
Partition SubInfer-RGSN 14s/16.2G 12s/15.7G 49.38 30s/30.8G 27s/28.9G 53.09 6s/5.9G 5s/5.2G 64.08

Mini-batch R-HGNN 221s/16.8G 140s/16.1G 52.41 338s/29.9G 213s/28.6G 54.22 12s/6.1G 9s/5.6G 66.02
Partition SubInfer-RHGNN 16s/15.8G 15s/15.2G 51.61 35s/27.4G 30s/25.9G 53.73 7s/5.4G 6s/5.0G 64.92

Decoupled NARS 15s/38.4G 13s/36.5G 52.96 19s/107G 18s/101G 54.70 2s/9.1G 1s/8.3G 65.80
Partition SubInfer-NARS 11s/7.1G 9s/6.4G 50.99 14s/9.4G 11s/8.6G 53.21 1s/3.4G 1s/2.9G 64.98

Decoupled SeHGNN 19s/16.9G 18s/14.7G 56.45 23s/48.8G 21s/45.9G 58.12 3s/5.6G 3s/5.0G 66.59
Partition SubInfer-SeHGNN 15s/5.2G 12s/5.0G 54.03 18s/7.3G 16s/6.9G 62.39 2s/3.0G 1s/2.7G 66.45

Table 3: Performance of node classification. ∗ means that using the R-GCN aggregator, while † means the R-GAT aggregator.

DBLP PubMed Yelp
Runtime/Memory

AUC/Pre* Runtime/Memory
AUC/Pre* Runtime/Memory

AUC/Pre*

Propagation Propagation Propagation

Decoupled NARS 106s/89.8G 58.55/56.57 6s/3.6G 67.09/63.90 7s/4.3G 73.40/69.53
Decoupled SubInfer-NARS 12s/5.8G 56.78/54.72 1s/1.0G 65.34/61.89 1s/1.6G 70.92/67.23

Decoupled SeHGNN 35s/36.7G 56.85/55.21 4s/1.4G 61.91/57.24 4s/1.9G 75.02/70.38
Decoupled SubInfer-SeHGNN 10s/2.2G 54.77/53.60 1s/0.6G 60.99/56.61 1s/1.0G 71.31/67.98

Table 4: Performance of link prediction. ∗ is short for Precision.

the message propagation is completed on subgraphs to ob-
tain the representation of all nodes before training. The train-
ing and inferring processes in them are identical to SeHGNN
and NARS, so the time and memory spent by them dur-
ing training and inferring are also similar to NARS and Se-
HGNN. To highlight the superiority of SubInfer, we present
the time and memory spent during the message propagation.

Experimental results indicate that without the label in-
formation and multi-stage training, the performance of Se-
HGNN is lower than NARS on some datasets. Additionally,
the performance gap between SubInfer and baselines is rel-
atively small, suggesting that the node features obtained by
propagating on the subgraph are similar to those obtained by
propagating on the entire graph. Finally, message propaga-
tion on the subgraph consumes significantly less time and
memory compared to the entire graph due to its smaller size
and independent nature, which enables parallel acceleration.

Ablation Study

In the ablation experiments, the necessity and effective-
ness of each component of SubInfer are demonstrated on
the Ogbn-mag, and experimental results are presented in
Table 5. The model I, involves dividing the entire graph
into 100 subgraphs using Metis and then training and in-
ferring directly on the subgraphs without any further pro-
cessing. The model II, adds global information to complete
the subgraphs, without other changes compared to model I.
Model III randomly divides the entire graph into ϱ parts,
and model IV partitions the large-scale HG with meta-paths.
Other components are the same as model II.

A detailed analysis of the final experimental results re-
veals that training and inferring directly on the subgraphs
leads to poor results. The large differences in label distri-
bution between subgraphs, make it difficult for the HGNN

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9436

0 50 100 150 200 250 300
Epoch

0.1
0.2
0.3
0.4
0.5

A
cc

p=300

 p=400
 p=500

=100p
=200p

(a) ϱ on Ogbn-mag

0 50 100 150 200 250 300
Epoch

0.1

0.2

0.3A
cc

0.5

0.4

=0.02
=0.04
=0.06
=0.08
=0.1

(b) σ on Ogbn-mag

0 50 100 150 200 250 300
Epoch

0.1
0.2
0.3
0.4
0.5

A
cc

=0.1
=0.3
=0.5
=0.7
=0.9

(c) α on Ogbn-mag

Figure 2: Hyper-parameter analysis.

Model Description Train Acc Test Acc
I Metis 69.61 35.07
II Metis + Completion* 75.59 47.08

III Random†+ Completion* 71.49 39.40

IV SPMP‡+ Completion* 77.57 48.13

Table 5: Ablation experiments. ∗ indicates completing the
subgraphs with global information, † means random parti-
tion, and ‡ denotes a subgraph partition with meta-paths.

model to converge. Additionally, inferring from subgraphs
results in the loss of much information. Compared to model
I, model II performs better on both training and test sets.
This suggests that global information can reduce label dis-
tribution differences between subgraphs and provide more
valid information. A comparison between models II and
III indicates that information closely related to nodes is
also important, and partitioning with Metis effectively pre-
serves it. Finally, by partitioning large-scale HGs with meta-
paths, various semantic information is captured from differ-
ent views, which helps to improve the model’s performance.

Hyper-parameter Study
In this section, the effect of hyper-parameters is analyzed.
The same conclusions are reached for all datasets, so only
the results for Ogbn-mag is presented in Figure 2. Moreover,
the model used is SubInfer-RGAT.

The number of subgraphs in a single partition ϱ. As
shown in Figure 2(a), the model’s performance deteriorates
as the number of partitions increases due to the greater loss
of information. Furthermore, the convergence speed of the
model under different settings, indicates that completing
subgraphs with global information can effectively address
the difficulty in subgraph training.

The ratio of the global information σ. The results is
presented in Figure 2(b). As indicated by Eq. 6 and k =
⌊N/ϱ⌋ × σ, a larger value of parameter σ results in smaller
differences in label distribution between subgraphs, allow-
ing the model to converge faster. Furthermore, increased in-
formation retention within subgraphs and enhanced perfor-
mance are achieved with a higher value of σ.

Masking ratio of label features α. The results is pre-
sented in Figure 2(c). As the masking rate α increases,

the model’s performance first increases and then decreases.
Since low α leads to over-fitting on the training set, resulting
in a decrease in generalization ability. Conversely, a partic-
ularly high α leads to under-fitting, resulting in poor perfor-
mance in subgraph inferring.

Related Work
In recent years, large-scale graph representation learning
has attracted more and more attention, and many related
works have been proposed, which fall into three broad cat-
egories. 1. Mini-batch-based methods, pack the required
nodes and edges into a batch, which can significantly re-
duce the time and memory overhead for training, such as
GraphSAGE (Hamilton, Ying, and Leskovec 2017), Graph-
SAINT (Zeng et al. 2019), HGT (Hu et al. 2020) and R-
HGNN (Yu et al. 2023). Moreover, the R-GraphSAGE and
R-GraphSAINT we used are extended from GraphSAGE
and GraphSAINT by relation-wise aggregation, which is
proposed in R-GCN (Schlichtkrull et al. 2018). 2. Partition-
based methods, such as Cluster-GCN (Chiang et al. 2019)
and Ada-GNN (Luo et al. 2022), obtain a set of subgraphs
by partitioning and then train the model on the subgraphs.
Similarly, Cluster-RGCN is an extension of Cluster-GCN.
3. Decoupled-based methods, by decoupling the message
propagation and update operations of GNN, have greatly ac-
celerated the speed of model training and inferring, such as
SGC (Wu et al. 2019), LightGCN (He et al. 2020), PPRGO
(Bojchevski et al. 2020), SIGN (Frasca et al. 2020), xGCN
(Song et al. 2023), and SAGN (Sun, Gu, and Hu 2021). In
addition, there are some decoupled-based methods designed
for HGs, like NARS (Yu et al. 2020) and SeHGNN (Yang
et al. 2023). However, these methods require performing in-
ferring or message propagation on the entire graph, resulting
in significant overhead.

Conclusion
We propose a novel distributed HGNN framework based
on Subgraph Training and Inferring (SubInfer). The frame-
work includes three operations: subgraph partition, subgraph
completion, and subgraph training and inferring, which can
quickly and effectively learn the representation of large-
scale HGs. Experiments on five datasets show that using
our framework, the baselines require less time and memory
for both training and inferring while maintaining acceptable
performance compared to the entire graph inferring.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9437

Acknowledgments
This work is supported by the National Natural Science
Foundation of China (No. 62172174, No.61932004).

References
Blondel, V. D.; Guillaume, J.-L.; Lambiotte, R.; and Lefeb-
vre, E. 2008. Fast unfolding of communities in large net-
works. Journal of statistical mechanics: theory and experi-
ment, 2008(10): P10008.
Bojchevski, A.; Klicpera, J.; Perozzi, B.; Kapoor, A.; Blais,
M.; Rózemberczki, B.; Lukasik, M.; and Günnemann, S.
2020. Scaling graph neural networks with approximate
pagerank. In Proceedings of the 26th ACM SIGKDD inter-
national conference on knowledge discovery and data min-
ing, 2464–2473.
Chiang, W.-L.; Liu, X.; Si, S.; Li, Y.; Bengio, S.; and Hsieh,
C.-J. 2019. Cluster-gcn: An efficient algorithm for training
deep and large graph convolutional networks. In Proceed-
ings of the 25th ACM SIGKDD international conference on
knowledge discovery and data mining, 257–266.
Duan, K.; Liu, Z.; Wang, P.; Zheng, W.; Zhou, K.; Chen,
T.; Hu, X.; and Wang, Z. 2022. A comprehensive study on
large-scale graph training: Benchmarking and rethinking. In
Proceddings of the Thirty-fifth Conference on Neural Infor-
mation Processing Systems, 5376–5389.
Frasca, F.; Rossi, E.; Eynard, D.; Chamberlain, B.; Bron-
stein, M.; and Monti, F. 2020. SIGN: Scalable Inception
Graph Neural Networks. In Proceedings of the ICML 2020
Workshop on Graph Representation Learning and Beyond,
1–17.
Hamilton, W. L.; Ying, Z.; and Leskovec, J. 2017. Inductive
Representation Learning on Large Graphs. In Proceeding of
the Thirtieth Conference on Neural Information Processing
Systems, 1024–1034.
He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; and Wang,
M. 2020. Lightgcn: Simplifying and powering graph convo-
lution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and
development in Information Retrieval, 639–648.
Hu, Z.; Dong, Y.; Wang, K.; and Sun, Y. 2020. Heteroge-
neous graph transformer. In Proceedings of the Web Confer-
ence 2020, 2704–2710.
Huang, H.; Shi, R.; Zhou, W.; Wang, X.; Jin, H.; and Fu, X.
2021. Temporal Heterogeneous Information Network Em-
bedding. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, 1470–1476.
Karypis, G.; and Kumar, V. 1998. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM
Journal on scientific Computing, 20(1): 359–392.
Kong, J.; Li, W.; Liao, B.; Qiu, J.; Cai, Y.; Zhu, J.; Zhang, S.;
et al. 2021. Learning Large-scale Network Embedding from
Representative Subgraph. arXiv preprint arXiv:2112.01442.
Kullback, S.; and Leibler, R. A. 1951. On information and
sufficiency. The annals of mathematical statistics, 22(1):
79–86.

Li, X.; Kao, B.; Ren, Z.; and Yin, D. 2019. Spectral cluster-
ing in heterogeneous information networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, 4221–
4228.
Luo, J.; He, M.; Pan, W.; and Ming, Z. 2023. BGNN:
Behavior-aware graph neural network for heterogeneous
session-based recommendation. Frontiers of Computer Sci-
ence, 17(5): 175336.
Luo, Z.; Lian, J.; Huang, H.; Jin, H.; and Xie, X. 2022. Ada-
GNN: Adapting to Local Patterns for Improving Graph Neu-
ral Networks. In Proceedings of the 15th ACM International
Conference on Web Search and Data Mining, 638–647.
Lv, Q.; Ding, M.; Liu, Q.; Chen, Y.; Feng, W.; He, S.; Zhou,
C.; Jiang, J.; Dong, Y.; and Tang, J. 2021. Are we really
making much progress? Revisiting, benchmarking and refin-
ing heterogeneous graph neural networks. In Proceedings of
the 27th ACM SIGKDD conference on knowledge discovery
and data mining, 1150–1160.
Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; Berg, R. v. d.;
Titov, I.; and Welling, M. 2018. Modeling relational data
with graph convolutional networks. In Proceedings of the
15th International Conference on Extended Semantic Web
Conference, 593–607.
Shi, R.; Liang, T.; Peng, H.; Jiang, L.; and Dai, Q. 2020.
HEAM: Heterogeneous Network Embedding with Auto-
matic Meta-path Construction. In Proceedings of the In-
ternational Conference on Knowledge Science, Engineering
and Management, 304–315.
Song, X.; Lian, J.; Huang, H.; Luo, Z.; Zhou, W.; Lin, X.;
Wu, M.; Li, C.; Xie, X.; and Jin, H. 2023. xGCN: An Ex-
treme Graph Convolutional Network for Large-scale Social
Link Prediction. In Proceedings of the ACM Web Confer-
ence 2023, 349–359.
Sun, C.; Gu, H.; and Hu, J. 2021. Scalable and adap-
tive graph neural networks with self-label-enhanced train-
ing. arXiv preprint arXiv:2104.09376.
Sun, Y.; Yu, Y.; and Han, J. 2009. Ranking-based cluster-
ing of heterogeneous information networks with star net-
work schema. In Proceedings of the 15th ACM SIGKDD
international conference on knowledge discovery and data
mining, 797–806.
Wang, K.; Shen, Z.; Huang, C.; Wu, C.-H.; Dong, Y.; and
Kanakia, A. 2020a. Microsoft academic graph: When ex-
perts are not enough. Quantitative Science Studies, 1(1):
396–413.
Wang, X.; Lu, Y.; Shi, C.; Wang, R.; Cui, P.; and Mou, S.
2020b. Dynamic heterogeneous information network em-
bedding with meta-path based proximity. IEEE Transactions
on Knowledge and Data Engineering, 34(3): 1117–1132.
Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; and Wein-
berger, K. 2019. Simplifying graph convolutional networks.
In Proceedings of the International conference on machine
learning, 6861–6871.
Yang, C.; Xiao, Y.; Zhang, Y.; Sun, Y.; and Han, J. 2022.
Heterogeneous Network Representation Learning: A Uni-
fied Framework With Survey and Benchmark. IEEE Trans-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9438

actions on Knowledge and Data Engineering, 34(10): 4854–
4873.
Yang, X.; Yan, M.; Pan, S.; Ye, X.; and Fan, D. 2023. Sim-
ple and Efficient Heterogeneous Graph Neural Network. In
Proceedings of the the AAAI Conference on Artificial Intel-
ligence, 10816–10824.
Yu, L.; Shen, J.; Li, J.; and Lerer, A. 2020. Scalable Graph
Neural Networks for Heterogeneous Graphs. arXiv preprint
arXiv:2011.09679.
Yu, L.; Sun, L.; Du, B.; Liu, C.; Lv, W.; and Xiong, H. 2023.
Heterogeneous Graph Representation Learning With Rela-
tion Awareness. IEEE Transactions on Knowledge and Data
Engineering, 35(6): 5935–5947.
Zeng, H.; Zhou, H.; Srivastava, A.; Kannan, R.; and
Prasanna, V. 2019. GraphSAINT: Graph Sampling Based
Inductive Learning Method. In Proceedings of the Interna-
tional Conference on Learning Representations, 1–19.
Zeng, Y.; Li, Z.; Chen, Z.; and Ma, H. 2023. Aspect-
level sentiment analysis based on semantic heterogeneous
graph convolutional network. Frontiers of Computer Sci-
ence, 17(6): 176340.
Zhou, W.; Huang, H.; Shi, R.; Song, X.; Lin, X.; Wang, X.;
and Jin, H. 2023. Temporal Heterogeneous Information Net-
work Embedding via Semantic Evolution. IEEE Transac-
tions on Knowledge and Data Engineering, 35(12): 13031–
13042.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9439

