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Abstract

Understanding the emotional polarity of multimodal contents
with metaphorical characteristics, e.g., memes, poses a signif-
icant challenge in Multimodal Emotion Recognition (MER).
Previous MER research has overlooked the phenomenon of
metaphorical alignment in multimedia contents, which in-
volves non-literal associations between concepts to convey
implicit emotional tones. Metaphor-agnostic MER methods
may be misinformed by the isolated unimodal emotions,
which are distinct from the real emotions blended in multi-
modal metaphors. Moreover, contextual semantics can fur-
ther affect the emotions associated with similar metaphors,
leading to the challenge of maintaining contextual compat-
ibility. To address the issue of metaphorical alignment in
MER, we propose to leverage a conditional generative ap-
proach for capturing metaphorical analogies. Our approach
formulates schematic prompts and corresponding references
based on theoretical foundations, which allows the model to
better grasp metaphorical nuances. To maintain contextual
sensitivity, we incorporate a disentangled contrastive match-
ing mechanism, which undergoes curricular adjustment to
regulate its intensity during the learning process. The auto-
matic and human evaluation experiments on two benchmarks
prove that, our model provides considerable and stable im-
provements in recognizing multimodal emotions.

Introduction
Multimodal Emotion Recognition (MER) over multimedia
contents plays a crucial role in facilitating interactions and
offering timely interventions to sustain social relationships
(Qiu, Sekhar, and Singhal 2023). Social media platforms
like Twitter, Facebook, etc., have recently become fertile
ground for the creation and dissemination of emotional con-
tents (Zhang et al. 2021; Alzu’bi et al. 2023). Recognizing
these emotions holds immense practical value, which en-
ables the capture and analysis of genuine public attitudes
and meanings in multimedia. However, multimedia contents
often incorporates abstract metaphorical characteristics, (Xu
et al. 2022), which establish non-literal similarities and im-
plicitly associate a physical primary concept with an abstract
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Figure 1: Different from text metaphors with explicit anal-
ogy: {[A] is as [similarity] as [B]}, multimodal metaphors
are implicitly established based on concepts across heteroge-
neous modalities. Similar metaphors (i.e., Humans are mon-
keys) can be embedded in various contexts to show different
emotions (i.e., hate and sorrow).

secondary concept. Such metaphorical alignments not only
express information, but also encapsulate implicit emotions
blended in multimodal metaphors, which differ significantly
from isolated unimodal emotions they may initially appear
to represent. Therefore, it is crucial to capture metaphorical
alignment when recognizing the implicit emotions embed-
ded in multimedia contents, which has drawn little attention
from previous MER research.

Directly applying methods from the well-established field
of Metaphor Analysis to MER is difficult. As previous re-
search mainly analyzes textual metaphors in the form of
{(primary concept) is as (relationship) as (secondary con-
cept)}, commonly known as similes with explicit metaphor-
ical characteristics. However, this explicit form does not
align with real-world situations of MER, as Internet users
are more likely to express emotions through multimodal
contents, whose metaphorizations are implicitly established
across heterogeneous modalities. Although enabling works
of multimodal metaphor analysis have been proposed (Xu
et al. 2022) with the introduction of high-quality bench-
marks, their methods are relatively simplified through early
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fusion, which neglected the modeling of metaphorical align-
ment to support complicated MER tasks.

Recognizing the underlying emotions embedded in
metaphorical alignment is particularly challenging. This is
primarily due to the fact metaphor concepts can be grounded
in different domains (i.e., source and target domain) across
heterogeneous modalities, which are blended together to ex-
press an implicit emotion. Basically, the emotional attributes
of metaphors are not simply embedded in individual proper-
ties of isolated primary or secondary concepts, but results
of their meaning composition and interaction based on non-
literal relationship or similitude (Dankers et al. 2019). For
instance, in Figure 1, the blended multimodal emotions of
hate or sorrow are embedded neither in the isolated con-
cepts of black children in the text, nor the monkey in the
image, but actually in their non-literal associations. More-
over, contents with similar metaphorical alignment may ex-
press different emotions considering the complicated con-
text. Thus for coherent emotion recognition, the sensitivity
of metaphor concepts with contextual semantics should be
considered (Fu et al. 2020). While the interaction between
metaphor concepts and the overall context is guided only by
task-specific classification loss, which is relatively weak for
providing supervision to maintain contextual compatibility.

In this paper, we propose to capture metaphorical
alignment (CAMEL) based on conditional generation for
MER, which learns to model metaphorical analogy compat-
ible with multimodal contextual semantics. Specifically, to
capture the metaphorical alignment implicitly established,
we get inspiration from two metaphor theories (Wilks 1975;
Norvig 1985). Schematic prompts and corresponding refer-
ences are first formulated based on these theoretical founda-
tions. The model’s capacity to capture metaphorical analogy
and non-literal interactions is then enhanced by optimizing
in a conditional generative manner. Considering metaphors’
compatibility with contextual semantics, we exploit a con-
trastive matching method based on disentangling learning to
maintain contextual sensitivity, whose intensity gets curric-
ular adjustment by controlling the annealing temperature to
facilitate coherent learning. Our contributions are summa-
rized as follows:

• We first notice the phenomenon of metaphorical align-
ment in Multimodal Emotion Recognition, which is es-
sential for understanding the underlying emotions of
multimedia contents. Meanwhile, we propose a frame-
work called CAMEL to capture metaphorical alignment
compatible with contextual semantics.

• We formulate schematic prompts and references to in-
struct metaphorical alignment modeling, which is ac-
complished by optimization in a multimodal generative
manner. Moreover, we exploit a disentangled contrastive
method with curricular learning, which helps to maintain
contextual sensitivity for metaphorical characteristics.

• We conduct extensive experiments on multiple multi-
model metaphor detection tasks. The quantitative, quali-
tative, and human evaluation analyses demonstrate that,
our CAMEL can provide considerable and stable im-
provements for detecting metaphor attributes.

Related Work
In this section, we briefly introduce the recent research on
multimodal emotion recognition and metaphor analysis.

Multimodal Emotion Recognition
Early works mainly considered the problem of informa-
tion fusion for different modalities. For example, (Tsai
et al. 2019) applies a multimodal transformer with pairwise
cross attention to fuse different modalities. (Zadeh et al.
2018) synchronizes multimodal sequences using a multi-
view gated memory that stores intra-view and cross-view
interactions through time. More recently, some frameworks
started to include additional context for knowledge enhance-
ment, including speaker information (Shenoy and Sardana
2020; Wang et al. 2021), inter or intra relations between
videos (Joshi et al. 2022; Fu et al. 2021), and topic informa-
tion (Zhu et al. 2021) to improve emotion detection. How-
ever, the metaphorical alignment between different modali-
ties are still unexplored in multimodal emotion recognition,
which is the research emphasis of this paper.

Metaphor Analysis
Metaphor analysis is a relatively new task in the computa-
tional field of NLP and Multimodal learning. Early multi-
modal research (Shutova, Kiela, and Maillard 2016) aimed
at learning multimodal representations for textual metaphors
by introducing visual information. For example, (Su et al.
2021) incorporated visual embeddings of metaphor concepts
by selecting top-k corresponding Google images. How-
ever, the metaphorical mappings they studied are not es-
tablished across modalities, and are not inherently multi-
modal interactive. Later, methods applying metaphor anno-
tations as knowledge supplements have been proposed. For
instance, (Zhang et al. 2021; Xu et al. 2022) proposed to
add metaphorical characteristics into input sequences for
detecting their attributes. And more recently, benchmarks
containing metaphors grounded in heterogeneous modalities
have been proposed by (Chakrabarty et al. 2023; Hwang and
Shwartz 2023) to facilitate downstream tasks.

Disentangling Learning
Disentangling learning was firstly defined in (Bengio,
Courville, and Vincent 2013) as a factor representation,
which can be leveraged in a supervised (Hazarika, Zimmer-
mann, and Poria 2020; Gröndahl et al. 2018) or unsuper-
vised manner (Burgess et al. 2018; Chen et al. 2018; Zhu
et al. 2022). Disentangled learning has been applied in vari-
ous scenarios related to multimodal learning (Liu et al. 2022;
Mo et al. 2021; Pu et al. 2020). For instance, (Ma et al.
2019, 2020; Guo et al. 2022) exploited disentangling learn-
ing in recommendation systems to learn users’ preferences
on different items. (Dupont 2018) disentangled representa-
tions to learn factors that correspond to various characteris-
tics of handwriting numbers. Considering the social media
scenarios, (Lee et al. 2021) disentangled the latent multi-
modal representations into separate categories of target en-
tities, which helps to improve the performance of detecting
online hate. (Yang et al. 2022) has measured the cross-model
inconsistency based on disentangled representations.
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Figure 2: Model architecture of our CAMEL, which is optimized through a combinational objective of three parts, including
generation loss for metaphorical alignment, contrastive loss for maintaining contextual sensitivity, and task-specific loss.

Method
Method Overview
In this section, we first give a brief overview of our
CAMEL, which has four main parts: 1) Given a meme pic-
ture, text, and context captions. CAMEL first formulates
schematic prompts and extracts multimodal features based
on transformer-style encoders, which are initialized with dif-
ferent parameters. 2) Instruct CAMEL to learn metaphorical
alignment through multimodal generation based on multi-
modal features, schematic prompts, and corresponding ref-
erences. 3) Incorporate contextual semantics through the
multi-head attention mechanism. Then maintain contextual
sensitivity by disentangling contrastive matching. 4) Decode
hidden states to optimize the combinational objective.

Multimodal Feature Extraction
This section introduces the transformer-style encoders,
which are leveraged for extracting multimodal features of
the input meme text, picture, and caption sentence.

In our method, Transformer encoders (Vaswani et al.
2017) are leveraged to extract the text visual features sep-
arately. Given a meme image I , with its OCR text To, and
caption text Tc. The sequences of visual and text embed-
dings EI ,E

L
T ,E

L
C are obtained through:

EI = Transformer(I; θuI ),

EL
T ,E

L
C = Transformer(To, Tc; θ

u
T ),

(1)

where the superscript of EL denotes the encoded embed-
dings containing literal charactersitics. Besides, an addi-
tional [CLS] token is added to represent the global features.

Metaphorical Alignment Modeling
This part shows how to instruct CAMEL to learn metaphor-
ical alignment with schematic prompts, references, and op-
timization in a multimodal generative manner.

The schematic prompts are first formulated based on the
CMT (Norvig 1985) and SPV (Wilks 1975) metaphor theo-
ries. Differently, CMT explains metaphors as property trans-
formations, while SPV focuses more on context breaking.
Thus in our methods, two kinds of schematic prompt text Pc

and Ps are designed as:

Pc = {The[source]in[Sm]is mapped as[target]in[Tm]},

Ps = {The[source]breaks the[target]context of[Tc]},
where [source], [target], [Sm], [Tm] are the source do-
mains, target domains, source modality, and target modal-
ity in annotations. Tc is the caption text, obtained through
a pre-trained multimodal captioner named BLIP (Li et al.
2022). The embeddings of prompts are obtained through an-
other Transformer encoder different from equation 1, which
is initialized with parameters pretrained for generation.

EM
T = Transformer(To, Pc,s; θ

g
T ). (2)

The superscript of EM denotes the embeddings contain-
ing metaphorical characteristics. Then we feed EI ,EM

T ob-
tained in Equation 1 to an image-grounded text decoder,
which has similar architecture to encoders except that, it re-
places the bi-directional self-attention layers in the encoder
with causal self-attention, and realizes additional cross-
attention layers to model vision-language interactions. The
other similar forward processes to encoders are not de-
scribed repetitively. Final representations Hk after k such
decoder layers are used to make predictions through a
feature-to-word predictive matrix W pre ∈ Rdh×V :

{wi}N+1
i=2 = (Softmax(HkW pre + bpre), (3)

where V is the vocabulary size. For generative models pa-
rameterized by θ, one common strategy to learn the param-
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eters is Maximum Likelihood Estimation (MLE):

θ∗ = argmax
θ

Es∼p(s)
log

N+1∏
i=2

pθ(si|s1, . . . , si−1), (4)

where s = (s1, s2 . . . , sN ) is an observed sequence sam-
ple from the underlying distribution p(s). This objective is
realized by adopting the standard Cross Entropy (CE) loss
based on generative logits from Equation 3 and their labels
(the next token id), which is termed as the MLE loss LMLE .

Contextual Semantic Adaption
This module aims to incorporate contextual knowledge
to eliminate semantic gaps based on multi-head attention,
which are caused by optimizing parameters and objectives.

The heterogeneity of features EL, EM leads to two main
gaps in the semantic and encoding aspects. The semantic
gap means that the embeddings EL, EM are latent vectors
of different text inputs (To, Pc,s) as defined above, and con-
tain literal and metaphorical relations respectively. Encod-
ing gap means that EL, EM are encoded by transformer
encoders with different initialized parameters (θuT , θ

g
T ) with

different pretrained knowledge as shown in Equation 1. In
order to further better fuse the two features, we first apply
linear transformations to achieve space translation:

FL = WL(EI ⊕EL
T ) + bL,

FM = W gen(EI ⊕EM
T ) + bgen.

(5)

Then FL, FM are fed into a layer normalization, followed
by multi-head cross-domain attention. Specifically, for the i-
th head cross-domain attention CDAi, the two input features
FL, FM are interacted based on the dot-product attention:

CDAi = σ

(
[WQiF

M ]T [WKiF
L]√

dh/m

)
W Vi

FL, (6)

where {WQi
,WKi

,W Vi
} ∈ Rdh/m×dh are learnable pa-

rameters corresponding to queries, keys, and values respec-
tively. Then the output of m such heads is concatenated to-
gether, followed by linear transformation and residual con-
nection to get the enriched representation RL:

RL = FL +Wm[CDA1,CDA2, ...,CDAm]. (7)

Disentangled Contrastive Matching
This module aims to disentangle and match the contextual
semantics with literal representations EL contrastively, so
that context sensitivity can be well maintained.

There is an assumption that each meme concentrates on
only one specific kind of contextual semantics, the cases
of compound expressions are not considered. Specifically,
we maximize the likelihood of the latent kinds of contex-
tual semantics presenting in the metaphorical features EM ,
while minimizing the absent ones. Such an argmax opera-
tion is discontinuous and non-differentiable, thus Straight-
Through Gumbel-Softmax (STGS) function is applied over
FM to reparameterizing this process. We begin with adding

the Gumble noise δ to the pooled output of the multimodal
classified feature FM :

NM = log(WM
c FM [0] + bMc )− log(−log(δ)), (8)

where δ ∈ Uniform(0, 1) is the gumble noise. Different
from the previous approaches (Lee et al. 2021), which adopt
the one-hot operation to sample categorical labels from the
Gumbel-Softmax distribution, and then applied the persudo
labels to provide supervision for other representations. This
hard sampling operation lost the gradient for the source rep-
resentations, thus we apply the smooth approximation by
adopting an annealing schedule to gradually reduce the tem-
perature based on curriculum learning:

DM
i =

exp(NM
i /τk)∑

i exp(N
M
i /τk)

, (9)

τk =
τk−1

exp(σ[Lk−2 − Lk−1]/Lk−2)
, (10)

where τk > 0 is the temperature in the k-th epoch, which
controls the smoothness of the Gumble Softmax distribu-
tion. The closer τk gets to 0, the more the distribution ap-
proximates a one-hot vector, and the more severe the gradi-
ent disappears. We adopt a curriculum learning approach to
gradually reduce the temperature τk in the k-th epoch. Cur-
riculum learning is a training strategy that mimics the human
learning process, which helps to transfer knowledge from
simple to difficult. Inspired by previous work (Wei et al.
2021; Yang et al. 2022), we propose a self-paced anneal-
ing schedule according to the difficulty of training samples
in terms of losses, as shown in the equation 10, Lk−1, Lk−2

denote the average total loss (defined in equation 15) of the
last two epochs. When the samples are ‘hard’ to learn, the
equation τk gets larger to adopt higher smoothness of distri-
bution with more gradients. The sampled DM is leveraged
to provide supervision for literal representations FL:

DL
i =

WL
c F

L
i [0] + bLc∑

i(W
L
c F

L
i [0] + bLc )

, (11)

LDe = KL(DM ||DL) =
∑
i

DM
i log(

DM
i

DL
i

). (12)

Objective Optimization
For MER tasks, the global feature of multimodal enriched
representation RL is fed into a fully connected layer, fol-
lowed by a softmax function to get the logits for classifica-
tion:

p(y|RL) = Softmax(RL[0]WL + bL), (13)
where WL ∈ RCtask×dh , Ctask is the category number
of the downstream tasks. Based on the logits, the standard
cross-entropy loss function is realized:

LCLS = − 1

|D|

|D|∑
k=1

logp(yk|RL
k ). (14)

And finally, the model parameters are optimized through
backpropagation with minimizing a combinational loss
function L as the final objective function:

L = αLCLS + βLMLE + γLDe. (15)
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Experiment
In this section, we conduct extensive experiments on various
metaphor detection tasks. We first introduce the datasets, the
compared baselines, as well as evaluation metrics, and then
we display the quantitative results with further analysis.

Dataset
To verify the effectiveness of our method in capturing
metaphorical alignment for emotion recognition, we con-
duct experiments on five tasks with two benchmarks, in-
cluding MET-Meme (Xu et al. 2022) and MemeCap
(Hwang and Shwartz 2023), to evaluate the performance
of metaphorical aligning and recognizing emotions. MET-
Meme contains 4000 English memes with rich annotations
for their metaphor characteristics and MER labels, such as
metaphor occurrence, sentiment, offensiveness, etc. Meme-
Cap contains 6.3K memes with rich semantic and literal
captions, as well as detailed visual metaphors.

Evaluation Metrics
Automatic Evaluation To assess the downstream classi-
fication task performance, we report Accuracy (Acc) and
weighted F1 score (W-F1) as measurement indicators. Ac-
curacy shows the ratio of the number of correct predictions
to the total number of input samples. Weighted F1 makes
overall evaluations based on the mean of all per-class F1
scores while considering the support of each class.

Manual Evaluation To further verify metaphorical align-
ing results, we conduct human evaluations on MET-Meme.
Specifically, for each meme in the test set, we get five
schematic interpretations as the outputs of metaphorical
aligning, which are generated by our two models and three
strong baselines through fine-tuning and API. As some large
models (i.e., Flamingo) refuse to give answers based on
harmful inputs, we finally got 111 valid memes with 555
interpretations for comparison. Then we ask annotators to
evaluate them on three aspects: Grammar, Validity and Ef-
fectiveness. For grammar, annotators are required to eval-
uate the fluency and semantic coherence of each interpreta-
tion and give ratings from 1-5. Then we calculate the average
rating score as the final results of Grammar. We also mea-
sure Validity by calculating the overall ratings Rating, and
the proportion (Proportion) of results with valid aligning
results. Moreover, for the Effectiveness reflecting whether
the aligning results can provide effective contributions for
recognizing emotions, we have annotators to rate (0-2) and
calculate proportions for effective results. For each meme,
we have 2 groups of 3 NLP experts from research institutes,
who are professionals in emotion and metaphor analysis.

Comparisons with Baselines Considering the various
emotion recognition tasks, we compare the model perfor-
mance with a set of widely-used unimodal and multimodal
baselines, including universal and task-specific competi-
tive models: 1) ResNet (He et al. 2016): a famous vi-
sual model pre-trained on ImageNet with residual connec-
tion, 2) PLMs influential pre-trained language models with
transformer-styles (encoder): BERT (Devlin et al. 2019),

RoBERTa (Liu et al. 2019) and BERTweet (Nguyen, Vu,
and Nguyen 2020), 3) EFcapt (Khan and Fu 2021): a
multimodal framework with modified transformer architec-
tures, which leveraged distilled context information for fine-
grained multimodal affective computing, 4) CLIP This is a
visual-language model pre-trained using contrastive learn-
ing (Radford et al. 2021) on 400M image–text pairs from
the Internet. 5) TOT (Zhang et al. 2023): a novel multi-
modal framework based on topology-aware optimal trans-
port, which aims to detect multimodal offensive memes in
social media platforms, 6) BLIP (Li et al. 2022): a vision-
language pre-trained framework, which transfers flexibly to
both vision-language understanding and generation tasks by
bootstrapping the captions of the noisy web data. TOT and
BLIP are previous task-specific and universal state-of-the-
art methods in our baselines respectively.

Experimental Results
In this section, we report the experimental results of a series
of metaphor attribute detection tasks and interpretation eval-
uations to conduct a quantitative analysis. We implement
three variations of our model: CAMEL-D (direct concate-
nating metaphor concepts), CAMEL-C (CMT prompts), and
CAMEL-S (SPV prompts). CAMEL-C takes the caption as a
part of inputs to learn the concept mapping. While CAMEL-
S takes the caption as part of the learning objectives. The
overall performances of approaches are shown in Table 1.

Automatic Evaluation To verify the superiority of our
model in capturing metaphorical alignment for MER, we
perform automatic evaluations on multiple tasks in Table 1.

Observations can be found that, firstly, unimodal base-
lines are not satisfying compared to multimodal ones. This is
mainly because unimodal inputs only contain the metaphor
patterns based on intra-modal mappings, while neglect-
ing the inter-modal complementary relations (Yu and Jiang
2019). Secondly, for multimodal approaches, there are con-
siderable margins (2.85/3.22/4.23/2.43/3.12 for W-F1) be-
tween our model and the second-best model (BLIPc) on the
MI/MTC/SA/OD/ID tasks, which demonstrates the stable
and generalized improvements of our model. The equipped
ability of metaphorical alignment modeling enables our
model to understand metaphors in the implicit context, lead-
ing to CAMEL’s advanced performance.

Furthermore, for the two variations of our model,
CAMEL-S has outperformed CAMEL-C in most of the
cases. This phenomenon may be caused by two reasons.
Firstly, memes are derivative products with lots of graffiti,
which always leads to the metaphorical phenomenon of con-
text broken, corresponding to the SPV theory that CAMEL-
S is established on. Secondly, CAMEL-C adopts an accurate
searching strategy to match concrete metaphorical concepts,
which makes it relatively hard for a generative model to pre-
dict accurate concepts in source or target domains. While
CAMEL-S is trained to analyze the metaphors from a com-
prehensive perspective at the contextual level.

Mannual Evaluation To evaluate the metaphorical align-
ment results, including their grammar fluency, validity in
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Models
M-F1↑ Acc↑

Metaphor Emotion Metaphor Emotion
MI MTC SA OD ID MI MTC SA OD ID

Unimodal

ResNet 76.38 52.17 20.96 61.43 30.87 80.44 51.07 24.78 68.74 38.41
BERT 73.22 52.63 21.88 61.15 33.27 79.35 53.18 24.77 68.11 39.13
RoBERTa 73.91 53.75 22.84 61.33 33.56 79.84 55.73 25.07 68.02 39.27
BERTweet 74.54 54.22 23.76 61.91 34.13 80.36 56.44 25.12 68.44 39.73

Multimodal

EFcapt 79.67 55.76 24.83 64.25 34.60 82.67 56.53 26.07 69.24 40.39
CLIP 80.44 56.96 25.37 65.24 35.48 82.13 58.14 25.42 69.93 40.73
TOT 81.07 58.52 - 66.53 37.19 82.93 60.47 - 70.72 41.27
BLIP-V 82.45 59.18 26.91 67.82 38.53 83.42 59.39 26.84 70.37 42.07
BLIP-C 83.43 58.08 27.31 67.91 39.19 83.88 61.27 27.25 71.25 42.44

Ours

CAMEL-D 82.77 59.36 28.49 67.33 39.42 83.13 60.61 28.42 70.30 40.52
CAMEL-C 84.81 60.47 31.54 69.91 41.97 85.06 62.11 29.17 72.24 43.80
CAMEL-S 86.28 62.44 31.47 70.34 42.31 85.57 64.12 28.78 72.36 44.24
△ours−best 2.85 3.26 4.23 2.43 3.12 1.69 2.85 1.92 1.11 1.36

1 We conduct a set of tasks to evaluate metaphorical alignment and emotion recognition, including Metaphor Identification
(MI), Metaphor Type Classification (TC), Sentiment Analysis (SA), Offensiveness Detection (OD), Intention Detection (ID)

Table 1: Metaphor and emotion recognition results

Models Grammar
Validity Effectiveness

Rating Proportion Rating-S Rating-I Rating-O Proport-S Proport-I Proport-O
BLIP-C♣ 4.07 43.45 75.44 21.25 20.18 27.35 36.03 32.43 36.93
BLIP-V♣ 4.22 47.24 78.24 23.44 22.53 30.61 36.93 44.14 40.55
Flamingo♠ (9B) 4.38 50.45 81.08 26.58 21.17 29.28 43.24 39.64 52.25
CAMEL-C - 58.24 86.72 34.68 24.77 32.88 54.05 50.45 57.66
CAMEL-S 4.15 63.96 89.19 32.43 27.48 34.68 52.25 53.15 61.26

1 ♣ denote models testing with generative finetuning, ♠ denote models testing through API.

Table 2: Human evaluation results on metaphorical alignment

capturing alignments, and effectiveness in facilitating down-
stream detection, we have conducted extensive human eval-
uation results as shown in Table 2.

It can be found that although CAMEL-S lags a little in
grammar fluency, it achieves the best results in Validity, in-
cluding the highest ratings and proportion of validity. This is
because CAMEL-S performs a relatively soft alignment by
perceiving target concepts and context, while other methods
perform hard aligning between source and target domains,
which may easily become invalid with inaccurate extraction
or alignment. We also evaluate the effectiveness of differ-
ent models in facilitating emotion recognition. Results show
that, CAMEL-C is most effective for providing interpreta-
tions to analyze the metaphor sentiment, while CAMEL-S
is most effective in reasoning intention and Offense. Fur-
ther comparisons of our two variations are displayed in Fig-
ure 3, based on which we can find that CAMEL-S is more
valid with relatively higher effectiveness in deconstructing
multimodal metaphors. This phenomenon proves that soft
aligning in CAMEL-S can contribute to more generalized
scenarios, while hard aligning based on CMT is still facing
challenging problems for better applications.

Qualitative Analysis
In this subsection, extensive ablation studies have been con-
ducted to verify the effectiveness of different parts.

Multi-view Ablations This subsection explores the effec-
tiveness of different parts of our model from multiple per-
spectives displayed in Table 3. For the importance of input
sources, text information is the most informative in detect-
ing emotions, without which the model will get the largest
degradation (from 31.54/70.34/42.31 to 27.42/66.89/37.92
in W-F1). This phenomenon is mainly due to the distribution
of the benchmark, whose metaphors mainly exist in text and
complementary modalities. For information fusion strate-
gies, we explored four ways displayed in Table 3. ‘Add’
means directly adding the multiple unimodal representa-
tions, and leading to the worst performance. ‘Concat’ means
concatenating the vectors, and realizing equal performance
compared to ‘Add’. The best fusion strategy in our experi-
ment is ‘CDA’, which denotes the leveraged cross-domain
attention mechanism. Our CDA realizes a performance im-
provement of about 1-2% (compared to ‘Add’).

We also explore the importance of different modules, in-
cluding the contextual semantic adaption module (CSA),
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Settings
SA OD ID

W-F1 Acc W-F1 Acc W-F1 Acc

Importance of input sources

w/o image 28.74 27.42 67.33 69.58 39.83 41.71
w/o text 27.42 27.08 66.89 69.17 37.92 41.44

w/o caption 29.25 27.71 68.54 69.95 40.14 42.04
random 25.42 26.37 65.27 67.69 37.12 39.42

Importance of multimodal fusion

Add 30.07 27.94 69.43 70.55 40.70 42.69
Concat 30.25 27.73 69.71 70.48 40.83 42.34
CDA 31.54 29.17 70.34 72.36 42.31 44.24

Importance of proposed modules

w/o CSA 27.82 26.42 68.17 69.09 39.72 40.83
w/o DCM 28.92 27.05 68.46 70.53 39.91 41.46

w/o CL 29.72 28.13 69.14 71.28 40.74 42.07

Importance of objective functions

w/o LDe 30.43 27.82 69.74 70.66 40.62 42.18
w/o LG 28.22 26.87 67.35 69.24 40.17 40.05

w/o LDe, LG 27.49 26.21 66.32 67.11 38.45 39.67

Table 3: Representation ablation results

Figure 3: Quality comparison of our two modelings

the disentangled contrastive matching module (DCM), and
the curricular learning (CL) method. Observations can be
found that the CSA incorporating metaphor knowledge
plays a major role in MER (from 27.82/68.17/39.72 to
31.54/70.34/42.31 W-F1). The DCM module with curricular
annealing also performs considerable improvements (from
27.48/67.85/39.37 W-F1 to 31.54/70.34/42.31), which in-
dicates the importance of contextual sensitivity. When the
curricular annealing method is abrogated, the enhancement
gets impaired by about 1-2%). Considering the last objective
functions, we ablate them by just resetting their weights and
retraining our model from scratch. The experimental results
demonstrate the significance of interpretation, reflected by
the performance degradation (i.e., from 31.54 in the best set-
ting to 28.22 in ‘w/o LGen’ for the SA task) when generative
loss LGen is ablated. The leveraged curricular disentangled
matching is also helpful for understanding, without which
the performance will get an average decrease of 1.13/1.70 in

Figure 4: Cases and visualizations

W-F1/Acc. When there is only the task-specific classifica-
tion loss, the model gets the largest degradation.

Case Study In this subsection, we display some predic-
tion results, as well as heat maps of element-level similari-
ties queried by target concepts in Figure 4. LSA modeling
represents literal semantic aware methods of BLIP. Based
on the prediction results and the visualizations, it can be
observed that metaphorical alignment is essential for infer-
encing the downstream attributes, without which LSA may
output wrong predictions (in red boxes). For example, when
queried with isolated target concepts of tears, LSA model-
ing focused more on the facial expressions of the people
in the picture, based on which the ‘Anger’ emotion is im-
properly predicted. While our method can capture the im-
plicit alignment between ‘tear’ in text and ‘water’ or ‘river’
in the image, which contributes to the accurate detection of
‘sorrow’. The right part shows the decoding results of our
metaphor interpretations based on CMT and SPV theories,
which demonstrate how the metaphor alignment is estab-
lished or captured in the multimodal contents.

Conclusion
In this paper, we first notice the phenomenon of metaphori-
cal alignment in multimodal emotion recognition over mul-
timedia contents, and propose to capture such implicit align-
ment with context disentangling through generative mod-
eling. Specifically, we formulate schematic prompts, and
corresponding references based on theoretical foundations,
and then enhance the model’s ability to capture metaphori-
cal analogy through a conditional generative optimization.
Moreover, we propose a disentangled contrastive match
method for maintaining consistency with contextual seman-
tics, which is curricularly adjusted to achieve coherent learn-
ing. Our model is automatically and manually evaluated on a
series of metaphor and emotion computing tasks. The state-
of-the-art performances on extensive quantitative and quali-
tative experiments have verified the superiority of our model
in capturing implicit emotion hidden in metaphor contents.
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