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Abstract

Fraud detection on multi-relation graphs aims to identify
fraudsters in graphs. Graph Neural Network (GNN) models
leverage graph structures to pass messages from neighbors
to the target nodes, thereby enriching the representations of
those target nodes. However, feature and structural inconsis-
tency in the graph, owing to fraudsters’ camouflage behav-
iors, diminish the suspiciousness of fraud nodes which hin-
ders the effectiveness of GNN-based models. In this work,
we propose DiG-In-GNN, Discriminative Feature Guided
GNN against Inconsistency, to dig into graphs for fraud-
sters. Specifically, we use multi-scale contrastive learning
from the perspective of the neighborhood subgraph where
the target node is located to generate guidance nodes to cope
with the feature inconsistency. Then, guided by the guidance
nodes, we conduct fine-grained neighbor selection through
reinforcement learning for each neighbor node to precisely
filter nodes that can enhance the message passing and there-
fore alleviate structural inconsistency. Finally, the two mod-
ules are integrated together to obtain discriminable represen-
tations of the nodes. Experiments on three fraud detection
datasets demonstrate the superiority of the proposed method
DiG-In-GNN, which obtains up to 20.73% improvement over
previous state-of-the-art methods. Our code can be found at
https://github.com/GraphBerry/DiG-In-GNN.

Introduction
The proliferation of the Internet has led to an increase in
fraudulent activities in various real-world scenarios (Jiang,
Cui, and Faloutsos 2016), such as review fraud, fake ac-
counts, and malicious websites. In recent years, graph-based
fraud detection techniques have garnered considerable re-
search interest. By modeling real-world entities as nodes and
their interactions as edges, fraudulent entities can be identi-
fied through abundant graph information. For instance, the
classification of fraud comments in a Review-User-Review
graph (Dou et al. 2020; Wang et al. 2023), the detection of
fake accounts in an Account graph (Yuan et al. 2019; Liu
et al. 2018), filtering out malicious websites with a URL
graph (Zhang et al. 2019; Tan et al. 2020).

However, fraudsters often resort to various techniques to
camouflage and alleviate suspicion, causing various incon-
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Figure 1: (a) Users rate and review products, it can be
modeled by a multi-relation graph. (b) In the multi-relation
graph, there are three edge types: U-P-U connects users re-
viewing at least one product; U-S-U connects users having
at least one identical star rating within a week; U-V-U con-
nects linguistically similar users.

sistencies in the graph, limiting the effectiveness of fraud
detectors (Dou et al. 2020; Zhang et al. 2021). In Figure 1, a
multi-relation graph depicts a realistic e-commerce scenario
where users give rating stars and reviews on e-commerce
websites. In this scenario, fraudsters typically use two so-
phisticated camouflage strategies to avoid detection. Feature
camouflage is the first, where fraudsters adopt the linguistic
style of benign reviews, and may even leverage deep lan-
guage generation models to make their fraudulent reviews
appear more authentic. This leads to a mismatch between
node feature patterns and their labels, termed feature incon-
sistency. The second strategy, relation camouflage, involves
fraudsters employing various identities to post reviews on
various items. They cleverly connect themselves within the
graph to benign users, creating various camouflage connec-
tions. In this way, fraudsters hide among benign nodes, re-
sulting in structural inconsistency.

To identify suspicious entities in such multi-relation
graphs, graph-based algorithms are typically used. In recent
years, Graph Neural Networks (GNNs) have garnered sig-
nificant attention as an effective approach to perform deep
learning on graph data, and have become the de facto solu-
tion for graph-based fraud detection (Ma et al. 2021). GNNs
employ a message passing mechanism to recursively aggre-
gate neighbor information into each node’s representation.
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Challenges. While promising, the GNN-based fraud de-
tectors face two challenges due to feature and structural in-
consistency, which pose obstacles to GNN-based methods
relying on message passing.

Node representations become confusing due to feature in-
consistency. The message passing mechanism enhances the
node representations by aggregating neighbor nodes. This
relies on the premise that the raw features effectively cap-
ture the class semantic information. However, the lack of
distinguishability of raw features undermines the premise.
Consider a fraud target node with a distinctive feature; af-
ter message passing, it may lose discriminability because its
fraud neighbors have inconsistent features. In this situation,
GNNs produce negative results. Moreover, ambiguous node
features can seriously affect the decision of neighbor selec-
tion. Therefore, nodes with different labels need more dis-
tinctive features.

Structural inconsistency necessitates meticulous neighbor
selection. Aggregating a large amount of benign node infor-
mation can obscure the suspiciousness of fraud nodes, high-
lighting the importance of more nuanced neighbor selection.
Existing neighbor selection approaches rely on weighting
neighbor nodes based on similarity (Peng et al. 2021; Liu
et al. 2021), assuming that the raw features provide suffi-
cient semantic class information. However, this assumption
is compromised in the presence of feature inconsistency. In
our work, we emphasize the need to consider the impact
of feature inconsistency when addressing the challenge of
structural inconsistency through neighbor selection.

Current Attempts. We categorize the existing meth-
ods as similarity-based neighbor selection and heterophily-
aware. Similarity-based methods are widely studied to miti-
gate structure inconsistency. CARE-GNN (Dou et al. 2020)
and PC-GNN (Liu et al. 2021) offer a similarity-based
neighbor selection strategy that establishes a threshold for
filtering. RioGNN (Peng et al. 2021) applies a reinforced
relation-aware neighbor selection to choose the most similar
neighbors of a targeting node. C-FATH (Wang et al. 2021)
proposes a community-based framework for large-scale het-
erogeneous graphs and adopting similarity-based sampling
for 3-hop neighbors. While these efforts have made excel-
lent progress in fraud detection, they ignore feature incon-
sistency. On the other hand, H2-FDetector (Shi et al. 2022)
and GHRN (Gao et al. 2023) explore from the perspec-
tive of heterophily. H2-FDetector aggregates all neighbors
but employs different aggregation weights for homophilic
and heterophilic edges. GHRN utilizes a high-pass filter to
prune inter-class edges, reducing the heterophily degree of
the graph, thus mitigating the impact of structural inconsis-
tency. Nevertheless, these methods still lack consideration
about the feature inconsistency. GTAN (Xiang et al. 2023)
employs the risk embeddings to enhance node feature. How-
ever, constructing risk embedding requires the use of raw
features to obtain pseudo labels, so the performance is still
limited by the feature inconsistency of the raw features.

Our Contributions. To address the challenges mentioned
above, we propose DiG-In-GNN (DiG-In), Discriminative
Feature Guided GNN against Inconsistency, to dig into
graphs for fraudsters. Firstly, we utilize a multi-scale con-

trastive learning model to generate guidance nodes which
have discriminative features, enabling better distinguishabil-
ity among different classes. Secondly, we design a learnable
neighbor selection strategy that carefully selects neighbors
guided by the guidance nodes to enhance message passing.
The following are the main contributions of our work:
• We train a relation-wise guidance node generation model

with multi-scale contrastive learning including context-
and local-level, to tackle feature inconsistency, which
also serves as a crucial foundation for enhancing neigh-
bor selection strategies. This generates guidance nodes
with discriminative feature distributions for different
classes, thus addressing the feature inconsistency.

• We propose a node-wise neighbor selection strategy
based on Reinforcement Learning (RL). Structural in-
consistency can be effectively overcome by incorporating
feature-consistent guidance nodes and employing a RL-
based neighbor selector. This enables message passing to
aggregate more beneficial neighbors to enhance the final
representations for the detection task.

• The proposed DiG-In-GNN is evaluated on three pub-
lic datasets. Our method achieves an improvement of up
to 20.73% compared to previous state-of-the-art graph-
based fraud detectors.

Problem Formulation
In this section, we define multi-relation graph and neighbor-
hood subgraph, and introduce graph-based fraud detection.
Multi-Relation Graph. A graph can be formulated as
G = {V,X , E ,R,Y}, where V = {v1, v2, ..., v|V|} is a set
of nodes. For each node vi ∈ V , there is a label yi ∈ Y . |V|
is the number of nodes, X = {x1, x2, ..., x|V|} ∈ R|V|×d is
a set of node features. R = {1, 2, ..., R} represents differ-
ent relation types, R = |R|. E is the edge set. Nodes can be
connected by edges of various relation types.
Neighborhood Subgraph. Given a graph grv =
{v,N r

v , Erv , trv, r, y}, v ∈ V , r ∈ R, and N r
v is a set

composed of one-hop neighbors of v under relation r, Erv is
the edge set of grv . In our work, trv , named guidance node,
connects v and u ∈ N r

v in grv , and y is the label of v. We
call grv a neighborhood subgraph of v. Each neighborhood
subgraph can be uniquely determined by v and r.
Graph-Based Fraud Detection. The objective of the task is
to determine whether a target node in a graph is a fraudster.
Each node is labeled as either a fraud node or a benign node.
Therefore, our graph-based fraud detection is a binary node
classification problem.

Methodology
This section details our proposed DiG-In-GNN thoroughly.
The overall structure of the framework is shown in Figure 2.
As depicted, it consists of three parts: guidance node gener-
ation (❶), neighbor selection (❷), and neighbor aggregation
(❸). For guidance node generation, we utilize multi-scale
contrastive learning, combining both context- and local-
level, to generate a guidance node for each neighborhood
subgraph. Then, we conduct RL-based neighbor selection to
determine the aggregation of neighbor nodes.
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Figure 2: The overall architecture of DiG-In-GNN. The number of relations is set to 2 for simplicity.

Guidance Node Generation
To address feature inconsistency, we introduce guidance
nodes in this work. The guidance node features are gener-
ated by multi-scale contrastive learning, which better cap-
tures the semantic information of the node classes, compared
to the raw node features. The context- (node vs. node) and
local-level (node vs. environment) contrastive learning tasks
(Figure 2 ❶) are designed to capture the distribution pat-
tern of nodes in each neighborhood subgraph at different
scales, thereby generating the guidance nodes. Before the
details, simply speaking, at the context level, we compare
fraud nodes and benign nodes within a batch, and at the lo-
cal level, we compare fraud nodes and their neighborhood
environment within the neighborhood subgraphs. We treat
each relation type separately by applying three sets of neu-
ral network parameters.

Context-level Contrastive Learning Task. This module
is specifically designed to learn the distribution pattern in
different neighborhood subgraphs at a global scale. Given a
batch of nodes Vb, for a target node v ∈ Vb and relation r, a
guidance node trv is created, initialized with the correspond-
ing target node v’s original feature xv . L-layer GNNθr is
then utilized to generate feature xtrv

for guidance node trv
from the neighborhood subgraph grv = {v,N r

v , Erv , trv, r, y}.
This process can be defined as Equation 1. h(l)

v,r is the rep-
resentation of v at layer l, with h

(1)
v,r initialized by the raw

features. AGG signifies node aggregation, and θr denotes
parameters for relation type r ∈ R.

z(l)v,r = h(l−1)
v,r ∥AGG

(
{h(l−1)

u,r , u ∈ N r
v ∪ {v}}

)
h(l)
v,r = MLPθr

(
z(l)v,r

)
xtrv

= h(L)
v,r

(1)

To create positive context-level contrastive samples, the
generated feature and the raw feature are combined as fol-
lows. xv,r

p is the average of the original features of all nodes
in Vb with the same label as v, and h

v,r

p is the average of the
corresponding guidance nodes’ generated features. Then,
the positive sample z

trv
pos for xtrv

is defined as:

xv,r
p = MEAN({xu | u ∈ Vb, yu = yv})

h
v,r

p = MEAN
(
{xtru

| u ∈ Vb, yu = yv}
)

z
trv
pos = h

v,r

p + αxv,r
p

(2)

where α is a hyper-parameter. Similarly, The negative con-
trastive sample for xtrv

can be defined as:

z
trv
neg = h

v,r

n + αxv,r
n (3)

In this context-level task, the objective is to amplify the
dissimilarity between the generated guidance node feature
htrv

and its negative contrastive sample, while enhancing the
similarity with the positive sample. To quantify the similar-
ity between htrv

and the contrastive samples, we employ a
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bilinear layer to calculate the similarity score.

prv = Bilinear
(
z
trv
pos, xtrv

)
= σ

(
(z

trv
pos)

TW r
ctxxtrv

)
(4)

nr
v = Bilinear

(
z
trv
neg, xtrv

)
= σ

(
(z

trv
neg)

TW r
ctxxtrv

)
(5)

where W r
ctx is a learnable weight matrix, r denotes the re-

lation type since each relation is processed separately in our
method. The loss function for the context-level contrastive
learning task is as:

s
(i)
ctx =

{
1, i ≤ |Vb|
0, i ≥ |Vb|+ 1

, ŝ
r(i)
ctx =

{
pri , i ≤ |Vb|
nr
(i−|Vb|), i ≥ |Vb|+ 1

Lr
ctx = BCE(Sctx, Ŝ

r
ctx) =

1

2|Vb|

2|Vb|∑
i=1

BCE(s
(i)
ctx, ŝ

r(i)
ctx )

(6)
where the binary cross-entropy (BCE) loss function is
widely used for binary classification. Here it can be defined
as BCE(s1, s2) = − [s1 log s2 + (1− s1) log (1− s2)].

Local-level Contrastive Learning Task. In reality, com-
pared to benign behavior, fraud behavior is rare, resulting
in benign nodes being the majority in graph data (the aver-
age probability of benign nodes appearing in the neighbors
of fraud nodes is 75.73% according to our statistics). There-
fore, it can be assumed that benign nodes primarily provide
environmental information during message passing. Thus,
the more distinct guidance nodes are from their local sur-
roundings, the more discernible information benign neigh-
bors can convey to fraud nodes, resulting in generated fea-
tures of the guidance nodes capable of expressing fraudulent
semantic information. Inspired by (Jin et al. 2021), we de-
sign a local-level contrastive learning task to make guidance
nodes aware of neighbor nodes’ distribution pattern.

The GNN employed for acquiring environmental infor-
mation utilizes the same parameter θr as the context-level.
Specifically, we mask the target node v in the neighborhood
subgraph grv and temporarily replace the guidance node with
a zero vector: xtmp

trv
← 0. This process yields a subgraph

gr,envv = {N r
v , Erv ,0, r, y}, which is then fed into the model

GNNθr to generate contrastive sample henv
trv

for trv , provid-
ing local environmental information:

ztmp
trv

(l)
= htmp(l−1)

trv
∥AGG

(
{htmp(l−1)

u,r , u ∈ N r
v }

)
htmp(l)

trv
= MLPθr

(
ztmp
trv

(l)
)

henv
trv

= htmp
trv

(L)

(7)

Then, we calculate the similarity between xtrv and its en-
vironmental representation henv

trv
in a trainable manner:

srv = Bilinear
(
henv
trv

, xtrv

)
= σ

(
(henv

trv
)
T
W r

localxtrv

)
(8)

The optimization objective of local-level contrastive
learning is to encourage higher semantic similarity between
the generated guidance node feature xtrv and its environmen-
tal contrastive sample henv

trv
when v ∈ Vb is a benign node

(yv = 0). Conversely, when v is a fraudster (yv = 1), it
is desired that xtrv exhibits greater dissimilarity with henv

trv
.

Based on this, the local-level loss Lr
local can be defined as:

s
(i)
local = 1− yi =

{
1, yi = 0

0, yi = 1
, ŝ

r (i)
local = sri

Lr
local = BCE

(
Slocal, Ŝ

r
local

)
=

1

|Vb|

|Vb|∑
i=1

BCE (sri , ŝ
r
i )

(9)

Joint Training. Finally, to optimize the guidance node
generation, we employ a joint optimization approach that
combines context- and local-level losses. With a hyperpa-
rameter β ∈ [0, 1], the joint loss function is defined as:

LC =
R∑

r=1

Lr
C =

R∑
r=1

(βLr
ctx + (1− β)Lr

local) (10)

Neighbor Selection
After generating guidance nodes for each neighborhood sub-
graph, we select appropriate nodes for message passing to
address structural inconsistency, by a fine-grained neighbor
selection mechanism that enables evaluating each neighbor’s
value and selecting more beneficial nodes through a learn-
able approach. Intuitively, the value of a neighbor node can
simply be based on the deviation of the prediction result
from the correct label after aggregation. Therefore, the value
of a neighbor node is defined by the deviation of the predic-
tion result from the label when it is selected. If the prediction
result tends towards the correct label, the selected neighbor
node can be considered beneficial for the target node; other-
wise, it is harmful or useless. In addition, to address feature
inconsistency, we utilize the generated guidance node fea-
ture, which has better discriminability, rather than the raw
target node feature.

For each neighbor node u ∈ N r
v of the target node v

under the relation r, all nodes except the selected neigh-
bor node u are masked, so that a state subgraph grv,u =
{v, u, trv, ev,trv , eu,trv , yv} is obtained as input to GNN (Fig-
ure 2 ❷) with L layers. Here ev,trv is the edge connecting
v and trv . This process can intuitively evaluate the effect of
neighbor nodes on the target node. After aggregating the in-
formation from the selected neighbor node, we introduce a
value predictor VP, which is an MLP model. It takes h(l)

trv
as

input, which is the lth-layer activation obtained by feeding
grv,u into the GNN model. It estimates whether u can en-
hance the expression of the representation for the semantic
information of the target node v. The predictor VP produces
the predicted result pu,trv . We train the predictor VP using
the following loss function:

L(l)
VP =

∑
v∈V

∑
u∈N r

v

BCE
(
yv, p

(l)
u,trv

)
(11)

We adopt an RL model based on policy gradient, which
outputs probabilities for neighbor selection, enabling to ex-
plore more options and consider a wider range of choices.
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The state space of S is infinite while the action space A
is finite, we construct a policy network, denoted as πθRL

,
with parameters θRL. In each layer of the L-layer GNN,
πθRL

takes S as input and outputs the probability of each
action for each agent of u ∈ N r

v . The detailed exposition on
Markov Decision Processes (MDPs) is as follows:
• State Space S: As our objective is to decide the retention

or removal of each node, so the state subgraph is defined
as grv,u = {v, u, trv, ev,trv , eu,trv , yv}.

• Action Space A: Defined as A = {0, 1}, a = 1 means
selecting and retaining neighbor node u, and a = 0 indi-
cates discarding this neighbor.

• Reward Function R(s): As mentioned earlier, the
value of neighbor node u can be expressed as w

trv
u =

VPr(Dl(gru)), where Dl represents the partial GNN
model up to the lth layer. To calculate the reward more
fairly and efficiently, we define the reward function:

R(s) =

{
w

trv
u − (wr

pre − ϵ), a = 1

(wr
pre − ϵ)− w

trv
u , a = 0

(12)

where wr
pre represents the average value of all neighbor

nodes under the relation r during previous training rounds.
This value generally increases as the training progresses.
When the reward exceeds 0, it indicates that we encourage
the execution of the corresponding action, and the policy
network parameters will be adjusted to increase the likeli-
hood of this action. Conversely, if the reward is less than 0,
the action will be discouraged. The magnitude of the reward
determines the extent of the optimization in the policy net-
work. After several epochs, the value of wr

pre may become

relatively larger than w
trv
u . This could result in mistakenly

discarding a neighbor node that should not be disregarded.
To address this, we set a tolerance parameter ϵ to provide a
positive reward in such situations, encouraging the retention
of the node, and vice versa. Finally, if we decide to keep a
node u connected with v by relation r, it will be added to the
selected set neighbor N v,r

RL .

Neighbor Aggregation
Message passing enhances the target node by aggregating
information from neighbor nodes (Figure 2 ❸). h(l)

v,r is the
representation of node v at layer l under relation r, where
v ∈ V , r ∈ R, l ∈ {1, ..., L}, L is the number of layers, we
define the intra-relation neighbor aggregation as follows:

z(l)v,r = h(l−1)
v,r ||AGG(l)

r

(
{h(l−1)

u,r , u ∈ N v,r
RL ∪ {v}}

)
h(l)
v,r = ReLU

(
h(l−1)
u,r Wintra

) (13)

where AGG(l)
r is a weighted aggregator. hl−1

v,r is initialized

with xtrv and h
(l−1)
u,r is initialized with xu. Then the target

node’s representation can be obtained by aggregating the
representations h(L)

v,r under all relations. It can be defined as:

zv = xv||
(

R

∥
r=1

h(L)
v,r

)
hv = ReLU (zvWinter)

(14)

Dataset #Node IR Relation #Edges

YelpChi 45,954 5.9
R-U-R 49,315
R-S-R 3,402,743
R-T-R 573,616

Amazon 11,944 13.5
U-P-U 175,608
U-S-U 3,566,479
U-V-U 1,036,737

T-Finance 39,357 20.8 A-T-A 21,222,543

Table 1: Dataset and graph statistics. Imbalance Ratio (IR)
is the ratio of benign nodes to fraud nodes.

where ∥Rr=1 denotes concatenation aggregation operation,
Wintra and Winter are learnable aggregation matrices.

Training
After the inter-relation aggregation, the final representation
of node v ∈ V is hv . Then we use the cross-entropy loss
function to optimize the model.

pv = Softmax (MLP(hv))

LGNN = BCE (yv, pv)
(15)

Combined with the loss in Equation 11, we define the final
loss as Equation 16, where λ is the weight parameter.

LDiG-In = LGNN + λ

L∑
l=1

L(l)
VP (16)

Additionally, it is worth mentioning that our DiG-In-GNN
is trained in a mini-batch manner. Considering that fraudster
samples are in a minority within a dataset, we set a class
sampling probability in our implementation to ensure that
the batches are more balanced.

Experiments
In this section, we will investigate the following three re-
search questions through our experiments:
• RQ1 Does DiG-In-GNN outperform state-of-the-art

GNN-based fraud detection methods?
• RQ2 Does the guidance node generation model con-

tribute to the downstream detection task?
• RQ3 Can the RL-based neighbor selection using guid-

ance nodes lead to more beneficial aggregation?

Experimental Setup
Datasets. Two widely-used multi-relation graph fraud
datasets, YelpChi (Rayana and Akoglu 2015) and Amazon
(McAuley and Leskovec 2013) are used. We also adopt a
single-relation dataset, T-Finance (Tang et al. 2022). Table 1
shows the statistics of the datasets. YelpChi includes reviews
connected by three types of edges: (a) R-U-R connects the
reviews made by the same user. (b) R-S-R connects two re-
views with the same star rating for the same product. (c) R-
T-R connects two reviews on the same product in the same
month. Amazon includes product reviews under the musical
instruments. In T-Finance, accounts that have transactions
are connected.
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Method Dataset YelpChi Amazon T-Finance

Metric AUC F1-macro GMean AUC F1-macro GMean AUC F1-macro GMean

GCN(ICLR′17) 0.5983 0.5620 0.4365 0.8369 0.6408 0.5718 0.9176 0.8828 0.8402
GAT(ICLR′18) 0.5715 0.4879 0.1659 0.8102 0.6464 0.6675 0.9553 0.9059 0.8636
GraphSAGE(NeurIPS′17) 0.5439 0.4405 0.2589 0.7589 0.6416 0.5949 0.9116 0.8749 0.8042
Cluster-GCN(KDD′19) 0.5921 0.5523 0.4038 0.8295 0.6488 0.7963 0.9482 0.8973 0.8477
GraphSAINT(ICLR′20) 0.6983 0.5870 0.5857 0.8741 0.7512 0.7677 0.9527 0.8963 0.8620
CARE-GNN(CIKM′20) 0.7619 0.6332 0.6791 0.9067 0.8990 0.8962 0.9014 0.8778 0.8038
PC-GNN(WWW′21) 0.7987 0.6300 0.7160 0.9586 0.8956 0.9030 0.9272 0.8734 0.7967
RioGNN(TOIS′21) 0.8238 0.6526 0.7508 0.9558 0.8848 0.9012 0.9456 0.7945 0.8614
AO-GNN(WWW′22) 0.8805 0.7042 0.8134 0.9640 0.8921 0.9096 - - -
H2-FDetector(WWW′22) 0.8877 0.6944 0.8160 0.9689 0.8392 0.9203 0.9539 0.6062 0.8682
GTAN(AAAI′23) 0.9108 0.8037 0.7768 0.9736 0.9230 0.8879 0.9641 0.9086 0.8720
GHRN(WWW′23) 0.8957 0.7622 0.7703 0.9649 0.9111 0.9002 0.9601 0.8942 0.8552

Ablation DiG-In-GNN/RL 0.9253 0.8063 0.8145 0.9736 0.9106 0.9126 0.9632 0.9070 0.8731
DiG-In-GNN/Gen 0.9259 0.8078 0.8245 0.9749 0.9107 0.9054 0.9596 0.8989 0.8456
DiG-In-GNN/AGG 0.9345 0.8181 0.8394 0.9702 0.9205 0.9120 0.9621 0.9061 0.8356

Ours DiG-In-GNN 0.9357 0.8154 0.8413 0.9778 0.9251 0.9214 0.9658 0.9112 0.8916

Table 2: Performance Comparison on two multi-relation graphs, YelpChi and Amazon, and a single-relation graph, T-Finance.

Raw feature
R-U-R R-S-R R-T-R

Generated guidance node features for each relation

Figure 3: The t-SNE visualization of target nodes’ raw fea-
tures and the guidance node features in YelpChi.

Compared Methods. We compare our method with clas-
sic GNNs and state-of-the-art fraud detection models:
GCN (Kipf and Welling 2017), GAT (Velikovi et al.
2018), GraphSAGE (Hamilton, Ying, and Leskovec 2017),
Cluster-GCN (Chiang et al. 2019), GraphSAINT (Zeng
et al. 2020), CARE-GNN (Dou et al. 2020), PC-GNN
(Liu et al. 2021), RioGNN (Peng et al. 2021), AO-GNN
(Huang et al. 2022), H2-FDetector (Shi et al. 2022),
GTAN (Xiang et al. 2023) and GHRN (Gao et al. 2023).
DiG-In-GNN/Gen removes the guidance node generation
and DiG-In-GNN/RL removes neighbor selection. DiG-In-
GNN/AGG only utilizes the guidance nodes without aggre-
gating neighbors.

Evaluation Metrics. Due to class imbalance in the fraud
detection datasets (Brennan 2012), three evaluation metrics,
AUC, F1-macro, and GMean are utilized in this paper.

Parameter Setting. We employ Adam with Learning Rate
(LR) of 0.003. Specially, for YelpChi and Amazon, the LR
for the guidance node generation and GNN is 0.005. The
dataset is split into training (40%), validation (20%), and test
(40%) sets. The embedding dimension is 128. For YelpChi
(Amazon, T-Finance), the training consists of 160 epochs, of
which 70 (40, 60) epochs are dedicated to generate guidance

nodes. In RL-based neighbor selection, for YelpChi (Ama-
zon), due to various relations, the tolerance values of each
relation are 0.1 (0.06), 0.09 (0.06), and 0.08 (0.06), respec-
tively. Also, we sample different numbers of neighbors to
train the RL model. The sampling rates for each relation are
set as 0.7 (0.3), 0.06 (0.02), 0.008 (0.05). The two RL pa-
rameters for T-Finance are set as 0.09 and 0.1 respectively.

Performance Evaluation (RQ1)
Traditional GNNs (e.g., GCN, GAT) exhibit limited perfor-
mance due to the class imbalance issue and the sophisti-
cated camouflages. The models designed for fraud detec-
tion (e.g., PC-GNN, AO-GNN) perform better, with their fo-
cus on neighbor sampling. This demonstrates the importance
of developing a neighbor sampling approach for fraud de-
tection. However, the previous approaches primarily relied
on similarity-based sampling, overlooking intricate cam-
ouflages in fraud detection. In contrast, DiG-In-GNN ad-
dresses both feature and structural inconsistency by the gen-
erated guidance nodes and the RL-based neighbor selec-
tion, leading to its outstanding performance, surpassing the
prior state-of-the-art methods (e.g., H2-FDetector, GTAN,
GHRN). Table 2 presents a comparison of DiG-In-GNN’s
performance with the baselines. The results on the three met-
rics show significant improvements across three datasets,
achieving a significant 20.73% improvement on YelpChi. It
is interesting GCN works better than some newer methods
on T-Finance. The reason may be that T-Finance is more ho-
mophilous, so it is easier for the vanilla GCN.

Generated Guidance Node Analysis (RQ2)
We employ t-SNE (Van der Maaten and Hinton 2008) to vi-
sualize in Figure 3. Here YelpChi is three-relation, so three
corresponding guidance nodes are generated for each node.
The raw features appear to be confusing and difficult to dis-
tinguish due to feature camouflage, whereas the generated
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Figure 4: Contrastive learning losses in various relations.

Figure 5: The rewards in neighbor selection. We display the
value of wtrv

u + wr
pre for clearer observation.

guidance nodes are more distinguishable. After the guidance
node generation stage, the generated guidance node features
have a higher concentration of nodes within the same class
and increase the distance between the two classes. Figure
4 illustrates the contrastive learning loss for the two multi-
relation datasets. It is evident that in each relation, it exhibits
a similar strong trend toward convergence.

We design two ablation studies for the guidance node
generation module. DiG-In-GNN/Gen in Table 2 shows a
decrease in performance without guidance nodes. In addi-
tion, by removing one of the two scales from multi-scale
contrastive learning in DiG-In-GNN, Table 3 demonstrates
the benefits of utilizing either context- or local-level guid-
ance nodes. Both of the two scales achieve strong perfor-
mance when used individually and combining the two scales
together leads to better results. Furthermore, we mask all
neighbors in DiG-In-GNN/AGG, and with only the raw fea-
ture and the guidance node feature when aggregation, it still
achieves a comparable result due to the high distinguishabil-
ity of the guidance nodes.

Neighbor Selection Analysis (RQ3)
As shown in Table 2, DiG-In-GNN/RL performs worse
without fine-grained neighbor selection, which indicates that
our RL-based neighbor selection helps GNN transmit more
beneficial information. Table 4 presents the statistics of DiG-
In-GNN’s fine-grained neighbor selection results on the val-
idation set. The ”Selected” column indicates the average
proportion of neighbor nodes selected, while the ”Fraud”
and ”Benign” columns represent the proportions of se-

Dataset Method AUC F1-macro GMean

YelpChi w/Context 0.9280 0.8016 0.8281
w/Local 0.9306 0.8108 0.8209

Amazon w/Context 0.9728 0.9167 0.9183
w/Local 0.9725 0.9103 0.9198

T-Finance w/Context 0.9553 0.9024 0.8694
w/Local 0.9615 0.8988 0.8683

Table 3: Ablation study to demonstrate the effectiveness of
the two scales of contrastive learning.

Dataset Relation Selected Fraud Benign

YelpChi
R-U-R 90.32% 50.07% 92.46%
R-S-R 71.21% 36.05% 77.20%
R-T-R 67.01% 35.03% 72.62%

Amazon
U-P-U 92.25% 17.05% 99.95%
U-S-U 91.99% 20.32% 99.34%
U-V-U 83.50% 15.97% 90.34%

T-Finance A-T-A 99.89% 99.46% 99.92%

Table 4: Statistics of the neighbor selection decisions.

lected nodes among fraud and benign nodes, respectively.
In YelpChi, the R-U-R edges, connecting reviews from the
same user, are homophilic edges, thus enhancing node rep-
resentation in aggregation. On the other hand, R-T-R repre-
sents reviews of the same product within a month, and R-S-R
represents reviews with the same rating star under a product.
These two relations, R-T-R and R-S-R are weaker semantic
connections than R-U-R, resulting in more noise when ag-
gregating. As shown in Table 4, the proportion of discarded
nodes is indeed higher in R-S-R and R-T-R than R-U-R. This
observation shows that the decisions by our neighbor selec-
tion are reasonable. For Amazon, the U-V-U relation, which
connects two users with similar reviews, exhibits the lowest
neighbor selection rate. This might be due to feature camou-
flage. Furthermore, it is observed that the overall probabil-
ity of a fraud node being selected is lower, consistent with
the class imbalance in fraud detection. This result further
validates our RL-based approach. In T-Finance, most nodes
are selected, but the fraud node selection rate is still slightly
lower than the benign node selection rate. Figure 5 illustrates
the process of increasing rewards, showing an overall up-
ward trend and a gradual flattening as training progresses.

Conclusion

In this paper, we present a multi-relation graph-based fraud
detector. Enhanced by the guidance node and RL-based fine-
grained neighbor selection, DiG-In-GNN solves two incon-
sistency problems in the fraud graphs. Experiments on three
public datasets demonstrate the effectiveness of our method.
For future work, generalizing DiG-In-GNN to multi-class
node classification could be a promising direction.
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