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Abstract

Training state-of-the-art (SOTA) deep models often requires
extensive data, resulting in substantial training and storage
costs. To address these challenges, dataset condensation has
been developed to learn a small synthetic set that preserves
essential information from the original large-scale dataset.
Nowadays, optimization-oriented methods have been the pri-
mary method in the field of dataset condensation for achiev-
ing SOTA results. However, the bi-level optimization process
hinders the practical application of such methods to realistic
and larger datasets. To enhance condensation efficiency, pre-
vious works proposed Distribution-Matching (DM) as an al-
ternative, which significantly reduces the condensation cost.
Nonetheless, current DM-based methods still yield less com-
parable results to SOTA optimization-oriented methods. In
this paper, we argue that existing DM-based methods over-
look the higher-order alignment of the distributions, which
may lead to sub-optimal matching results. Inspired by this,
we present a novel DM-based method named M3D for
dataset condensation by Minimizing the Maximum Mean
Discrepancy between feature representations of the synthetic
and real images. By embedding their distributions in a repro-
ducing kernel Hilbert space, we align all orders of moments
of the distributions of real and synthetic images, resulting in
a more generalized condensed set. Notably, our method even
surpasses the SOTA optimization-oriented method IDC on
the high-resolution ImageNet dataset. Extensive analysis is
conducted to verify the effectiveness of the proposed method.
Source codes are available at https://github.com/Hansong-
Zhang/M3D.

Introduction
In the era of deep learning, the utilization of large-
scale datasets comprising millions of samples has become
an indispensable prerequisite for achieving state-of-the-art
(SOTA) models (Zhao and Bilen 2021a; Xia et al. 2022).
However, the associated storage expenses and computational
costs involved in training these models present formidable
challenges, often rendering them beyond the reach of star-
tups and non-profit organizations (Wang et al. 2018; Cole-
man et al. 2019; Sorscher et al. 2022).
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Figure 1: Illustration of the importance of the higher-order
alignment of distributions, where circles represent the repre-
sentations of synthesized examples while crosses represent
the representations of original examples. (a) The misaligned
distributions with different second-order moments; (b) the
misaligned distributions with different third-order moments;
(c) the aligned distributions.

To alleviate the challenges associated with larger datasets,
Dataset Condensation (DC) (Wang et al. 2018) has emerged
to reduce the training cost by synthesizing a compact set
of informative images. Since its proposal, DC has attracted
significant attention for addressing the challenges posed by
the data burden (Cazenavette et al. 2022; Zhao and Bilen
2021b; Kim et al. 2022; Wang et al. 2022; Zhao and Bilen
2023). Typically, DC condenses the dataset by minimiz-
ing the distance between real and synthetic images via a
pre-defined metric. Based on whether to perform a costly
bi-level optimization (Liu et al. 2021), these methods can
be generally categorized into two groups: (1) Optimization-
Oriented methods (Zhao and Bilen 2021b; Kim et al. 2022;
Zhao and Bilen 2021a; Cazenavette et al. 2022), which
usually generate condensed examples by conducting per-
formance matching or parameter matching via a bi-level
optimization (Yu, Liu, and Wang 2023); (2) Distribution-
Matching(DM)-based methods (Wang et al. 2022; Zhao and
Bilen 2023), which focus on aligning the feature distribu-
tions between real and synthetic data. Optimization-oriented
methods have faced criticism for their inefficiency, primarily
due to the involvement of bi-level optimization modules and
time-consuming network updating processes (Zhang et al.
2023; Wang et al. 2022; Zhao and Bilen 2023). In contrast,
DM-based methods do not involve such nested optimiza-
tion of models, which significantly reduces the computa-
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tional cost associated with dataset condensation. Neverthe-
less, the informativeness of the condensed examples gener-
ated by current DM-based methods may not be as compara-
ble to those produced by optimization-oriented methods.

In this paper, we address a crucial oversight in existing
DM-based methods, which is their neglect of higher-order
moments of the distribution. As illustrated in Fig. 1, despite
sharing the same first moment, the representation distribu-
tions of original and synthetic examples with misaligned
second-order moments (Fig. 1a) or third-order moments
(Fig. 1b) can exhibit much distinct characteristics. Motivated
by this issue, we propose a novel DM-based method involv-
ing Minimizing the Maximum Mean Discrepancy (M3D)
between the representation distributions of the real and
synthetic images. Unlike previous DM-based methods that
solely embed images in a feature representation space and
align the first moment, our method further embeds the dis-
tribution of feature representations into a reproducing ker-
nel Hilbert space. This transformation allows us to represent
the infinite order of moments in a kernel-function form. By
leveraging empirical estimation, we can readily align both
first- and higher-order moments of the real and synthetic
data with theoretical guarantees. Our method not only main-
tains the efficiency of the DM-based method but also ex-
hibits significant improvements. Remarkably, the efficiency
of our method makes it easily applicable to realistic and
larger datasets like ImageNet (Deng et al. 2009).

Before delving into technical details, we clearly empha-
size our contribution as:

• We reveal the importance of the alignment of higher-
order moments for distribution matching, which is over-
looked by previous DM-based methods.

• We propose a theoretical-guaranteed method for dataset
condensation named M3D, which applies the classical
kernel method to represent an infinite number of mo-
ments in a kernel-function form, enabling the improved
alignment of the higher-order moments of the represen-
tation distributions.

• We conduct extensive experiments to demonstrate the ef-
fectiveness and efficiency of our proposed method, where
M3D yields SOTA performance with strong generaliza-
tion across various scenarios.

Background
Problem Fromulation. Dataset Condensation (DC) (Wang
et al. 2018), also called dataset distillation, targets to con-
dense a large-scale dataset T = {(xi, yi)}|T |

i=1 into a tiny
dataset S = {(sj , yj)}|S|

j=1, so that an arbitrary model
trained on S achieves comparable performance to the one
trained on T . Typically, the condensed S is obtained by min-
imizing the information loss between the synthesized and
the original examples, which can be formulated as:

S⋆ = argmin
S

D(ϕ(T ), ϕ(S)), (1)

where D represents a distance metric such as Mean Square
Error (MSE), and ϕ denotes the matching objective. As men-

tioned before, various objectives can lead to different opti-
mization processes (Yu, Liu, and Wang 2023), and based on
whether to perform a costly bi-level optimization, existing
methods can be mainly divided into optimization-oriented
methods and Distribution-Matching (DM)-based methods. 1

Distribution Matching. Although optimization-oriented
methods can achieve the SOTA performance, the ineffi-
ciency of them poses a significant obstacle to their appli-
cation in realistic and larger datasets (Zhang et al. 2023).
In response, DM-based methods have been developed as an
alternative. In their pioneering work, DM (Zhao and Bilen
2023) introduces a surrogate matching objective that focuses
on aligning the representation distributions of S and T . This
objective can be formulated as:

S⋆ = argmin
S

Eθ∼Pθ
[D(gθ(S), gθ(T ))] , (2)

where gθ is the deep encoder network parameterized as θ,
which is instanced by the model fθ without the output layer.
With MSE as the distance metric, the training objective of
DM can be reformulated as:

S⋆ = argmin
S

Eθ∼Pθ
∥ 1

|T |

|T |∑
i=1

gθ(xi)−
1

|S|

|S|∑
j=1

gθ(sj)∥2,

(3)
which works as minimizing the gap between empirical first
moment of the representation distributions between S and
T . Compared to previous optimization-oriented methods,
DM (Zhao and Bilen 2023) eliminates the need for network
updating, relying instead on randomly initialized encoders.
Furthermore, the costly bi-level optimization is avoided in
DM, leading to significantly improved training efficiency.
Remark. Given the lower effectiveness of DM compared
to optimization-oriented SOTA methods, efforts have been
made to enhance DM and generate more informative exam-
ples in previous works (Zhao et al. 2023a; Sajedi et al. 2023).
For instance, IDM (Zhao et al. 2023a) enhances DM through
techniques such as partitioning, enriched model sampling,
and class-aware regularization. Similarly, DataDAM (Sajedi
et al. 2023) improves DM by incorporating attention match-
ing. In contrast to these methods where only the first-order
moment is matched, our focus is on enhancing DM through
distribution embedding and higher-order moments, which
are also noticed but not addressed explicitly by IDM (Zhao
et al. 2023a).
Reproducing Kernel Hilbert Space. We provide a
brief recap of the Reproducing Kernel Hilbert Space
(RKHS) (Muandet et al. 2017; Smola et al. 2007; Borg-
wardt et al. 2006) here, which serves as the foundation of
our method.

Definition 1 Given a kernel K, H is a Hilbert space of func-
tions X → R with dot product ⟨·, ·⟩, if ∀ϕ, satisfying the
reproducing property:

⟨ϕ(·),K(x, ·)⟩ = ϕ(x). (4)
1Note that the introduction about more dataset condensation

works can be found in the Appendix.
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1st-order 2nd-order 3rd-order Test Acc.(mean) (variance) (skewness)

DM 4.91 7.37 6.76 48.9
+2nd Reg. 4.51 6.96 6.35 52.1 (↑ 3.2)
+2nd & 3rd Reg. 3.69 6.14 5.94 53.9 (↑ 5.0)

M3D 0.82 1.23 1.64 63.5 (↑ 14.6)

Table 1: The distance between the moments of the con-
densed set and the original training set. “+2nd(3rd) Reg.”
denotes adding the regularization of aligning the 2nd(3rd)-
order moment to the original loss of DM.

That is to say, with the RKHS, we can map a function f on
X to its value at x as an inner product. In addition to the
reproducing property mentioned above, the kernel function
K must also satisfy the following two properties:

Symmetry : K(x, x′) = K(x′, x)

Positive : K(·, ·) ≥ 0

Commonly used kernel function include the polynomial
kernel K(x, x′) = (x⊺x′ + c)d, the Gaussian RBF ker-
nel K(x, x′) = exp (−λ∥x− x′∥2), and the Linear kernel
K(x, x′) = x⊺x′.

Methodology
In this section, we begin by analyzing the importance of the
alignment of higher-order moments for distribution match-
ing. Subsequently, we propose our method M3D by exploit-
ing the classical kernel method (Altun and Smola 2006;
Borgwardt et al. 2006) to align the higher-order moments
of the representation distributions between real and synthe-
sized data with theoretical guarantees.

Importance of the Higher-Order Alignment
As shown in Eq. (3), it is evident that DM (Zhao and Bilen
2023) only considers aligning the first moment (mean) of the
representation distributions, while neglecting higher-order
moments. At a high level, it may lead to the higher-order
misalignment of the representation distributions of its con-
densed data and original data.

To investigate this misalignment issue and highlight the
importance of the higher-order alignment, we assessed the
moment distances between the condensed set and the origi-
nal training set on CIFAR-10 with 10 images per class. This
was done by incorporating higher-order moment regulariza-
tion terms into the original loss of DM (Zhao and Bilen
2023). The results, presented in Table 1, reveal that adding
second-order regularization notably decreases the distance
between higher-order moments of the condensed and orig-
inal data, underscoring the inadequacy of aligning only the
first moment. Furthermore, performing more regularization
enhances the condensed dataset’s performance through im-
proved higher-order alignment. These results underscore the
critical role of higher-order moment alignment in distribu-
tion matching, which is neglected in previous works.

Minimizing Maximum Mean Discrepancy
From the preceding analysis, it becomes evident that per-
fecting distribution matching necessitates the consideration
of higher-order moments. While incorporating higher-order
regularizations directly aids in aligning these moments, it
is limited to finite moments. Moreover, tuning the regular-
ization coefficient becomes increasingly challenging with a
growing number of regularization terms. In this subsection,
we represent a new DM-based method that aligns the infinite
order of moments in a kernel-function form. We depict the
framework of the proposed M3D in Fig. 2.
Embedding Distribution in RKHS. Denoting the distri-
bution of representations for real and synthetic examples as
gθ(T ) ∼ PT and gθ(S) ∼ PS respectively, where gθ de-
notes the representation extractor parameterized by θ. As the
order of moments extends infinitely, it is impractical to ex-
plicitly align an infinite number of moments. To address this,
we need to first embed the distribution in an RKHS H:

µ[PT /S ] := ET /S [K(gθ(x/s), ·)], (5)

which has been proven to be a valid embedding for distance
based on the following theorem:

Theorem 1 (Fukumizu, Bach, and Jordan 2004) If the ker-
nel function K is universal, then the mean map µ := P →
µ[P ] is injective.

Maximum Mean Discrepancy. Via the reproducing prop-
erty of H, ∀ϕ, we have

⟨ϕ, µ[PT /S ]⟩ = ET /S [ϕ(gθ(x/s))], (6)

which indicate that we can compute expectations w.r.t. PT /S
by taking the inner product with the distribution kernel em-
bedding µ[PT /S ]. This property is favorable because it helps
us to calculate the Maximum Mean Discrepancy (MMD) be-
tween PT and PS :

MMD(PT ,PS) : = sup(ET [ϕ(gθ(x))]− ES [ϕ(gθ(s))])

= sup⟨ϕ, µ[PT ]− µ[PS ]⟩,

where ϕ ∈ H and ∥ϕ∥H ≤ 1. In addition, based on the
Cauchy-Schwarz inequality, we have ⟨ϕ, µ[PT ]−µ[PS ]⟩ ≤
∥ϕ∥H∥µ[PT ]− µ[PS ]∥H ≤ ∥µ[PT ]− µ[PS ]∥H, hence the
MMD can be further simplified as:

MMD(PT ,PS) = ∥µ[PT ]− µ[PS ]∥. (7)

It should be noted that µ[PT ] and µ[PS ] are characterized
by infinite-dimensional spaces, which renders direct com-
putation unattainable. However, we can leverage the repro-
ducing property of the RKHS to transform them into a more
tractable form using the kernel function K. This transforma-
tion can be formally expressed as:

MMD2(PT ,PS) = KT ,T +KS,S − 2KT ,S , (8)

where KX,Y = EX,Y [K(gθ(x), gθ(y))] with x ∼ X, y ∼
Y . Due to limited page, we provide the derivation of Eq. (8)
in the Appendix. Last, note that we only have access to
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Figure 2: The framework of M3D. After extracting the representations via a encoder network, the distributions of real and
synthetic representations are further embedded in the Reproducing Kernel Hilbert Space (RKHS), where the M3D loss LM3D is
calculated to guild the update of synthetic examples for higher-order distribution alignment.

the datasets T and S rather than their underlying distri-
butions. In order to tackle this issue, denoting the em-
pirical approximation of µ[PT ] and µ[PS ] as µ[T ] =
1

|T |
∑|T |

i=1 K(gθ(xi), ·), µ[S] = 1
|S|

∑|S|
j=1 K(gθ(sj), ·) re-

spectively, we introduce the following theorem:

Theorem 2 (Altun and Smola 2006) Assume that ∥ϕ∥∞ ≤
R for all ϕ ∈ H with ∥ϕ∥H ≤ 1. Then with
probability at least 1 − δ, ∥µ[PT /S ] − µ[T /S]∥ ≤
2R̄(H,PT /S)+R

√
−|T /S|−1 log(δ), where R̄(H,PT /S)

is the Rademacher average which is ensured to yield error
of O(

√
|T /S|−1).

Theorem 2 guarantees that the empirical approximations
µ[T /S] are good proxies for µ[PT /S ]. Therefore, we can
modify Eq. (8) to the following empirical form as the M3D
loss:

LM3D = ˆMMD
2
(PT ,PS) = K̂T ,T + K̂S,S − 2K̂T ,S , (9)

where K̂X,Y = 1
|X|·|Y |

∑|X|
i=1

∑|Y |
j=1 K(gθ(xi), gθ(yj)) with

{xi}|X|
i=1 ∼ X, {yj}|Y |

j=1 ∼ Y. Based on the analysis above,
we have successfully achieved the transformation of an in-
finite number of moments into a finite form using RKHS.
As shown in Table 1, this transformation allows us to effec-
tively align the distributions between T and S during the
condensing process.

Training Algorithm of M3D
The pseudo-code of M3D is provided in the Appendix. In
addition to the kernel method, we exploit the following two
techniques to enhance the distribution matching.

Factor & Up-sampling. The factor technique (Kim et al.
2022), also termed as partitioning and expansion augmenta-
tion in IDM (Zhao et al. 2023a), aims to increase the number
of representations extracted from S without additional stor-
age cost. Specifically, with the factor parameter being l, each
image si ∈ S is factorized into l× l mini-examples and then
up-sampled to its original size in training:

si
Factor−−−→

s
1,1
i . . . s1,li
...

. . .
...

sl,1i . . . sl,li

 Up-sample−−−−−→ {s
′1
i , s

′2
i , . . . , s

′l×l
i }.

(10)
In this way, the storage space of S can be further leveraged.
Following previous works, the same factor technique is in-
corporated into our framework, where we further exploit its
benefits in aligning distributions in higher-order moments.
Iteration per Random Model. Following DM (Zhao and
Bilen 2023), we employ multiple randomly initialized mod-
els to extract representation embeddings from both T and
S . In contrast to DM, where only a single-step iteration is
performed for each model, we posit that relying solely on
the representation distributions of one batch of real and syn-
thetic examples may introduce matching biases. To address
this, without incurring additional memory usage, we empir-
ically observe that conducting multiple iterations per model
(IPM) enhances the performance of the condensed set.

Experiments
In this section, we begin by comparing our proposed M3D
with SOTA baselines on multiple benchmark datasets. Sub-
sequently, we conduct an in-depth examination of M3D
through ablation analysis.
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Figure 3: Performance comparison between M3D and DM across varying training steps. M3D w/o Fac denotes the M3D without
using the factor technique.

Dataset IPC Ratio (%)
Coreset Selection Dataset Condensation WholeRandom Herding K-Center DC DSA CAFE CAFE+DSA DM IDM M3D

MNIST
1 0.017 64.9±3.5 89.2±1.6 89.3±1.5 91.7±0.5 88.7±0.6 93.1±0.3 90.8±0.5 89.7±0.6 - 94.4±0.2

99.6±0.010 0.17 95.1±0.9 93.7±0.3 84.4±1.7 97.4±0.2 97.8±0.1 97.2±0.2 97.5±0.1 97.5±0.1 - 97.6±0.1

50 0.83 97.9±0.2 94.8±0.2 97.4±0.3 98.8±0.2 99.2±0.1 98.6±0.2 98.9±0.2 98.6±0.1 - 98.2±0.2

F-MNIST
1 0.017 51.4±3.8 67.0±1.9 66.9±1.8 70.5±0.6 70.6±0.6 77.1±0.9 73.7±0.7 70.7±0.6

† - 80.7±0.3

93.5±0.110 0.17 73.8±0.7 71.1±0.7 54.7±1.5 82.3±0.4 84.6±0.3 83.0±0.4 83.0±0.3 83.5±0.3
† - 85.0±0.1

50 0.83 82.5±0.7 71.9±0.8 68.3±0.8 83.6±0.4 88.7±0.2 84.8±0.4 88.2±0.3 88.1±0.6
† - 86.2±0.3

SVHN
1 0.014 14.6±1.6 20.9±1.3 21.0±1.5 31.2±1.4 27.5±1.4 42.6±3.3 42.9±3.0 30.3±0.1

† - 62.8±0.5

95.4±0.110 0.14 35.1±4.1 50.5±3.3 14.0±1.3 76.1±0.6 79.2±0.5 75.9±0.6 77.9±0.6 73.5±0.5
† - 83.3±0.7

50 0.7 70.9±0.9 72.6±0.8 20.1±1.4 82.3±0.3 84.4±0.4 81.3±0.3 82.3±0.4 82.0±0.2
† - 89.0±0.2

CIFAR-10
1 0.02 14.4±2.0 21.5±1.2 21.5±1.3 28.3±0.5 28.8±0.7 30.3±1.1 31.6±0.8 26.0±0.8 45.6±0.7 45.3±0.3

84.8±0.110 0.2 26.0±1.2 31.6±0.7 14.7±0.9 44.9±0.5 52.1±0.5 46.3±0.6 50.9±0.5 48.9±0.6 58.6±0.1 63.5±0.2

50 1 43.4±1.0 40.4±0.6 27.0±1.4 53.9±0.5 60.6±0.5 55.5±0.6 62.3±0.4 63.0±0.4 67.5±0.1 69.9±0.5

CIFAR-100
1 0.2 4.2±0.3 8.4±0.3 8.3±0.3 12.8±0.3 13.9±0.3 12.9±0.3 14.0±0.3 11.4±0.3 20.1±0.3 26.2±0.3

56.2±0.310 2 14.6±0.5 17.3±0.3 7.1±0.2 25.2±0.3 32.3±0.3 27.8±0.3 31.5±0.2 29.7±0.3 45.1±0.1 42.4±0.2

50 10 30.0±0.4 33.7±0.5 30.5±0.3 - 42.8±0.4 37.9±0.3 42.9±0.2 43.6±0.4 50.0±0.2 50.9±0.7

Table 2: Comparison with previous coreset selection and dataset condensation methods on low-resolution datasets. All the
datasets are condensed using a 3-layer ConvNet. IPC: image(s) per class. Ratio (%): the ratio of condensed examples to the
whole training set. “†” denotes the result is reproduced by us. Best results are in bold. Note that some entries are marked as “-”
because of scalability issues or the results are not reported.

Experimental Setups

Datasets. We evaluate the classification performance of net-
works trained on synthetic images that have been condensed
using various baselines as well as our proposed method
M3D. Our evaluation encompasses five low-resolution
datasets: MNIST (LeCun et al. 1998), Fashion-MNIST (F-
MNIST) (Xiao, Rasul, and Vollgraf 2017), SVHN (Netzer
et al. 2011), CIFAR-10 (Krizhevsky, Hinton et al. 2009), and
CIFAR-100 (Krizhevsky, Hinton et al. 2009). In addition, we
also conduct experiments on the high-resolution dataset Im-
ageNet subsets (Deng et al. 2009). Detailed descriptions of
datasets can be found in the Appendix.

Network Architectures. We use a depth-3 ConvNet (Sagun
et al. 2017) for the low-resolution datasets, and a ResNetAP-
10 (Kim et al. 2022) (ResNet-10 with the strided convolution
replaced by average pooling) for the high-resolution Ima-
geNet subsets.

Baselines. We employ an extensive range of methods as
baselines for comparison. Regarding coreset selection meth-
ods, we consider the following: (1) Random, (2) Herd-
ing (Welling 2009), and (3) K-Center (Farahani and Hek-
matfar 2009; Sener and Savarese 2017). For optimization-
oriented DC methods, we evaluate (4) DC (Zhao and Bilen
2021b), (5) DSA (Zhao and Bilen 2021a), (6) IDC (Kim
et al. 2022). On the other hand, for DM-based DC meth-
ods, we include (7) CAFE (Wang et al. 2022), (8) its variant
CAFE+DSA (Wang et al. 2022), (9) DM (Zhao and Bilen
2023) and (10) IDM (Zhao et al. 2023a). We provide de-
tailed descriptions of baselines in the Appendix.

Metric. Following previous works (Wang et al. 2018; Zhao
and Bilen 2023; Kim et al. 2022), we employ the test accu-
racy of networks trained on condensed examples as the eval-
uation metric. All the networks are trained from scratch for
multiple times — 10 times for low-resolution datasets and
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(a) Initialized SVHN images. (b) Condensed images by DM. (c) Condensed images by M3D.

Figure 4: Visualization of the condensed set of SVHN dataset with 10 images per class. The condensed set is generated by (b)
DM and (c) M3D. Both DM and M3D use the same initialization as (a) shows.

ImageNet-10 ImageNet-100
IPC 10 20 10 20

Acc. Time Acc. Time Acc. Time Acc. Time

Random 46.9 - 51.8 - 20.7 - 29.7 -
Herding 50.4 - 57.5 - 22.6 - 31.1 -

DSA 52.7 27.0h 57.4 51.4h 21.8 9.7h 30.7 23.9h
IDC 72.8 70.1h 76.6 92.8h 46.7 141.0h 53.7 185.0h
DM 52.3 1.4h 59.3 3.6h 22.3 2.8h 30.4 2.8h
M3D 73.4 1.1h 76.8 3.1h 46.9 3.5h 55.5 4.2h

Table 3: The performance and efficiency comparison on
high-resolusion ImageNet-subsets. The synthetic examples
are condensed using ResNetAP-10. The minimal time re-
quired for obtaining the best performance is reported, which
is measured on a single RTX-A6000 GPU with same batch
size. For ImageNet-100, all methods are splitted into five
sub-tasks with 20 classes each for faster optimization.

3 times for ImageNet subsets. We report the average perfor-
mance and the standard deviation.

Implementation Details. We employ the Gaussian kernel
for RKHS by default. The number of iterations is set to 10K
for all low-resolution datasets. While for ImageNet subsets,
we set 1K iterations. Additionally, the number of iterations
per model is consistently set to 5 across all datasets. Regard-
ing the learning rates for the condensed data, we assign a
value of 1 for low-resolution datasets including F-MNIST,
SVHN and CIFAR-10/100. For ImageNet subsets, we adopt
a learning rate of 1e-1. Following IDC (Kim et al. 2022), the
factor parameter l is set to 2 for low-resolution datasets and
3 for ImageNet subsets.

Comparison to the SOTA Methods
Table 2 and Table 3 present the comparison of our method
with coreset selection and dataset condensation methods.

The results show that synthetic examples are more informa-
tive than the selected ones, especially when the number of
image(s) per class is small. This is attributed to the fact that
synthetic examples are not confined to the set of real ex-
amples. Furthermore, our method consistently outperforms
other baselines across a diverse set of scenarios. Remark-
ably, M3D achieves over a 5% higher accuracy than the
best baseline on SVHN, CIFAR-10 (IPC=10), and CIFAR-
100 (IPC=1). Notably, for high-resolution ImageNet sub-
sets (Deng et al. 2009; Kim et al. 2022; Zhang et al. 2023),
our method surpasses all baselines in test accuracy, includ-
ing the current SOTA optimization-oriented IDC (Kim et al.
2022). It is worth noting that IDC (Kim et al. 2022) de-
mands an exceptionally long time to condense ImageNet
subsets, e.g., approximately 4 days on ImageNet-10 with
IPC=20 (Zhang et al. 2023). In contrast, M3D achieves su-
perior performance in a matter of hours. Additionally, our
method eliminates the need for network updates, thereby cir-
cumventing the tuning of various hyper-parameters. Conse-
quently, our method can be readily applied to realistic and
larger datasets, maintaining efficiency and effectiveness si-
multaneously.

To further demonstrate the advantages of our method, we
provide the test accuracy across varying training steps in
Fig. 3. As observed, our method consistently outperforms
DM at different training steps. Even without the factor tech-
nique, our method still achieves considerable improvement,
highlighting the effectiveness of M3D in aligning distribu-
tions compared to previous DM-based methods.

Cross-Architecture Evaluation. We further assess the per-
formance of our condensed examples on different archi-
tectures. In Table 4, we present the performance of our
condensed examples from CIFAR-10 dataset on ConNet-3,
ResNet-10 (He et al. 2016), and DenseNet-121 (Huang et al.
2017). Combining the results from Table 2, we can find that
M3D outperforms the compared methods not only on the
architecture used for condensation but on unseen ones.
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Figure 5: Representative samples condensed by M3D on Im-
ageNet. The corresponding labels, from left to right and top
to bottom, are bonnet, green snake, langur, doberman, gy-
romitra, saluki, vacuum, window screen, and cockroach.

IPC Evaluation Method
Model DSA DM M3D

10
ConvNet-3 52.1 48.9 63.5
ResNet-10 32.9 42.3 56.7

DenseNet-121 34.5 39.0 54.6

50
ConvNet-3 60.6 63.0 69.9
ResNet-10 49.7 58.6 66.6

DenseNet-121 49.1 57.4 66.1

Table 4: Cross-architecture generalization performance (%)
on CIFAR-10. The synthetic examples is condensed using
ConvNet-3 and evaluated using other architectures.

Visualizations. We visualize the condensed images of
SVHN and ImageNet in Fig. 4 and Fig. 5, respectively. For
SVHN, we initialize the synthetic set S using random im-
ages from the training set T and then apply the conden-
sation process using DM and M3D. As shown, the con-
densed images by DM and M3D appear as if the original
images have been augmented with a distinct texture. No-
tably, the condensed images produced by our method ex-
hibit a more pronounced and visually appealing texture com-
pared to DM. While the overall appearance remains similar,
our condensed images demonstrate better alignment with the
higher-order moments of the original training set. In the case
of ImageNet, the condensed images exhibit a texture rem-
iniscent of a sunspot. In contrast to optimization-oriented
methods, the images condensed by M3D retain more nat-
ural features and are more visually recognizable to humans.
More visualization results are provided in the Appendix.
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Figure 6: (a) Ablation of IPM, where the horizontal axis
represents the number of IPM, the left and right vertical
axis denote test accuracy (%) and the corresponding time
cost (mins), respectively. (b) Ablation of the kernel function,
where the vertical axis denotes test accuracy (%).

Ablation Study

Impact of the Iteration per Model (IPM). We conduct
experiments using various number of iterations per model,
and the corresponding performance is depicted in Fig. 6a.
We adopt CIFAR-10 with 10 images per class to showcase
the impact of IPM. In addition to the test accuracy of con-
densed examples, we also provide the training time required
to achieve the reported accuracy. As shown, increasing the
number of IPM may lead to improved performance of the
condensed data, but it also increases the training time. Con-
versely, an excessively large IPM can compromise the gen-
eralization ability of the condensed examples.
Impact of the Kernel Function. Different kernel func-
tions construct distinct Reproducing Kernel Hilbert Spaces
(RKHS). To investigate their influence, we adopt two addi-
tional kernel functions in addition to the Gaussian kernel:
the linear kernel and the polynomial kernel. Fig. 6b illus-
trates the test accuracy under different kernel functions with
10 images per class. As observed, the choice of K has min-
imal impact on the performance of the condensed dataset.
This indicates that as long as the selected kernel function is
valid, our M3D can effectively embed the distributions in the
constructed RKHS, resulting in a robust method.

Conclusion
In conclusion, this paper introduces a novel Distribution-
Matching (DM)-based method called M3D for dataset con-
densation. With a theoretical guarantee, our method embeds
the representation distributions of real and synthetic exam-
ples in a reproducing kernel Hilbert space, minimizing the
maximum mean discrepancy between them to align their
distributions in both first- and higher-order moments. Ex-
tensive experiments show the effectiveness and efficiency of
our method. Notably, the efficiency of our method enables its
application to more realistic and larger datasets. M3D first
studies the alignment of higher-order moments of the repre-
sentation distributions between real and synthetic examples,
and establishes a strong baseline in DM-based methods for
dataset condensation, which we believe will be valuable to
the research community.
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